Accessibility / Report Error

Toward an integrated model of geological evolution for NE Brazil-NW Africa: The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens

Abstract

Both the Borborema Province of NE Brazil and the geological provinces of NW Africa (the Trans-Saharan Orogen consisted of the Tuareg and Benino-Nigerian shields and the Central African Orogen of Cameroon, Chad, and Central African Republic) are complex geological regions with superposition of distinct deformational, metamorphic and magmatic events and final structural configuration during the Brasiliano/Pan-African Orogeny (ca. 625-510 Ma). These provinces represent the site of major mountain building processes in the Ediacaran/Cambrian transition that culminated in the amalgamation of West Gondwana after the collision of the West African-São Luís, São Francisco-Congo, and Saharan paleocontinents. In the last years, discovery and characterization of key tectonic units such as ophiolites, eclogites, HP/UHP rocks, and both oceanic and continental magmatic arcs are helping to clarify these processes and propose tectonic models for the geological evolution of NE Brazil-NW Africa. Connections of the marginal belts that frame these provinces, bordering the eastern margin of the West African-São Luís Craton (Médio Coreaú-Dahomeyides-Gourma-West Tuareg Shield) and the northern margin of the São Francisco-Congo Craton (Rio Preto-Riacho do Pontal-Sergipano-Yaoundé-Central African) are progressively better constrained, while correlations within the interior, highly reworked and sectioned portions of both the Borborema Province, the Benino-Nigerian Shield, the Central and East Tuareg Shield, Western Cameroon, and Adamawa-Yadé domains are more complicated and demand further investigation. Some of the questions of prime importance in this context are the continuation or not of the 1000-920 Ma Cariris Velhos Belt of NE Brazil into NW Africa, and if the basement-dominated North Borborema/Benino-Nigerian (NOBO-BENI) and Alto Pajeú-Alto Moxotó-Rio Capibaribe-Pernambuco-Alagoas/Adamawa-Yade (APAMCAPAY) domains could represent major decratonized blocks (such as LATEA in the Central Tuareg Shield), perhaps developed due to hyperextension and detachment of a Greater São Francisco-Congo paleocontinent northern margin. In this case, the Goiás-Pharusian and Transnordestino-Central African oceanic realms along with restricted internal oceans such as the hypothetical Piancó-Alto Brígida/Western Cameroon (PAB-WECA) Seaway probably separated these ancient paleocontinental blocks during the Neoproterozoic. The development of subduction zones and the docking of Neoproterozoic juvenile terranes welded the hyperextended Archean/Paleoproterozoic lithospheric fragments together and they became squeezed and reworked in between the major cratonic landmasses during the Brasiliano/Pan-African Orogeny. The quest for the sites of ancient oceans and continents that once composed NE Brazil and NW Africa goes on and tentative scenarios will surely benefit from novel geological, isotopic, and geochronological data put forward in the near future.

KEYWORDS:
Borborema Province; West Gondwana; Neoproterozoic; Transaharan; Brasiliano/Pan-African

INTRODUCTION

The Borborema Province (Ebert 1970Ebert H. 1970. The Precambrian geology of the “Borborema”-Belt (States of Paraíba and Rio Grande do Norte; northeastern Brazil) and the origin of its mineral provinces. Geologische Rundschau, 59(3):1292-1326., Almeida et al. 1981Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1-29.) in northeastern Brazil (Figs. 1, 2 and 3) is a region of great structural complexity, with superposition of distinct deformational, metamorphic, and magmatic events and final structural configuration in the collisional and post-collisional (transcurrent) stages of the Brasiliano/Pan-African Orogeny (ca. 625-510 Ma). Currently, there are various proposed models for the geological evolution of this area. A first group of hypothesis suggests the development of plate tectonic processes during the Neoproterozoic, either involving: progressive accretion of exotic terranes (e.g., Santos 1996Santos E.J. 1996. Ensaio preliminar sobre terrenos e tectônica acrescionária na Província Borborema. In: Congresso Brasileiro de Geologia 39 , Salvador. Annals... 6:47-50., Santos et al. 2000Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G., Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE-Brazil. In: International Geological Congress, 31., 2000, Rio de Janeiro. Annals… CD-ROM., Brito Neves et al. 2000Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
, Santos L.C.M.L. et al. 2017bSantos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. https://doi.org/10.1016/j.jsg.2017.09.012
https://doi.org/https://doi.org/10.1016/...
, 2018Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J. 2018. Accretion tectonics in Western Gondwana deduced from Sm-Nd isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics, 37(8):2727-2743. https://doi.org/10.1029/2018TC005130
https://doi.org/https://doi.org/10.1029/...
); complete Wilson cycles involving crustal rifting, opening and closing of oceans, installation of subduction zones and continental collision (e.g., Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/http://dx.doi.org/10.101...
, 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
, 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, Basto et al. 2019Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: Evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
https://doi.org/https://doi.org/10.1016/...
); or a combination of complete tectonic cycles at the province’s borders and reworking of pre-Neoproterozoic crust in an intracontinental setting at its core (Ganade de Araújo et al. 2014cGanade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
https://doi.org/https://doi.org/10.1111/...
). A second hypothesis is that the province involves the reworking of a single continental block, which remained relatively stable from approximately 2.0 Ga (part of the Atlantica supercontinent of Rogers 1996Rogers J.J.W. 1996. A history of continents in the past three billion years. Journal of Geology, 104(1):91-107.) and was then affected by the installation and further inversion of mainly intracontinental basins (and local basins with restricted development to a proto-oceanic state; Neves 2003Neves S.P. 2003. Proterozoic history of the Borborema province (NE Brazil): Correlations with neighboring cratons and Pan-African belts and implications for the evolution of western Gondwana. Tectonics, 22(4):1031. http://dx.doi.org/10.1029/2001TC001352
https://doi.org/http://dx.doi.org/10.102...
, 2018Neves S.P. 2018. Comment on “A preserved early Ediacaran magmatic arc at the northernmost part of the transversal zone - central domain of the Borborema Province, Northeast of South America”, by B. B. de Brito Neves et al. (2016). Brazilian Journal of Geology, 48(3):623-630. https://doi.org/10.1590/2317-4889201820180049
https://doi.org/https://doi.org/10.1590/...
; Neves et al. 2006Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
https://doi.org/https://doi.org/10.1016/...
, 2009Neves S.P., Bruguier O., Silva J.M.R., Bosch D., Alcantara V.C., Lima C.M. 2009. The age distributions of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): evidence for intracontinental sedimentation and orogenesis? Precambrian Research, 175(1-4):187-205. https://doi.org/10.1016/j.precamres.2009.09.009
https://doi.org/https://doi.org/10.1016/...
) throughout the remainder of the Proterozoic. In this last scenario, the metamorphism, deformation, and magmatism associated with the Brasiliano Orogeny in this region would have been essentially caused by intracontinental processes, although locally, subduction and common plate convergence processes are not completely ruled out (Neves 2018Neves S.P. 2018. Comment on “A preserved early Ediacaran magmatic arc at the northernmost part of the transversal zone - central domain of the Borborema Province, Northeast of South America”, by B. B. de Brito Neves et al. (2016). Brazilian Journal of Geology, 48(3):623-630. https://doi.org/10.1590/2317-4889201820180049
https://doi.org/https://doi.org/10.1590/...
).

