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Abstract - Parameters of equilibrium adsorption obtained from experiments using immobilized metal affinity 
chromatography (IMAC) were used to evaluate the applicability of the steric mass-action (SMA) model to 
describe the adsorption of lactoferrin to cryogel resin under different conditions. The adsorption of lactoferrin 
on continuous supermacroporous cryogel with immobilized Cu2+ ions was evaluated in batch adsorption 
experiments at different pH (6-8) and temperature (293-313 K) values. Estimated values of the equilibrium 
constant (K) and characteristic number of binding sites (n) showed that these parameters decreased with 
increasing ionic strength, pH and temperature, while the nonlinear parameter, the steric factor (), increased 
with increasing ionic strength and temperature. Expressions correlating these parameters with pH, ionic 
strength and temperature were then derived.  
Keywords: SMA; IMAC; Cryogel; Protein. 

 
 
 

INTRODUCTION 
 

The recent requirements of high purity proteins 
(both natural and recombinant), and the need of re-
ducing costs of downstream processes have stimu-
lated the development of more efficient and cheaper 
separation techniques (Frerick et al., 2008). It has 
been shown that Immobilized Metal Affinity Chro-
matography (IMAC) meets these requirements (Car-
valho et al., 2014; Wang et al., 2008; Cheung et al., 
2012). This technology is based on the chemical 
affinity displayed by certain groups of amino acid 
residues present on the surface of proteins (e.g., the 

imidazole group of histidine, thiol group of cysteine 
and tryptophan’s indole group) with the metal ions 
immobilized on chromatographic resins (Gupta et 
al., 2002; Çimen and Denizli, 2012).  

IMAC has been reported as a promissing technol-
ogy for purification of proteins with an “N-terminal 
metal biding tag” (e.g., histidine tail and NT1A) 
(Puri et al., 2010; Petzold et al., 2014; Cheung et al., 
2012), including on a large scale (Gaberc-Porekar 
and Menart, 2005), due to its low cost and the high 
purity of the eluate, even in a single step process 
(Puri et al., 2010; Carvalho et al., 2014). However, 
when approaching the purification of natural pro-
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teins, IMAC may present some challenges since the 
amount of histidine on the surface accounts for only 
1% of the total number of amino acids (Ueda et al., 
2003). Then, optimum conditions of the medium, 
such as temperature, salt concentration and pH, 
should be determined to improve the specific adsorp-
tion of the target protein. Over the years, acceptance 
of IMAC as a reliable technique for separation on a 
laboratory scale has increased. However, its use on 
an industrial scale has still been only slightly ex-
plored. 

The main interaction in IMAC is the coordinate 
bond. However, other interactions, such as electro-
static and hydrophobic, may also occur due to the 
environmental conditions. Generally, these three 
types of interplay should be considered. Nonetheless, 
it is not always possible to determine the relative 
contribution of each of them. It is known that the 
prevalence of a particular type of interaction over the 
others is essentially governed by certain variables, 
such as the nature of the chelating agent, the com-
position of the protein’s surface and the chemical 
environment where the interplay occurs, that is, the 
solution’s ionic strength, pH and type of salts are 
also determinants of the driving forces (Bresolin et 
al., 2009). This makes IMAC less predictable and its 
optimization a difficult task. Projects for IMAC on a 
preparative scale require a deep understanding of all 
the fundamental mechanisms that govern the protein 
adsorption. The knowledge of these processes pro-
vides a rational basis to establish chromatographic 
conditions for purification and scale-up (Bornhorst 
and Falke, 2000; Ueda et al., 2003).  

Although the adsorption process in IMAC is con-
siderably different from conventional methods, pre-
vious studies have shown that the interaction be-
tween a protein molecule and immobilized metal 
ions may be explained based on the application of 
isotherm models of both affinity and ion exchange 
phenomena (Jiang and Hearn, 1996; Chen et al.. 
2005). Nonetheless, the universal applicability of a 
model to elucidate the precise molecular mechanisms 
by which proteins are retained in resins with chelated 
metals still must be established. 

