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Abstract - This work evaluates the usage of the multimodal lognormal function to describe Particle Size 
Distributions (PSD) of emulsion and suspension polymerization processes, including continuous reactions 
with particle re-nucleation leading to complex multimodal PSDs. A global optimization algorithm, namely 
Particle Swarm Optimization (PSO), was used for parameter estimation of the proposed model, minimizing 
the objective function defined by the mean squared errors. Statistical evaluation of the results indicated that 
the multimodal lognormal function could describe distinctive features of different types of PSDs with 
accuracy and consistency. 
Keywords: Particle Size Distribution; Lognormal function; Parameter estimation; Particle Swarm Optimization; 
Heterogeneous polymerization. 

 
 
 

INTRODUCTION 
 

The particle size distribution (PSD) is one of the 
most important characteristics of polymer latexes/res-
ins, since properties such as viscosity, maximum 
solids content, adhesion and drying time depend on 
the profile of this distribution (Vale and McKenna, 
2005). Furthermore, the understanding of the dynam-
ics of PSD is very important for process monitoring 
and final quality control of heterogeneous polymeri-
zation processes (Hosseini et al., 2013). Therefore, 
PSD modeling has received great attention with the 
proposal of models such as Population Balance 
Equations (PBE) (Machado et al., 2000; Araújo et 
al., 2001; Kiparissides et al., 2002; Immanuel et al., 
2002; Coen et al., 2004). However, according to Vale 
and McKenna (2005), even when these difficulties in 

coagulation modeling are overcome, the PBEs are 
difficult to solve if they include kinetic and/or hydro-
dynamic complete models. Despite recent advances 
in techniques for experimental determination, diffi-
culties in determining important variables related to 
the quality and productivity of polymers still remain 
(Machado et al., 2007). In the case of PSD, these 
limitations are associated with the existence of poly-
disperse distributions and the long times often re-
quired for sample preparation and analysis.  

In this way, simpler and thus less computationally 
expensive alternatives for the description of complex 
PSDs are very useful for different types of applica-
tions as, for instance, the development of soft-sensors 
for on-line PSD monitoring (Clementi et al., 2013), 
the implementation of optimization and control strat-
egies or the simulation of heterogeneous polymerize-
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tion reactions using CFD tools (Elgebrandt et al., 
2006; Pohn et al., 2013). These alternatives require a 
model describing the PSD. 

According to Limbert et al. (2001) the multi-
modal lognormal function has proved to be efficient 
and flexible in describing wide or narrow, unimodal 
and multimodal distributions in many particulate 
systems applications.  

This diversity of applications can be observed in 
works such as Zhao et al. (2003) who investigated 
the dynamics of soot particle size distributions. The 
numerical simulation using a kinetic model proposed 
previously and a stochastic approach to solve aerosol 
dynamics equations showed a bimodal soot particle 
size distribution function, the consequence of the 
interplay between particle-particle coagulation and 
particle nucleation. In this same respect, Johnsson et 
al. (2010) claimed that soot particle distributions 
generally consist of a range of different particle 
sizes, and the lognormal size distribution has been 
shown to be a good approximation for various flame 
conditions; Hwang and Choi (2006) investigated the 
predictive potential of the unimodal lognormal dis-
tribution model for estimating the water retention 
curves, and this model was evaluated for a broader 
range of soil; Yuan et al. (2011) described the char-
acteristics of atmospheric aerosols using a multi-
lognormal distribution model with parameters esti-
mated by Particle Swarm Optimization. The model 
was validated and analyzed by comparing with the 
measured optical properties of several bands; Pujol 
and Pinto (2011) approached fatigue life prediction 
under step-stress conditions by comparing a standard 
approach based on the lognormal distribution func-
tion implemented and fit to experimental data, with 
an approach for fatigue life prediction from neural 
networks. Both models were optimized by differen-
tial evolution associated to the Newton-Raphson-
Method, using a maximum likelihood estimator.  

Given the above, this paper aims to evaluate the 
use of a multimodal lognormal function to describe 
the behavior of particle size distributions in heteroge-
neous polymerization systems, using a Particle Swarm 

Optimization algorithm for parameter estimation.  
 