Figure 1.
NE Brazil-NW Africa in the context of West Gondwana.

Figure 2.
Simplified geological features of NE Brazil and NW Africa.

Figure 3.
Simplified geological features of the Borborema Province. Domains and subdomains: RP - Rio Preto, RdP - Riacho do Pontal, Se - Sergipano, PEAL - Pernambuco-Alagoas, RC - Rio Capibaribe, AM - Alto Moxotó, AP - Alto Pajeú, RG - Riacho Gravatá, PAB - Piancó-Alto Brígida, SP - São Pedro, MC - Medio Coreaú, CC - Ceará Central, RGN - Rio Grande do Norte, Sr - Seridó. PeSZ - Pernambuco Shear Zone; PaSZ - Patos Shear Zone; TBSZ - Transbrasiliano Shear Zone.

Correlations between the Borborema Province and provinces in NW Africa equally affected by the Brasiliano/Pan African Orogeny have long been proposed (e.g., Hurley et al. 1967Hurley P.M., Rand J.R., Pinson Jr. W.H., Fairbairn H.W., Almeida F.F., Melcher G.C., Cordani U.G., Kawashita K., Vandoros P. 1967. Test of continental drift by comparison of radiometric ages: A pre-drift reconstruction shows matching geologic age provinces in West Africa and Northern Brazil. Science, 157(3788):495-500. https://doi.org/10.1126/science.157.3788.495
https://doi.org/https://doi.org/10.1126/...
, Caby 1989Caby R. 1989. Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. In: Dallmeyer R.D. (Ed.). Terranes in the Circum-Atlantic Paleozoic Orogens. Special Paper Geological Society of America, 230, p. 145-158. https://doi.org/10.1130/SPE230-p145
https://doi.org/https://doi.org/10.1130/...
, Castaing et al. 1994Castaing C., Feybesse J.L., Thiéblemont D., Triboulet C., Chevremont P. 1994. Paleogeographical reconstructions of the Pan-African-Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambrian Research, 69:327-344., Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2006Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
https://doi.org/https://doi.org/10.1016/...
, Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
https://doi.org/https://doi.org/10.1144/...
, Dada 2008Dada S.S. 2008. Proterozoic evolution of the Nigeria-Boborema province. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications, 294:122-136., Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119., Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications , 294:69-99., Kalsbeek et al. 2013Kalsbeek F., Ekwueme B.N., Penaye J., de Souza Z.S., Thrane K. 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research, 226:105-115. https://doi.org/10.1016/j.precamres.2012.12.006
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.). The NW Africa provinces (Figs. 1, 2, 4 and 5) comprise the Benino-Nigerian Shield, the Tuareg Shield of Algeria, Niger and Mali, the Dahomeyides-Gourma Orogen of Togo, Benin and Mali (the former composing the Trans-Saharan Orogen) and the Oubanguides Orogen of Cameroon and Chad continuing into the Central African Fold Belt in the Central African Republic (CAR). For simplification, the Oubanguides-Central African orogenic system will herein be called Central African Orogen. Along with the Borborema Province, these major orogenic areas represent the site of agglutination of the West African-São Luís, São Francisco-Congo and Saharan paleocontinents (Figs. 1 and 2).

Figure 4.
Schematic geological features of the Benino-Nigerian Shield and Cameroon. See text for data sources.

Figure 5.
Schematic geological features of the Tuareg Shield. See text for data sources.

In this contribution, a brief summary of the state-of-the-art of geological knowledge of the Borborema Province will be presented and compared to its counterparts in NW Africa. This contribution is not intended to be fully comprehensive; for a complete discussion of stratigraphic, deformational, magmatic, and metamorphic aspects of each domain, the reader is referred to the cited works. Here, the focus will be mainly on tectonic units, their possible geodynamic meaning and context, and their correlations with similar units in NW Africa. As the focus of the paper is mainly the Borborema Province, the geology of this region will be described in greater detail; then, a brief description of the Trans-Saharan and Central African areas will be presented; and finally, a domain-by-domain tentative comparison with a unified evolutionary model proposal.