Brooks and Cramer (1992) presented a new 
model, steric mass action (SMA), for protein adsorp-
tion equilibrium in nonlinear ion exchange systems. 
This model combines the stoichiometric displace-
ment model (Rounds and Regnier, 1984; Drager and 
Regnier, 1986) with the concept of steric shielding of 
macromolecules presented later by Velayudhan 
(1990). Mainly used in ion exchange chromatog-
raphy, the model involves three parameters, the num-
ber of identical binding sites (n), the equilibrium 

constant (K) and the steric factor (). It is assumed 
that the adsorption is an exchange process between 
the free protein molecule and a certain number of 
ions bound to the resin, which considers explicitly 
the steric hindrance of the counter ions of the salt on 
the binding of proteins. Recent studies have used the 
SMA model to describe protein adsorption equilib-
rium and the results have shown its efficiency for 
predicting the non-linear adsorption behavior of pro-
teins (Chen et al., 2006; Barz et al., 2010). 

Given the high demand for purified proteins, the 
development of mechanistic models which both pre-
dict adsorption with accuracy and provide one with 
process information (e.g., pH, salt concentration, 
temperature) is needed to design purification plants. 
Langmuir and other adsorption models, for example, 
do not explain the process at the molecular level. 
Detailed models like the SMA can indicate more 
clearly the driving force for the adsorption. Thus, in 
the present study, the applicability of the SMA 
model and the parametric sensitivity that describes 
the adsorption equilibrium of bovine lactoferrin in 
cryogel resins with copper ions immobilized through 
iminodiacetic acid (IDA-Cu+2-cryogel) was analyzed 
under different conditions (pH, salt concentration 
and temperature) as an approach to mechanistic 
modeling for further industrial process development 
applications. 
 
 

MATERIALS AND METHODS 
 
Materials 
 

Lactoferrin (LF) (M.W., 80 kDa), acrylamide 
(AAm, 99.9% electrophoretic grade), N,N-methylene-
bisacrylamide (MBAAm, 99%), ammonium persul-
phate (APS, 98%), CuSO4·4H2O (98%), iminodiace-
tic acid (IDA), N-2-hydroxyethylpiperazine-N’-2-
ethanosulfenic acid (HEPES), N,N,N’,N’-tetrame-
thyl-ethylenediamine (TEMED, 99%) and allyl glyc-
idylether (AGE, 99%) were purchased from Sigma–
Aldrich (Steinheim, Germany). Imidazole was pur-
chased from Merck (Germany). Ultrapure water was 
used during all experiments (Milli-Q system, Millipore 
Inc., USA). 
 
Methods 
 
Synthesis of IDA-Cu2+ Cryogel Adsorbent Resin  
 

The synthesis of IDA-Cu2+-cryogel resin was car-
ried out according to Kumar et al. (2006), as de-
scribed by Carvalho et al. (2013). The cryo-copoly-
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merization reaction of solution containing AAm, 
MBAAm, AGE, TEMED and APS was performed. 
IDA was used as chelating agent to load copper 
within the matrix. All experiments were performed in 
triplicate. 
 
Obtaining Adsorption Isotherms 
 

Adsorption isotherm data were obtained by batch 
experiments, as described by Carvalho et al. (2013). 
3 mg of dried cryogel matrix were weighed in eppen-
dorf tubes. Initially, the resin was equilibrated with 
400 μL of equilibration buffer (20 mmol.L-1 HEPES 
containing 200 mmol.L-1 NaCl, pH 7.0). The tubes 
were left under mild stirring for a period of two 
hours to condition the resin. After this period, the 
equilibration buffer was removed and different vol-
umes (0 to 300 μL) of a 10 mg.mL-1 solution of lac-
toferrin were added. Adsorption buffer (20 mmol.L-1 
HEPES containing 400 mmol.L-1, different pHs) was 
then added to make the volume up to 1200 L. The 
final protein concentrations in the tubes were 0, 0.1, 
0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.2 mg.mL-1. 
The tubes were kept under constant agitation for 24 
hours under controlled temperature (101M Mod 
BOD/3 Eletrolab ®, Brazil), to achieve the equilib-
rium state. Subsequently, the resin was removed 
from the eppendorf tubes and the concentration of 
protein contained in the supernatant was determined 
spectrophotometrically at 280 nm (Thermo Scientific 
Model BIOMATE 3). The protein concentration in the 
solid phase was determined according to Equation (1): 
 