 

MATERIALS AND METHODS 
 
Experimental Particle Size Distributions  
 

In order to evaluate whether the proposed multi-
modal lognormal function was able to describe real 
PSDs, experimental PSDs of emulsion and suspen-
sion polymerization reactions were used for the pa-
rameter estimation of the multimodal lognormal 
function. The choice of the distributions used in this 
work was based on their different characteristics and 
on the existence of multimodalities. 

The reaction techniques, monomer system, reac-
tor type and operation mode of the experimental PSD 
used in this work are summarized in Table 1. Four 
PSDs (PSD01 to PSD04), among which there were 
unimodal and multimodal distributions, were ob-
tained from the work of Araújo (1999). In short, this 
author investigated the effects of operational condi-
tions (temperature, initiator and surfactant concentra-
tions) on the PSD in an emulsion copolymerization 
of vinyl acetate/Veova10 in a continuous loop reactor 
with high solids content. The reactor pre-feeding 
with an aqueous (surfactant, protective colloid and 
Na2S2O5) and an organic phase (monomer mixture 
with vinyl acetate to Veova 10 weight ratio of 75/25) 
caused a fast increase of the particle number at the 
reaction beginning. As a consequence, the distribu-
tions usually show a right skewness. The higher sol-
ubility of the oligomeric radical in the aqueous phase, 
due to the vinyl acetate, affects the main “locus” of 
the polymerization, promoting re-nucleations. 

Another PSD (PSD05) was obtained from the 
work of Zubitur and Asua (2001) which investigated 
the factors affecting kinetics and coagulation during 
the emulsion polymerization of styrene and butyl 
acrylate, in a semi-batch stirred tank reactor. The PSD 
showed some bimodality, a peak of small particles, 
probably resulting from secondary nucleation in the 
presence of seed particles (shoulder of bigger particles). 

 
Table 1: Heterogeneous polymerization systems data. 

 
Distribution Reactor type Reaction mode Polymerization 

technique 
Monomer(s) Authors 

PSD01, PSD02, 
PSD03, PSD04 

Tubular loop Continuous Emulsion Vinyl acetate and 
Veova 10 

Araújo (1999) 

PSD05 Stirred tank Semi-batch Emulsion Styrene and butyl 
acrylate 

Zubutar and Asua (2001) 

PSD06 Stirred tank Semi-batch Emulsion Vinyl acetate and 
butyl acrylate 

Mallikarjunan et al. (2010) 

PSD07, PSD08 Stirred tank Batch Suspension Methyl 
Methacrylate 

Jahanzad (2004) 
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Mallikarjunan et al. (2010) studied the emulsion 
copolymerization of vinyl acetate and butyl acrylate, 
conducted in a semi-batch stirred tank reactor, and 
another PSD (PSD06) was utilized from the work of 
these authors. They report a bimodal PSD deter-
mined with CHDF, since the system was fed with 
surfactant in excess. 

In addition to the PSDs of emulsion polymeriza-
tion reactions, PSDs of suspension polymerization 
reactions of methyl methacrylate were also evalu-
ated. These PSDs are available in the work of Ja-
hanzad et al. (2004), and they were included in this 
work with the objective of investigating the adapta-
bility of the multimodal lognormal function to other 
heterogeneous polymerization techniques. In this pa-
per, the authors carried out extensive research on the 
influence of process variables (temperature, inhibi-
tion, stabilizer and initiator concentrations, agitation) 
on the PSD in a batch stirred tank reactor. The distri-
butions obtained by Jahanzad et al. (2004) are basi-
cally unimodal. In general, some factors promoted 
the growth of the mean particle size and the broaden-
ing of the distributions, such as the increase of the 
reaction temperature, decrease of the stirring rate, 
decrease of the stabilizer concentration and absence 
of inhibitor.  

In order to normalize the distributions range, a 
numerical integration (trapezoid method) was used to 
calculate the area under each PSD. The different 
types of distributions (number/weight/volume den-
sity distributions) of these reference works were nor-
malized by the division of the PSD by the calculated 
area. In this way, the sum of the relative frequencies 
was equal to one for each PSD. 
 
Multimodal Lognormal Function 
 

The lognormal distribution is a model with two 
parameters, whose density function is expressed by 
Equation (1) (Crow and Shimizu, 1988): 
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where x is the independent variable, g  and g  re-

present the geometric mean and geometric standard 
deviation of the distribution, respectively. 