GEOLOGICAL FRAMEWORK

NE Brazil: Borborema Province

There are various subdivision proposals for the Borborema Province, most involving the individualization of different tectono-stratigraphic domains separated by regional, hundreds-of-km-long shear zones (Almeida et al. 1976Almeida F.F.M., Hasui Y., Brito Neves B.B. 1976. The upper Precambrian of South America. Boletim IG-USP, 7:45-80., Brito Neves 1983Brito Neves B.B. 1983. O mapa geológico do Nordeste oriental, escala 1:1.000.000. Free-Docency Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 177 p., Santos and Brito Neves 1984Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M., Hasui Y. (Eds). O Pré-Cambriano do Brasil. São Paulo: Edgard Blucher, p. 123-186., Jardim de Sá et al. 1992Jardim de Sá E.F., Macedo M.H.F., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480., Santos et al. 2000Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G., Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE-Brazil. In: International Geological Congress, 31., 2000, Rio de Janeiro. Annals… CD-ROM., Brito Neves et al. 2000Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
). Santos (1996Santos E.J. 1996. Ensaio preliminar sobre terrenos e tectônica acrescionária na Província Borborema. In: Congresso Brasileiro de Geologia 39 , Salvador. Annals... 6:47-50.) used the concept of terrane accretion (Coney et al. 1980Coney P.J., Jones D.L., Monger J.W.H. 1980. Cordilleran suspect terranes. Nature, 288:329-333. https://doi.org/10.1038/288329a0
https://doi.org/https://doi.org/10.1038/...
) to interpret each of these domains as accreted exotic blocks and proposed that the Borborema Province was built in the Neoproterozoic by agglutination of allochthonous lithospheric fragments during the Cariris Velhos (~ 1000-920 Ma) and Brasiliano (~ 625-510 Ma) orogenies. Recently, both field and geophysical data suggest that at least part (if not most) of the regional shear zones are late-stage structures that crosscut through similar crustal domains, i.e., they do not always separate domains of distinct geological or geophysical features (e.g., Neves and Mariano 1999Neves S.P., Mariano G. 1999. Assessing the tectonic significance of a large-scale transcurrent shear zone system: the Pernambuco lineament, northeastern Brazil. Journal of Structural Geology, 21(10):1369-1383. https://doi.org/10.1016/S0191-8141(99)00097-8
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, Oliveira and Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
), but constitute late-stage structures that crosscut the entire Brasiliano/Pan-African orogenic edifice. Thus, although surely some of the regional shear zones were nucleated and developed at least in part in the ancient sites of plate interaction (e.g., Padilha et al. 2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
, Oliveira and Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
) they cannot always be directly interpreted as suture zones between blocks of distinct nature and composition.

The main shear zones can be used to subdivide the Borborema Province into three major tectonic zones or sub-provinces (similar to the proposition of Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
): the northern, transversal, and southern zones, further subdivided into internal domains (Almeida et al. 1976Almeida F.F.M., Hasui Y., Brito Neves B.B. 1976. The upper Precambrian of South America. Boletim IG-USP, 7:45-80., Brito Neves 1983Brito Neves B.B. 1983. O mapa geológico do Nordeste oriental, escala 1:1.000.000. Free-Docency Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 177 p., Santos and Brito Neves 1984Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M., Hasui Y. (Eds). O Pré-Cambriano do Brasil. São Paulo: Edgard Blucher, p. 123-186., Jardim de Sá et al. 1992Jardim de Sá E.F., Macedo M.H.F., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480., Santos et al. 2000Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G., Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE-Brazil. In: International Geological Congress, 31., 2000, Rio de Janeiro. Annals… CD-ROM., Brito Neves et al. 2000Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
). The term “domains” will be used here for purely descriptive purposes, instead of the term “terrane”, that could lead to the genetic/geodynamic implication that all of the distinct geological domains represent exotic, allochthonous terranes (sensuConey et al. 1980Coney P.J., Jones D.L., Monger J.W.H. 1980. Cordilleran suspect terranes. Nature, 288:329-333. https://doi.org/10.1038/288329a0
https://doi.org/https://doi.org/10.1038/...
). The main structures that divide these domains are the NE-trending Transbrasiliano (locally called Sobral-Pedro II) Shear Zone at the NW corner of the province and the major E-W trending Patos and Pernambuco shear zones that separate the transversal zone from the other domains to the north and south (Figs. 2 and 3). Subsidiary NE-SW shear zones splay from the main EW shear zones, further subdividing the northern and transversal zones into domains (Ebert 1964Ebert H. 1964. Tectônica e metamorfismo regional do Escudo Brasileiro. Recife: SUDENE, Divisão de Geologia, 39 p., Almeida et al. 1976Almeida F.F.M. 1967. Origem e evolução da plataforma brasileira. Boletim DNPM/DGM, 241. 36 p., Brito Neves 1983Brito Neves B.B. 1983. O mapa geológico do Nordeste oriental, escala 1:1.000.000. Free-Docency Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 177 p., Santos and Brito Neves 1984Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M., Hasui Y. (Eds). O Pré-Cambriano do Brasil. São Paulo: Edgard Blucher, p. 123-186., Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/https://doi.org/10.1016/...
). The northern Borborema zone is subdivided into the Médio Coreaú (MC), Ceará Central (CC), Orós-Jaguaribeano, Seridó, and Rio Grande do Norte (RGN) domains; the transversal zone is subdivided into several sigmoidal domains named, from west to east: São Pedro (SP) or São José do Caiano, Piancó-Alto Brígida (PAB) or Salgueiro-Cachoeirinha, Alto Pajeú (AP), which includes the Riacho Gravatá subdomain, Alto Moxotó (AM), and Rio Capibaribe (RC); and the southern zone is divided into the Pernambuco-Alagoas (PEAL) Domain, and the Rio Preto (RP), Riacho do Pontal (RdP) and Sergipano (Se) belts. The Transbrasiliano Shear Zone that separates the Médio Coreaú domain from the Ceará Central domain at the NW corner of the province is, in fact, part of a major transcontinental structure that continues both SW to central Brazil (Brasília Belt of the Tocantins Province) and into NW Africa in a pre-Atlantic fit, composing the ca. 6000 km-long Transbrasiliano-Kandi-4º50’ shear system, sometimes interpreted as marking the vicinities of one of the main collisional suture zones of West Gondwana (Caby 1989Caby R. 1989. Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. In: Dallmeyer R.D. (Ed.). Terranes in the Circum-Atlantic Paleozoic Orogens. Special Paper Geological Society of America, 230, p. 145-158. https://doi.org/10.1130/SPE230-p145
https://doi.org/https://doi.org/10.1130/...
, Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
https://doi.org/https://doi.org/10.1144/...
, Cordani et al. 2013bCordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
https://doi.org/https://doi.org/10.5327/...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Santos et al. 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
).