0( )V C C
q

M


               (1) 

 
where q (mg.g-1) is the concentration of protein in the 
solid phase, V (mL) the volume of the liquid phase, M 
(g) is the mass of the solid phase, C0 (mg.mL-1) is the 
initial concentration of protein in the liquid phase 
and (mg.mL-1) C is the final protein concentration in 
the liquid phase after the equilibrium state has been 
established. The experiment was conducted using a 
factorial design with three temperatures (20, 30 and 
40 °C), three different pHs (6.0, 7.0 and 8.0) and a 
salt concentration of 400 mmol.L-1. 
 
Modeling the Equilibrium Data - The SMA Model 
 

The applicability of the Zhang and Sun (2002) 
SMA model to describe the adsorption of LF onto 
IDA-Cu+2-cryogel was evaluated in this work. In this 
model, the protein (Lactoferrin) would interact with 

ligands (immobilized Cu2+ ions), present at a density 
Lt (mmol.L-1), according to a “characteristic number 
of binding sites”, ni. Further, during the protein ad-
sorption, there may be a number of copper ions 
blocked by the 3D structure of the molecule, which 
prevents that other proteins coordinate to the ions. 
The number (average) of shielded cooper ions is 
given by the steric factor, i. The following interac-
tion balance can be written for each protein of the 
mixture (i):  
 

v             1,2,...,NiK
i i iC n L Q  i          (2) 

 
where Ci and Qi represent, respectively, the concen-
trations of protein free in solution and bound to 
metal ions immobilized in the cryogel, and vL  is the 
amount of immobilized copper free and unblocked to 
bind to molecules of LF. The equilibrium constant Ki 

for the metal affinity process is given by: 
 

v

     1,2, ...,N
i

i
i n

i

Q
K i

L C
            (3) 

 
Because many ligands may be blocked by bound 

LF molecules, the equilibrium constant is redefined 
as: 
 

1

( )
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t i i i i
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Q
K

L n Q C
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
 
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where the term 
1

( )
N

t i i i
i

L n Q


 
  

  
  is a mass bal-

ance for the copper ions and is equal to the density of 
metal available for protein binding. In this study, the 
equilibrium adsorption of lactoferrin onto IDA-Cu2+-
cryogel was studied to examine the usefulness of the 
SMA model in describing such process. For this 
system, Equation (4) may be reduced to: 
 

 ( )
n

t

Q
C

K L n Q


 
           (5) 

 
In a dilute protein solution, the isotherm can be 

written as: 
 

0
lim

nC
t

Q
K

CL
               (6) 
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As shown in Table 2, for the majority of the cases 
studied, the steric factor value decreases with in-
creasing temperature and, in some cases, it passes 
through a minimum at a temperature equal to 303 K. 
Indeed, as seen in Figure 2, the temperature increase 
leads to an increase of adsorption capacity of lac-
toferrin on IDA-Cu+2-cryogel. When the temperature 
rise occurs in the adsorption process, there is a de-
crease in the energy of protein-water interaction, 
which results in increasing interactions between pro-
tein-copper ion. Thus, the increase of temperature is 
sufficient to break down the diffuse region of the 
electrical double layer, and thus the protein mole-
cules interact more strongly with the resin, favoring 
the adsorptive phenomenon. 
 
Table 2: Steric factor of the lactoferrin- IDA-Cu2+ 
cryogel system at different pHs and temperatures. 
 