For frequency distributions, xk values are weighted 
by their relative frequencies fk with k = 1, 2 ..., n. In 
this case, the geometric mean and geometric standard 
deviation can be defined by Equations (2) and (3), 
respectively (Crow and Shimizu, 1988): 
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 is the absolute frequency. 

However, in real situations, these distributions 
can be composed of more than one mode, being 
bimodal, trimodal or even n-modal. In such cases, 
the function can be described by a weighted sum of 
lognormal functions (Zender, 2010). Equation (4) 
describes the multimodal lognormal function: 
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Taking into account the number of modes of the 
experimental distributions used in this work, the 
Bimodal Lognormal Function (BLF) and Trimodal 
Lognormal Function (TLF) were chosen for 
modeling experimental PSDs. Equation (5) provides 
a representation of the function used, with the 
particle diameter d as independent variable: 
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Therefore, there were always five or eight pa-
rameters to be estimated for BLF and TLF respec-
tively, since there were three parameters to be esti-

mated for each mode ( ln i
g , ln i

g and iw ). 

 
Parameter Estimation 
 

The parameter estimation procedure of the MLFs 
was supported by Particle Swarm Optimization (Kenn-
nedy and Eberhart, 1995). This algorithm uses its in-
telligent strategy to randomly minimize the objective 
function defined by the sum squared errors [SSE], 
according to Equation (6): 
 

 2exp
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k
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SSE f MLF d
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where exp
kf  is the experimental frequency value in k; 

( )kMLF d  is the frequency calculated by the multi-

modal lognormal function in k and n is the number of 
experimental points. 

In short, according to Yang (2014), the PSO strat-
egy considers that a particle i in an interaction k, 
moves through the search space with two attributes: 
position (X) and velocity (V) vectors, represented by 
equations (7) and (8), respectively:  
 

= X + V    X k +1
i

k k
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where, k
iP  is the best previous position along the dth 

dimension of particle i in iteration kth, while k
gP  is 

the best previous position among all the particles along 
the dth dimension in iteration kth. 

According to Blum and Merkle (2008) the veloc-
ity vector is determined by three terms: the “momen-
tum”, the “cognitive”, and the “social” term. The “mo-
mentum” term w.vi represents the previous velocity 
which is used to carry the particle in the direction it 
has travelled so far; the “cognitive” term c1r1(Pl

k –
Xi

k), represents the tendency of the particle to return 
to the best position it has visited so far; the “social” 
term c2r2(Pg

k –Xi
k), represents the tendency of the 

particle to be attracted towards the position of the 
best position found by the entire swarm. Parameters 
c1 and c2 are acceleration coefficients, while r1 and r2 
are two independent random numbers uniformly dis-
tributed in [0,1]. 

The procedure proposed by Jiao et al. (2008), 
which considers the implementation of the dynamic 
inertial weight (Equation (9)) as a way to control the 
particle momentum, weighing the contribution of 
the previous velocity and thus, basically controlling 
how much memory of the previous flight direction 
will influence the new velocity, was used in this 
work. In this way, algorithm parameters follow the 
references of Jiao et al. (2008) and Van den Bergh 
(2002) who investigated the convergence criteria of 
the algorithm. 
 

0. kw w u               (9) 

 
As this is a strategy that performs a random 

search, it is necessary to set upper and lower limits 
of the parameters to be adjusted. So, the limits of the 
parameters ln g  were defined from the limits of the 

diameter variable on a logarithm scale; in turn the 
limits of parameters ln g  were defined based on 

previous works on modeling of particle size 
distribution using the lognormal function (Limpert et 
al., 2001). Table 2 shows the employed search 
ranges, and the initial parameter estimates generated 
randomly from a uniform distribution, on the PSO.  
 
Table 2: Search range for the MLFs parameters. 

 
Parameter Search range 

ln g   3.2,6.6  

ln g   0.01,0.6  

w   0,1  

 
Two stopping criteria of the algorithm were used: 

the maximum number of iterations (8000) or evalua-
tion of Equation (10): 
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where gY  and zY are, respectively, the best result found 

and the best z last results.  
The parameter estimation strategy was imple-

mented in Fortran 90 language and parameter esti-
mations were carried out in triplicate. Reported opti-
mal parameters are arithmetic mean values of the 
three estimations. Standard deviations of each pa-
rameter are also reported, representing the algorithm 
variability due to the random feature of the search. 
Therefore, it is important to point out that standard 
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deviation values have no relationship with the confi-
dence interval of the optimal parameter. 