The geological framework of the Borborema Province is composed of:

  • Paleoproterozoic basement units (mainly 2.2-2.0 Ga, but with restricted occurrences as old as 2.3-2.4 Ga), with important local Archaean nuclei, such as the Granjeiro Complex (3.5-2.5 Ga; Ancelmi 2016Ancelmi M.F. 2016. Geocronologia e geoquímica das rochas arqueanas do Complexo Granjeiro, Província Borborema. PhD Thesis, Universidade Estadual de Campinas, Campinas, 159 p.; Pitarello et al. 2019Pitarello M.Z., dos Santos T.J., Ancelmi M.F. 2019. Syn-to post-depositional processes related to high grade metamorphic BIFs: Geochemical and geochronological evidences from a Paleo to Neoarchean (3.5-2.6 Ga) terrane in NE Brazil. Journal of South American Earth Sciences, 96:102312. https://doi.org/10.1016/j.jsames.2019.102312
    https://doi.org/https://doi.org/10.1016/...
    ), the São José do Campestre Massif (3.45-3.2 Ga, with 2.7 Ga alkaline intrusions; Dantas et al. 2004Dantas E.L., Van Schmus W.R., Hackspacher P.C., Fetter A.H., Brito Neves B.B., Cordani U., Nutman A.P., Williams I.S. 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4):113-137. https://orcid.org/0000-0003-2125-3050
    https://doi.org/https://orcid.org/0000-0...
    , 2013Dantas E.L., Souza Z.S., Wernick E., Hackspacher P.C., Martin H., Xiaodong D., Li J.W. 2013. Crustal growth in the 3.4-2.7 Ga São José de Campestre Massif, Borborema Province, NE Brazil. Precambrian Research, 227:120-156. https://doi.org/10.1016/j.precamres.2012.08.006
    https://doi.org/https://doi.org/10.1016/...
    ) and mafic-ultramafic rocks dated ca. 3.7-3.5 Ga in the RGN domain (Santos et al. 2020Santos F.G., Cavalcanti Neto M.T.O., Ferreira V.P., Bertotti A. 2020. Eo to Paleoarchean metamafic-ultramafic rocks from the central portion of the Rio Grande do Norte Domain, Borborema Province, northeast Brazil: The oldest South American platform rock. Journal of South American Earth Sciences, 97:102410. https://doi.org/10.1016/j.jsames.2019.102410
    https://doi.org/https://doi.org/10.1016/...
    ); the Tróia-Pedra Branca Massif in the CC domain (ca. 2.8-2.7 Ga, Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.; Ganade de Araújo et al. 2017Ganade de Araújo C.E., Basei M., Grandjean F.C., Armstrong R., Brito R.S. 2017. Contrasting Archaean (2.85-2.68 Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition. Precambrian Research, 297:1-18. https://doi.org/10.1016/j.precamres.2017.05.007
    https://doi.org/https://doi.org/10.1016/...
    ); and part of the Cristalândia do Piauí block in the RP belt basement (ca. 3.2 Ga with 2.7-2.5 Ga alkaline intrusions; Barros 2019Barros R.A. 2019. Evolução Geológica e Contextualização Tectônica do Bloco Cristalândia do Piauí, Faixa Rio Preto, Piauí/Bahia. Masters Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 208 p.). These basement units are composed mainly of TTG-type orthogneisses and metasedimentary rocks such as paragneisses and schists;

  • Paleo-Mesoproterozoic metavolcanosedimentary units, developed in extensional (continental rift) settings, mainly in the Orós-Jaguaribeano (1.8 Ga) belt (Sá et al. 1995Sá J.M., McReath I., Leterrier J. 1995. Petrology, geochemistry and geodynamic setting of Proterozoic igneous suites of the Orós fold belt (Borborema Province, Northeast Brazil). Journal of South American Earth Sciences, 8(3-4):299-314. https://doi.org/10.1016/0895-9811(95)00015-8
    https://doi.org/https://doi.org/10.1016/...
    ) and in the transversal zone, where Paleo- and Mesoproterozoic anorogenic magmatism (ca. 1.7-1.5 Ga) is locally important in the RC, AM, and AP domains (Accioly 2001Accioly A.C.A. 2001. Geologia, geoquímica e significado tectônico do Complexo Metanortosítico de Passira, Província Borborema, Nordeste Brasileiro. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 166 p., Sá et al. 2002Sá J.M., Bertrand J.M., Leterrier J., Macedo M.H.F. 2002. Geochemistry and geochronology of pre-Brasiliano rocks from the Transversal Zone, Borborema Province, Brazil. Journal of South American Earth Sciences, 14(8):851-866. https://doi.org/10.1016/S0895-9811(01)00081-5
    https://doi.org/https://doi.org/10.1016/...
    , Lages et al. 2019Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
    https://doi.org/https://doi.org/10.1016/...
    );

  • Early Tonian magmatism and sedimentation (1000-920 Ma) comprising the Cariris Velhos belt in the AP domain (and adjacent Riacho Gravatá subdomain) of the transversal zone, a hallmark feature of the Borborema Province, with sparse occurences also in the southern zone (Brito Neves et al. 1995Brito Neves B.B., Van Schmus W.R., Santos E.J., Campos Neto M.C., Kozuch M. 1995. O evento Carirís Velhos na Província Borborema: intergração de dados, implicações e perspectivas. Revista Brasileira de Geociências, 25(4):279-296., Van Schmus et al. 1995Sá J.M., McReath I., Leterrier J. 1995. Petrology, geochemistry and geodynamic setting of Proterozoic igneous suites of the Orós fold belt (Borborema Province, Northeast Brazil). Journal of South American Earth Sciences, 8(3-4):299-314. https://doi.org/10.1016/0895-9811(95)00015-8
    https://doi.org/https://doi.org/10.1016/...
    , Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Carvalho 2005Carvalho M.J. 2005. Tectonic Evolution of the Marancó-Poço Redondo Domain: Records of the Cariris Velhos and Brasiliano Orogenesis in the Sergipano Belt, NE Brazil. PhD Thesis, Universidade de Campinas, Campinas, 202 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
    https://doi.org/https://doi.org/10.1016/...
    , Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
    https://doi.org/https://doi.org/10.1016/...
    , Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
    https://doi.org/http://dx.doi.org/10.101...
    , 2020Caxito F.A., Santos L.M.C.L., Uhlein A., Dantas E.L., Alkmim A.R., Lana C.C. 2020. New U-Pb (SHRIMP) and first Hf isotope constraints on the Tonian (1000-920 Ma) Cariris Velhos event, Borborema Province, NE Brazil. Brazilian Journal of Geology, in press.);

  • components of complete plate tectonics cycles during the Neoproterozoic (ca. 900-540 Ma), as described below.