 Steric Factor 

pH Temperature/2
93 K 

Temperature/ 
303 K 

Temperature/
313 K 

6 24.40 20.74 21.01 
7 25.01 22.06 22.27 
8 17.67 22.12 17.74 

 
Regarding the behavior of the steric factor values 

with respect to ionic strength and pH, it was ob-
served that the steric factor decreased with increas-
ing ionic strength, except for the conditions of pH 8, 
293 K and 303 K. With regard to the pH, it is noted 
that, in some cases, the steric factor decreased with 
increasing pH, except at pH 7.0, where there was a 
peak in its value. Reasons for such behavior may be 
due to the fact that, in IMAC, the adsorption capacity 
and selectivity depend not only on the metal chelates 
immobilized on the chromatographic matrix, but also 
on the composition of the mobile phase. The protein 
retention in IMAC adsorbents occurs due to the con-
tribution of various physico-chemical interactions, 
which may be enhanced or minimized depending on 
the composition of the mobile phase. When IMAC is 
operated at high salt concentration (0.5 to 1.0 mol.L-1 
NaCl, for example), the predominant interaction is 
the coordinate bond between the immobilized metal 
ions and amino acid residues accessible on the sur-
face proteins, while the electrostatic interactions 
occur with a lesser intensity. The electrostatic effects 
are more intense when employing a mobile phase 
with low ionic strength. These effects occur between 
charged proteins and the positive charges of the 
metal ions or negative charges remaining on the sur-
face of the matrix (unreacted functional groups re-
maining from the activation and coupling of the che-
lator, or residual carboxylic groups of chelating 

agents due to incomplete chelation of metal ions) 
(Winzerling et al., 1992; Guitiérrez et al., 2007). 

In IMAC, regarding the pH, coordinate bonds are 
favored when ionizable groups of electron donors 
amino acid residues present in biomolecules are par-
tially deprotonated, i.e., when the pH of the solution 
is above the pKa of the ionizable groups (Bresolin et 
al. 2009). Moreover, since the coordinate bonds with 
the immobilized metal ions may occur simultane-
ously with electrostatic interactions, protein adsorp-
tion on IMAC is pH dependent. However, the effects 
of each interaction on the protein adsorption are dif-
ficult parameters to be determined.  

On the one hand, high ionic strength leads to 
strong binding of salt ions to the IDA-Cu2+-cryogel 
resin, reducing the number of accessible binding 
sites for the protein (Wrzosek et al., 2009). On the 
other hand, there is a greater selectivity of coordinate 
binding, which is favored by high salt concentra-
tions. The decreased resin adsorption capacity is a 
direct result of the binding of salt ions to metal lig-
ands. It is shown in the SMA model as an apparent 
increase in σ.  

Figure 2 shows a comparison between the simula-
tions of the SMA model and equilibrium affinity data 
for the lactoferrin- IDA-Cu2+-cryogel complex at 400 
mmol.L-1 NaCl, temperatures equal to 293 K, 303 K 
and 313 K, and pH 6.0, 7.0 and 8.0. It was found that 
the predicted adsorption capacities had higher values 
than the corresponding experimental ones, in most of 
the analyzed cases. At pHs near the lactoferrin isoe-
lectric point, the accuracy of the model decreased 
further. It is known that the net charge and three-
dimensional structure of proteins are influenced by 
the pH of the buffer solution. Because lactoferrin has 
nine histidine residues (responsible for protein re-
tention on the IDA-Cu2+-cryogel complex) having 
pKa = 6.5, in conditions above this value the medium 
is deprotonated, favoring other types of binding, not 
only the affinity. Thus, under these conditions, the 
SMA model failed to predict the change in behavior.  

Figure 3 shows a comparison between experi-
mental and predicted protein concentration values. 
As can be seen, there was a reasonable agreement 
between predicted concentrations of lactoferrin and 
those measured experimentally through variation of 
ionic strength, pH and temperature. Osberghaus et al. 
(2012) have determined parameters for the steric 
mass action model through two methods; approach I 
was based on frontal and gradient experiments, while 
approach II relied on the “application of an inverse 
method for parameter estimation”. The SMA parame-
ter obtained from this last method led to the best accu-
racy of “a mechanistic model” developed for column 
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