Statistical interpretation of the results was per-
formed through the correlation coefficient [r] be-
tween experimental and calculated frequency distri-
butions. In addition, the Kolmogorov-Smirnov test 
was used to compare experimental frequency distri-
butions with estimated frequency distributions. The 
Kolmogorov-Smirnov test and Chi-square test are 
widely used in the scientific literature and the first 
one is more efficient for continuous frequency distri-
butions (Evren and Tuna, 2012). 
 
 

RESULTS AND DISCUSSION 
 

The first set of PSDs, PSD01 to PSD04, corre-
sponds to the evolution during a continuous vinyl 
acetate/Veova 10 emulsion copolymerization reaction 
conducted in a tubular loop reactor. Due to succes-
sive nucleations this reaction presents broad and 
often multimodal PSDs (Rawlings and Ray, 1988). 
This feature generates consequences for the determi-
nation of the search interval of the parameter geo-
metric mean. Besides, the positively skewed modes 
affect strongly the geometric standard deviation, mini-
mizing it in this case.  

Figure 1 compares the experimental PSDs with and 
PSDs predicted using a BLF. It may be observed that 
the BLF could fit nicely the broad monomodal and 
positively skewed distribution PSD01, as well as dif-
ferent bimodal distributions with different mode lo-
cations and relative fractions (PSD02 and PSD04). 
As expected, since the proposed model provides the 
generation of two modes, it was not able to represent 
all the three modes of PSD03. Nevertheless, even in 
this case the BLF was able to predict correctly the lo-
cation, width and relative intensity of the two bigger 
particle populations, while the less significant mode 
of the distribution was ignored. 

When a trimodal lognormal function (TLF) is used 
to represent the evolution of the PSD during this 
continuous emulsion polymerization reaction, Figure 
2, the TLF fits perfectly the experimental dis-
tributions, no matter if mono-, bi- or trimodal, show-
ing better agreement than with BLF for all PSDs. 
This result is due to the higher number of parameters 
that ensures the representation of trimodal distri-
butions and favors data fitting when the distribution 
is simpler and, thus, with overlapping modes, with 
very close parameters, favoring the parameter esti-
mation procedure. The higher number of parame-
ters, though, can lead to a high correlation among 
the TLF parameters.  

 

 

 
Figure 1: Experimental (Araújo, 1999) and predicted PSDs of a continuous vinyl acetate Veova 10 
emulsion copolymerization reaction in a loop reactor using a bimodal lognormal function (BLF). 
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Figure 2: Experimental (Araújo, 1999) and predicted PSDs of a continuous vinyl acetate Veova 10 
emulsion copolymerization reaction in a loop reactor using a trimodal lognormal function (TLF). 

 
Figure 3 compares the predictions of a TLF with 

the final experimental PSDs of semi-batch styrene/bu-
tyl acrylate (PSD05, Zubitur and Asua, 2001) and 
vinyl acetate/butyl acrylate (PSD06, Mallikarjunan et 
al., 2010) emulsion copolymerization reactions and 
the TLF was able to predict correctly both bimodal 
PSDs, shoulder of bigger particles and two separate 
populations. 

In order to verify the adaptability of the TLF to 
other heterogeneous polymerization techniques, this 
function was used to predict the PSDs of methyl 
methacrylate of suspension polymerization reactions 

(PSD07 and PSD08, Jahanzad et al., 2004). Again the 
TLF predicted correctly both mono- as well as multi-
modal PSDs, despite the different order of magnitude 
of the particle diameters and forms of the PSDs, 
when compared to those of the previously evaluated 
emulsion polymerization reactions. 

Table 3 and 4 show the average and standard de-
viation values for the parameters set for BLF and 
TLF, respectively. These tables also show the results 
of the objective function value (SSE) for each case.  
The error in the parameter estimation was quantified 
from the results obtained in minimization triplicates. 

 

 
Figure 3: Experimental (Zubitur and Asua, 2001 and Mallikarjunan et al., 2010) and predicted 
PSDs of semi-batch emulsion copolymerization reactions in a stirred tank reactor using a 
trimodal lognormal function (TLF). 
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Table 3: Estimated parameters for BLF model. 
 