Recent discoveries of ophiolitic rocks (Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
, Lages et al. 2017Lages G.A., Dantas E.L., Oliveira R.G., Santos L.C.M.L. 2017. A sequência ofiolítica de Gurjão: Caracterização geoquímica e isotópica, Província Borborema. In: Simpósio de Geologia do Nordeste, 27., 2017. Annals... Brazil: SBG.) and eclogites/HP-UHP rocks (Beurlen et al. 1992Beurlen H., Silva Filho A.F., Guimarães I.P., Brito S.B. 1992. Proterozoic C-type eclogites hosting unusual Ti-Fe ± Cr ± Cu mineralization in northeastern Brazil. Precambrian Research, 58(1-4):195-214. https://doi.org/10.1016/0301-9268(92)90119-9
https://doi.org/https://doi.org/10.1016/...
, Castro 2004Castro N.A. 2004. Evolução geológica proterozóica da região entre Madalena e Taperuaba, domínio tectônico Ceará Central (província Borborema). PhD Thesis, Universidade de São Paulo, São Paulo, 221 p., Santos et al. 2009Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
https://doi.org/http://dx.doi.org/10.101...
, 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
, Amaral et al. 2011Amaral W.S., Santos T.J.S., Wernick E. 2011. Occurrence and geochemistry of metamafic rocks from the Forquilha Eclogite Zone, Central Ceará (NE Brazil): geodynamic implications. Geological Journal, 46(2-3):137-155., 2012Amaral W.S., Santos T.J.S., Wernick E., Nogueira Neto J.D.A., Dantas E.L., Matteini M. 2012. High-pressure granulites from Cariré, Borborema Province, NE Brazil: tectonic setting, metamorphic conditions and U-Pb, Lu-Hf and Sm-Nd geochronology. Gondwana Research, 22(3-4):892-909. https://doi.org/10.1016/j.gr.2012.02.011
https://doi.org/https://doi.org/10.1016/...
, 2015Amaral W.S., Santos T.J.S., Ancelmi M.F., Fuck R.A., Dantas E.L., Matteini M., Moreto C.P.N. 2015. 1.57 Ga protolith age of the Neoproterozoic Forquilha eclogites, Borborema Province, NE-Brazil, constrained by U-Pb, Hf and Nd isotopes. Journal of South American Earth Sciences, 58:210-222. https://doi.org/10.1016/j.jsames.2014.10.001
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
) within the metavolcanosedimentary belts of the Borborema Province, along with detailed geophysical data that suggest the amalgamation of lithospheric blocks of distinct composition, underlying structure and age (Padilha et al. 2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
, 2016Padilha A.L., Vitorello I., Pádua M.B., Fuck R.A. 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Research, 275:70-83. https://doi.org/10.1016/j.precamres.2015.12.012
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2014Santos A.C., Padilha A.L., Fuck R.A., Pires A.C., Vitorello I., Pádua M.B. 2014. Deep structure of a stretched lithosphere: Magnetotelluric imaging of the southeastern Borborema province, NE Brazil. Tectonophysics, 610:39-50. https://doi.org/10.1016/j.tecto.2013.10.008
https://doi.org/https://doi.org/10.1016/...
, Lima et al. 2015Lima M.V.A.G., Berrocal J., Soares J.E.P., Fuck R.A. 2015. Deep seismic refraction experiment in northeast Brazil: New constraints for Borborema province evolution. Journal of South American Earth Sciences, 58:335-349. https://doi.org/10.1016/j.jsames.2014.10.007
https://doi.org/https://doi.org/10.1016/...
, Oliveira and Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
) reinforce the interpretation of Phanerozoic-style plate tectonics during the Neoproterozoic (Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
, 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
, Padilha et al. 2016Padilha A.L., Vitorello I., Pádua M.B., Fuck R.A. 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Research, 275:70-83. https://doi.org/10.1016/j.precamres.2015.12.012
https://doi.org/https://doi.org/10.1016/...
). In order to understand the geological evolution of the Borborema Province during the Neoproterozoic (post-Cariris Velhos), it is worth differentiating the events occurring in:

  • its western margin, which faced a large, Pacific-type ocean (the Goiás-Pharusian ocean);

  • its southern margin, separating the Borborema lithospheric blocks from the São Francisco-Congo paleocontinent to the south;

  • the interior of the province. The available data suggest a chronology of events as follows:

i) Ca. 900-800 Ma:

At the southern margin, the crustal extension is marked by mafic-ultramafic intrusions (Brejo Seco, ca. 900 Ma; Salgado et al. 2016Salgado S.S., Ferreira Filho C.F., Caxito F.A., Uhlein A., Dantas E.L., Stevenson R. 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, RPO: onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. Journal of South American Earth Sciences, 70:324-339. https://doi.org/10.1016/j.jsames.2016.06.001
https://doi.org/https://doi.org/10.1016/...
), continental rift-like basic volcanics (Paulistana, 882 Ma; Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
) and A-type orthogneisses (Pinhões, ca. 869 Ma; Neves et al. 2015Neves S.P., Bruguier O., Silva J.M.R., Mariano G., Silva Filho A.F., Teixeira C.M.L. 2015. From extension to shortening: Dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). Journal of South American Earth Sciences, 58:238-256. https://doi.org/10.1016/j.jsames.2014.06.004
https://doi.org/https://doi.org/10.1016/...
). The grouping of rock units of similar tectonic setting in this age range suggests that continental rifting processes separated the lithospheric blocks composing the transversal and southern zones of the Borborema Province from the São Francisco-Congo paleocontinent to the south in the early Tonian. A different scenario occurs on the western margin, with the development of the Lagoa Caiçara arc complex, marked by juvenile or transitional subduction-related magmatism (Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
). Within the interior of the province, events in this age range are not well defined. The Brejo Seco intrusion might represent the central portion of a triple junction with the development of a rift system, which would involve the Serra dos Olhos D’água Formation conglomerate of the PAB and the Equador Formation of the Seridó Belt (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). However, these connections need to be further investigated.

ii) Ca. 820-650 Ma:

At the southern margin, continental drift followed the Tonian rifting and culminated with oceanic crust development in the 820-650 Ma age range (Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
). Broad passive margins were developed separating the Borborema lithospheric blocks from the São Francisco-Congo paleocontinent to the south. At the western margin, there is no direct evidence of arc magmatism in this age range, but indirect evidence is found as detrital zircon populations in the metavolcanosedimentary belts of the CC Domain (Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
). Within the interior of the province, further development of rift/passive margin units that crosscut the province ensued.

iii) 650-620 Ma:

From this moment on, the chronology of events is similar for all of the Borborema Province, with a widespread onset of subduction and continental arc development. The ophiolite-bearing passive margin sequences of the southern zone were scrapped off and obducted while covered by widespread syn-orogenic, greywacke-rich units with intermediate to felsic volcanic and volcaniclastic intercalations (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
), marking an important shift of sedimentary provenance with the development of flysch-like basins that characterize all of the supracrustal fold belts throughout the province (Fig. 3). All of these belts present very similar detrital zircon contents with younger U-Pb ages at about 650 Ma (Van Schmus et al. 2003Van Schmus W.R., Brito Neves B.B., Williams I.S., Hackspacker P.C., Fetter A.H., Dantas E.L., Babinski M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4):287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
https://doi.org/https://doi.org/10.1016/...
, Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Neves et al. 2006Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2012aGanade de Araújo C.E., Cordani U.G., Basei M.A.S., Castro N.A., Sato K., Sproesser W.M. 2012a. U-Pb detrital zircon provenance of metasedimentary rocks from the Ceará Central and Médio Coreaú Domains, Borborema Province, NE-Brazil: Tectonic implications for a long-lived Neoproterozoic active continental margin. Precambrian Research, 206-207:36-51. https://doi.org/10.1016/j.precamres.2012.02.021
https://doi.org/https://doi.org/10.1016/...
, 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42., Arthaud et al. 2015Arthaud M.H., Fuck R.A., Dantas E.L., Santos T.J.S., Caby R., Armstrong R. 2015. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology. Journal of South American Earth Sciences, 58:223-237. https://doi.org/10.1016/j.jsames.2014.09.007
https://doi.org/https://doi.org/10.1016/...
, Hollanda et al. 2015Hollanda M.H.B.M., Archanjo C.J., Bautista J.M.R., Souza L.C. 2015. Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance. Precambrian Research, 258:186-207. https://doi.org/10.1016/j.precamres.2014.12.009
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2015aOliveira E.P., Bueno J.F., McNaughton N.K., SilvaFilho A.F., Nascimento R.S., Donatti-Filho J.P. 2015a. Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 58:257-280. https://doi.org/10.1016/j.jsames.2014.08.003
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2015Brito Neves B.B., Van Schmus W.R., Angelim L.A.A. 2015. Contribuição ao conhecimento da evolução geológica do Sistema Riacho do Pontal - PE, BA, PI. Geologia USP, Série Científica, 15(1):57-93. http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
https://doi.org/http://dx.doi.org/10.116...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, Brito Neves and Campos Neto 2016Brito Neves B.B., Campos Neto M.C. 2016. A Faixa de dobramentos do Rio Salgado, norte-noroeste da Zona Transversal - Província Borborema (PB-CE). Geologia USP, Série Científica, 16(3):3-17. http://dx.doi.org/10.11606/issn.2316-9095.v16i3p3-17
https://doi.org/http://dx.doi.org/10.116...
, Lima et al. 2018Lima H.M., Pimentel M.M., Fuck R.A., de Lira Santos L.C.M., Dantas E.L. 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt: Implications for the evolution of the Borborema Province, NE Brazil. Journal of South American Earth Sciences, 86:176-192., Basto et al. 2019Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: Evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
https://doi.org/https://doi.org/10.1016/...
), suggesting a genetic link with Ediacaran pre-collisional calc-alkaline plutons (Conceição or Stage I, Tamboril-Santa Quitéria, Major Isidoro, Betânia, and similar plutons in the Sergipano Belt), dated at 650-630 Ma (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2008aSantos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
https://doi.org/https://doi.org/10.1016/...
, Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2012bGanade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
https://doi.org/https://doi.org/10.1016/...
, 2014aGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Oliveira et al. 2015aOliveira E.P., Bueno J.F., McNaughton N.K., SilvaFilho A.F., Nascimento R.S., Donatti-Filho J.P. 2015a. Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 58:257-280. https://doi.org/10.1016/j.jsames.2014.08.003
https://doi.org/https://doi.org/10.1016/...
, Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
, Sial and Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/http://dx.doi.org/10.101...
, Perpétuo 2017Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal. Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p., Santos et al. 2019Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:102384. https://doi.org/10.1016/j.jsames.2019.102384
https://doi.org/https://doi.org/10.1016/...
).

iv) 620-590 Ma:

Main collisional stage of the Brasiliano Orogeny. The metavolcanosedimentary basins were inverted, deformed and metamorphosed. Crustal anatexis generated syn-collisional plutons (Stage II) throughout the province (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
, Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
https://doi.org/https://doi.org/10.1016/...
, Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2015aOliveira E.P., Bueno J.F., McNaughton N.K., SilvaFilho A.F., Nascimento R.S., Donatti-Filho J.P. 2015a. Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 58:257-280. https://doi.org/10.1016/j.jsames.2014.08.003
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, Sial and Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/http://dx.doi.org/10.101...
). Within the Sergipano Belt, this stage might have lasted up to ca. 575 Ma (Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
), although recently, Lisboa et al. (2019Lisboa V.A.C., Conceição H., Rosa M.L.S., Fernandes D.M. 2019. The onset of post-collisional magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Earth Sciences, 89:173-188. https://doi.org/10.1016/j.jsames.2018.11.005
https://doi.org/https://doi.org/10.1016/...
) interpreted the Glória Norte shoshonitic stock emplaced at ca. 588 Ma as post-collisional in the area. Eclogitic metamorphism at the NW Borborema Province and at the transversal zone is also dated in this age range, indicating continental collision at ca. 625-615 Ma (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Santos et al. 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
, Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
).

v) 590-510 Ma:

At the final stages of the Brasiliano Orogeny, an extensive network of shear zones that crosscut the Borborema Province and characterizes the structural framework of NE Brazil was developed (Ebert 1964Ebert H. 1964. Tectônica e metamorfismo regional do Escudo Brasileiro. Recife: SUDENE, Divisão de Geologia, 39 p., Brito Neves 1975Brito Neves B.B. 1975. Regionalização Geotectônica do Pré-Cambriano Nordestino. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 198 p., Almeida et al. 1981Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1-29., Santos and Brito Neves 1984Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M., Hasui Y. (Eds). O Pré-Cambriano do Brasil. São Paulo: Edgard Blucher, p. 123-186., Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2000Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
). These shear zones are spatially and temporally linked to several post-collisional granite plutons (Stages III-V) throughout the province (Corsini et al. 1991Corsini M., Vauchez A., Archanjo C.J., Jardim de Sá E.F. 1991. Strain transfer at continental scale from a transcurrent shear zone to a transpressional fold belt: the Patos-Seridó system, Northeastern Brazil. Geology, 19(6):586-589. https://doi.org/10.1130/0091-7613(1991)019%3C0586:STACSF%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Vauchez and Egydio-da-Silva 1992Vauchez A., Egydio-da-Silva M. 1992. Termination of a continental-scale strike-slip fault in partially melted crust: the West Pernambuco shear zone, northeast Brazil. Geology, 20(11):1007-1010. https://doi.org/10.1130/0091-7613(1992)020%3C1007:TOACSS%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/https://doi.org/10.1016/...
, Neves et al. 1996Neves S.P., Vauchez A., Archanjo C.J. 1996. Shear-zone controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from Northeast Brazil. Tectonophysics, 262(1-4):349-365. https://doi.org/10.1016/0040-1951(96)00007-8
https://doi.org/https://doi.org/10.1016/...
, Neves and Mariano 1999Neves S.P., Mariano G. 1999. Assessing the tectonic significance of a large-scale transcurrent shear zone system: the Pernambuco lineament, northeastern Brazil. Journal of Structural Geology, 21(10):1369-1383. https://doi.org/10.1016/S0191-8141(99)00097-8
https://doi.org/https://doi.org/10.1016/...
, Archanjo et al. 1999Archanjo C.J., Silva E.R., Caby R. 1999. Magnetic fabric and pluton emplacement in a transpressive shear zone system: the Itaporanga porphyritic granitic pluton (Northeast Brazil). Tectonophysics, 312(2-4):331-345. https://doi.org/10.1016/S0040-1951(99)00176-6
https://doi.org/https://doi.org/10.1016/...
, 2008Archanjo C.J., Hollanda M.H.B.M., Rodrigues S.W., Brito Neves B.B., Armstrong R. 2008. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 30(3):310-326. https://doi.org/10.1016/j.jsg.2007.11.011
https://doi.org/https://doi.org/10.1016/...
, Weinberg et al. 2004Weinberg R., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
https://doi.org/https://doi.org/10.1130/...
, Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
https://doi.org/https://doi.org/10.1016/...
, Viegas et al. 2014Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. https://doi.org/10.1016/j.precamres.2013.12.020
https://doi.org/https://doi.org/10.1016/...
). Ar-Ar plateau cooling ages show that extension associated to dextral shearing in the younger shear zones might have extended up to ca. 510 Ma (Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
https://doi.org/https://doi.org/10.1016/...
). Ordovician and younger reactivation of the main lineaments is shown by ca. 460 Ma felsic dykes crosscut by faults parallel to the main trend of the Transbrasiliano shear zone (Amaral et al. 2017Amaral W.S., Kraus R.K., Dantas E.L., Fuck R.A., Pitombeira J.P.A. 2017. Sinistral reactivation of the Transbrasiliano Lineament: Structural and geochronological evidences in the Cariré Granulite Zone, Borborema Province - NE Brazil. Journal of South American Earth Sciences, 79:409-420. https://doi.org/10.1016/j.jsames.2017.08.022
https://doi.org/https://doi.org/10.1016/...
).

The chronology of the events presented above is a rough approximation: certainly, subduction, collisional and post-collisional processes were diachronous throughout the Borborema Province, taking place at different times in different portions of the province. Diachronism of events could have been caused by various processes and features, such as:

  • rotational interaction between the involved blocks in a zipper-like model, generating continental collision in a given part of the Borborema Province while other parts (such as the apparently younger Sergipano belt, with syn-collisional granitoids and deformation at ca. 590-570 Ma; Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
    https://doi.org/https://doi.org/10.1016/...
    ) were still in the subduction-accretion phase (and other areas might be going through strike-slip or extensional processes);

  • paleogeography of the margins involved in continental collision. For example, the RdP belt external nappes were thrust upon a northwards-pointing (present-day position) promontory of the São Francisco paleocontinent (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    ) while the Sergipano belt corresponds to a reentrant or embayment of the northeastern paleocontinent margin. That might explain why collisional processes seem to have happened before at the RdP belt (ca. 610 Ma), as the cratonic northward-pointing promontory would interact earlier with the upper plate blocks to the north, while the Sergipano belt, carved in a cratonic reentrant, would still be going through the accretionary phase and would only reach the collisional phase later on, at ca. 590-570 Ma (Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
    https://doi.org/https://doi.org/10.1016/...
    , Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
    https://doi.org/https://doi.org/10.1016/...
    );

  • models of multiple collisions, such as the model presented by Ganade de Araújo et al. (2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
    https://doi.org/https://doi.org/10.1016/...
    ) suggesting a two-stage evolution with collision I at 620-610 Ma along the west side of the province, followed by collision II at 590-580 Ma at the southern side, causing northward extrusion of the Borborema Province.

Refined geochronological data are still surely needed to fully understand the timing and extent of these processes in each part of the Borborema Province, and to confirm or reject contentious points of the current models.