Reaction 
Parameters ± standard deviation

1ln  
2ln  

1ln 2ln 1w 2w  SSE
PSD01 5.0830 ±  

3.5E-08 
5.3823 ± 
2.7E-07 

0.1178 ±  
5.2E-08 

0.3204 ±  
9.4E-08 

0.4354 ±  
3.3E-07 

0.5646 ±  
3.3E-07 

6.51E-06 ± 
4.82E-11 

PSD02 4.4658 ± 
3.8E-08 

5.4700 ± 
1.7E-07 

0.1861 ±  
1.2E-07 

0.2069 ± 
6.1E-07 

0.2963 ± 
1.6E-07 

0.7036 ± 
1.6E-07 

3.34E-06 ± 
1.85E-11 

PSD03 4.6718 ± 
1.5E-07 

5.8315 ± 
3.4E-07 

0.2160 ± 
1.4E-07 

0.1756 ± 
1.5E-07 

0.3127 ± 
3.8E-07 

0.6873 ± 
3.8E-07 

6.36E-06 ± 
4.16E-11 

PSD04 5.2643 ± 
8.1E-09 

6.3033 ±  
1.2E-08 

0.3038 ± 
1.5E-08 

0.1354 ±  
4.1E-08 

0.7851 ± 
2.5E-08 

0.2149 ±  
2.5E-08 

7.01E-07 ± 
4.21E-12 

 
  Table 4: Estimated parameters for TLF model.  

 

Reaction 
Parameters ± standard deviation 

1ln  
2ln  

3ln  
1ln  

2ln 3ln 1w  
2w  

3w  SSE 
PSD01 5.0673 ± 

0.0004 
5.2588 ± 
0.0031 

6.1347 ± 
0.0226 

0.1061 ± 
0.0006 

0.2378 ± 
0.0015 

0.5051 ± 
0.0088 

0.3346 ± 
0.0042 

0.4939 ± 
0.0007 

0.1716 ± 
0.0046 

1.46E-06 ± 
3.42E-09 

PSD02 5.1009 ± 
0.0008 

5.2782 ± 
0.0004 

6.3031 ± 
0.0003 

0.0899 ± 
0.0007 

0.3158 ± 
0.0004 

0.1296 ± 
0.0004 

0.0258 ± 
0.0005 

0.7679 ± 
0.0001 

0.2063 ± 
0.0005 

2.93E-07 ± 
1.95E-10 

PSD03 4.4635 ± 
0.0013 

5.4603 ± 
0.0025 

6.2168 ± 
0.0008 

0.1837 ± 
0.0001 

0.1904 ± 
0.0005 

0.0963 ± 
0.0002 

0.2896 ± 
0.0005 

0.6288 ± 
0.0002 

0.0815 ± 
0.0001 

3.53E-06 ± 
1.95E-09 

PSD04 4.6687 ± 
0.0002 

5.7616 ± 
0.0034 

5.9035 ± 
0.0030 

0.2131 ± 
0.0002 

0.0985 ± 
0.0002 

0.2196 ± 
0.0033 

0.3054 ± 
0.0001 

0.2011 ± 
0.0118 

0.4935 ± 
0.0119 

6.61E-07 ± 
2.52E-10 

PSD05 4.5558 ± 
0.0082 

4.6348 ± 
0.0122 

4.7799 ± 
0.0075 

0.0524 ± 
0.0037 

0.0471 ± 
0.0030 

0.1076 ± 
0.0061 

0.3663 ± 
0.0774 

0.2355 ± 
0.0533 

0.3982 ± 
0.0246 

1.25E-05 ± 
1.59E-06 

PSD06 3.3972 ± 
0.0006 

3.5831 ± 
0.0044 

4.7403 ± 
0.0014 

0.1627 ± 
0.0008 

0.3205 ± 
0.0027 

0.3215 ± 
0.0019 

0.2854 ± 
0.0049 

0.3507 ± 
0.0035 

0.3639 ± 
0.0014 

7.30E-06 ± 
5.05E-09 

PSD07 4.7391 ± 
0.0117 

4.9121 ± 
0.0399 

5.1154 ± 
0.0272 

0.2278 ± 
0.0024 

0.1563 ± 
0.0087 

0.1254 ± 
0.0147 

0.6805 ± 
0.0157 

0.1831 ± 
0.0118 

0.1230 ± 
0.0279 

2.76E-07 ± 
1.40E-08 

PSD08 4.1491 ± 
0.0091 

4.9883 ± 
0.0089 

5.2559 ±  
0.0372  

0.1216 ± 
0.0092

0.2068 ± 
0.0066 

0.2784 ± 
0.0124

0.0110 ± 
0.0004

0.3397 ±  
0.0273 

0.6492 ±  
0.0275 

5.45E-08 ± 
3.38E-08

 

It can be verified that all standard deviation and SSE 
values are low, confirming the ability of the algo-
rithm to reproduce consistently the PSDs, thus, cor-
roborating PSO robustness. Finally, a comparison 
between standard deviations presented in Table 3 and 
4 shows that they are higher when using TLF, sug-
gesting a greater correlation between the parameters 
of TLF, since in this function there exists a greater 
number of possible parameter combinations that 

result from the minimization of the function. 
It can be pointed out that scale differences in the 

particle diameters between emulsion polymeriza-
tion [nm] and suspension polymerization [µm] did 
not affect the proposed model for PSDs, and also 
that the TFL model was very sensitive to small vari-
ations in the distribution like the presence of a very 
small population of small particles in PSD08 in 
Figure 4. 

 

 
Figure 4: Experimental (Jahanzad, 2004) and predicted PSDs of batch suspension methyl methacry-
late polymerization reaction in a stirred tank reactor using a trimodal lognormal function (TLF). 
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Evaluation of the correlation coefficient (r) was 
consistent with the results shown in Figures 1 to 
Figure 4, with r ≥ 0.98 in all cases using BLF and r ≥ 
0.99 in all cases using TLF, evidencing a strong cor-
relation between experimental and predicted fre-
quency distributions. The Kolmogorov-Smirnov test 
and the established critical values resulted in a dcritical 
value equal to 0.210 for a significance level (α) of 
5% and for a number of observed points (n) equal to 
40, used in this work. As the largest value dmáx 
evaluation for PSDs predicted is equal to 0.0147, the 
hypothesis that the data refer to the same distribution 
should be accepted, increasing the confidence in the 
performed parameter estimation.  

Finally, it can be pointed out that all variability in 
the evaluated PSDs could be perfectly assimilated by 
TLF, and, except for the smaller third population of 
large particles of PSD03, also by the BLF. The pro-
posal did not present inconsistencies even for the 
different particle diameter ranges commonly pro-
vided by different polymerizations techniques. This 
difficulty was overcome by using normalized relative 
frequencies.  
 
 

CONCLUSIONS 
 

A multimodal lognormal function was proposed 
to describe the particle size distributions in hetero-
geneous polymerization systems, with parameters 
estimated by the global optimization algorithm Parti-
cle Swarm Optimization. Distributions with different 
characteristics, unimodal or multimodal, wide or nar-
row, but all originating from polymerization reac-
tions in emulsion or suspension were modeled. 

High correlations between experimental and pre-
dicted frequency distributions using bimodal and 
trimodal lognormal functions and the Kolmogorov-
Smirnov test were obtained for all particle size dis-
tributions, confirming that the proposed function can 
describe successfully particle size distributions with 
different characteristics.  

Even when different particle diameter ranges 
were used, the proposed model could perfectly repre-
sent the distribution profile. Furthermore, the accu-
racy of the parameter estimation was evidenced by 
low standard deviation values, attesting to the ability 
of Particle Swarm Optimization to reproduce con-
sistent results. 

Comparing the trimodal lognormal function with 
the bimodal lognormal function, the use of the for-
mer is justified only when the investigated particle 
size distributions are very polydisperse with three rele-
vant modes.  
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NOMENCLATURE 
 
BLF Bimodal Lognormal Function 
CFD Computational Fluid Dynamics 
CHDF Capillary Hydrodynamic Fractionation 
d Particle diameter 
exp experimental 
f relative frequencies 
i number of mode 
MLF Multimodal Lognormal Function 
N absolute frequency 
n number of experimental points. 
Pg previous position among all the particles 
Pl previous position along the dth  

dimension of particle 
PSD Particle Size Distributions 
PSO Particle Swarm Optimization 
r correlation coefficient 
SSE sum squared errors  
TLF Trimodal Lognormal Function 
u control parameter  
V velocity vector 
w Inertial weight 
wi fraction of mode i 
wo Initial inertial weight 
x independent variable 
X position vector 
Yg best result found 
Yz best z last results  
 
Greek Symbols 
 

g  geometric mean 

g  geometric standard deviation 
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