The diachronous transition of collisional tectonics at ca. 620-575 Ma to strike-slip deformation at 590-530 Ma is reflected in the structural evolution of the fold belts and surrounding areas in the Borborema Province, commonly characterized by two two group of structures. The first group comprise early-stage tangential deformation with development of low-angle pervasive deformational foliation and/or nappe structures interpreted as related to plate convergence tectonics (e.g., Caby and Arthaud 1986Caby R., Arthaud M.H. 1986. Major Precambrian nappes of the Brazilian Belt, Ceará, Northeast Brazil. Geology, 14(10):871-874. https://doi.org/10.1130/0091-7613(1986)14%3C871:MPNOTB%3E2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
, Jardim de Sá et al. 1992Jardim de Sá E.F., Macedo M.H.F., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Santos et al. 2008aSantos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). Complex deformation patterns including frontal, oblique, and lateral mylonite ramps, sheath folds, isoclinal and recumbent nappe folds are not uncommon, normally showing cratonward vergence, i.e., mass transport to the south toward the São Francisco craton in the case of the fold belts of the southern zone (Jardim de Sá et al. 1992Jardim de Sá E.F., Macedo M.H.F., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480., Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, Uhlein et al. 2011Uhlein A., Caxito F.A., Sanglard J.C.D., Uhlein G. J., Suckau G.L. 2011. Estratigrafia e Tectônica das Faixas Neoproterozóicas da Porção Norte do Craton do São Francisco. Geonomos, 19(2):8-31. https://doi.org/10.18285/geonomos.v19i2.38
https://doi.org/https://doi.org/10.18285...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
); and to the northwest toward the West African-São Luís craton in the MC domain (Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119.). Regional metamorphism reached the upper amphibolite facies and anatectic conditions in the orogenic cores, as well as local granulitic and eclogitic conditions. Generally, the external nappes show Hymalaian-type reverse metamorphism, with higher-grade allochthonous thrust upon lower grade sheets (Caby and Arthaud 1986Caby R., Arthaud M.H. 1986. Major Precambrian nappes of the Brazilian Belt, Ceará, Northeast Brazil. Geology, 14(10):871-874. https://doi.org/10.1130/0091-7613(1986)14%3C871:MPNOTB%3E2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). The tangential structures are superposed by the second group of structures, comprising vertical or steeply-dipping shear zones that characterize the late-stage strike-slip deformation throughout the province. These structures are sometimes interpreted as related to a lateral escape phase of the continental blocks involved in the collision, when tangential tectonics was no longer able to accommodate the whole of crustal deformation due to squeezing of the blocks that compose the Borborema Province between the major São Francisco-Congo and West African-São Luís cratons and other smaller cratonic pieces such as the concealed Parnaíba block that behaved as rigid continental blocks during the Brasiliano Orogeny (Ganade de Araújo et al. 2014cGanade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
https://doi.org/https://doi.org/10.1111/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
).

In the interior of the province, the late-stage strike-slip and transpressional deformation is so pervasive that it rotates and partially to completely obliterates the former compressional structures, especially at the expressive sub-vertical mylonitization fronts of the major shear zones. The internal domains, away from the edge of these shear zones, might also have undergone stresses related to this large strike-slip system causing internal deformation and reactivation of previous flat-lying foliation and, in some places, nucleation of newborn thrust systems (Ganade de Araújo et al. 2014cGanade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
https://doi.org/https://doi.org/10.1111/...
). The northern Borborema and especially the transversal zone are characterized by S-shaped or almond-shape domains sectioned by the major E-W trending shear zones and by the NE-SW trending subsidiary shear zones (e.g., Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/https://doi.org/10.1016/...
). Dextral ductile kinematics predominate in both the Pernambuco and Patos shear zones, while some of the NE-SW trending zones might show associated sinistral movement. Available geothermobarometric data suggest HT-LP development of the shear zones, with peak conditions at 600-700ºC and 6 kbar for the Pernambuco shear zone (Vauchez and Egydio-da-Silva 1992Vauchez A., Egydio-da-Silva M. 1992. Termination of a continental-scale strike-slip fault in partially melted crust: the West Pernambuco shear zone, northeast Brazil. Geology, 20(11):1007-1010. https://doi.org/10.1130/0091-7613(1992)020%3C1007:TOACSS%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
), where horizontal to slightly oblique syn-kinematic prismatic sillimanite marks a stretching lineation in Al-rich metasedimentary rocks. ­Syn-kinematic melting and pluton intrusion are common and widespread both in the Pernambuco and Patos and in the subsidiary shear zones (Vauchez and Egydio-da-Silva 1992Vauchez A., Egydio-da-Silva M. 1992. Termination of a continental-scale strike-slip fault in partially melted crust: the West Pernambuco shear zone, northeast Brazil. Geology, 20(11):1007-1010. https://doi.org/10.1130/0091-7613(1992)020%3C1007:TOACSS%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
https://doi.org/https://doi.org/10.1016/...
, Viegas et al. 2014Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. https://doi.org/10.1016/j.precamres.2013.12.020
https://doi.org/https://doi.org/10.1016/...
).

Late Neoproterozoic and Cambrian magmatism

The Brasiliano magmatism of the Borborema Province can be subdivided into five general stages, based on petro-structural, litochemical, geochronological, and isotopic data and in cross-cutting relations to the main Brasiliano deformation phases (Almeida 1967Almeida F.F.M. 1967. Origem e evolução da plataforma brasileira. Boletim DNPM/DGM, 241. 36 p., Sial 1986Sial A.N. 1986. Granite-types in northeast Brazil: current knowledge. Revista Brasileira de Geociências, 16(1):54-72., Ferreira et al. 1998Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of the Proterozoic granitoids in terranes of the Borborema Province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
https://doi.org/https://doi.org/10.1016/...
, 2004Ferreira V.P., Sial A.N., Pimentel M.M., Moura C.A.V. 2004. Intermediate to acidic magmatism and crustal evolution in the Transversal Zone, Northeastern Brazil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds). Geologia do Continente Sul-americano: Evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 189-201., Santos and Medeiros 1999Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, Northeast Brazil. Revista Brasileira de Geociências, 29:73-84., Brito Neves et al. 2003Brito Neves B.B., Passarelli C.R., Basei M.A.S., Santos E.J. 2003. Idades U-Pb em zircão de alguns granitos clássicos da Província Borborema. Geologia USP Série Científica, 3:25-38. https://doi.org/10.5327/S1519-874X2003000100003
https://doi.org/https://doi.org/10.5327/...
, Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
, Sial and Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/http://dx.doi.org/10.101...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
, Granade de Araujo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). Following the nomenclature of Van Schmus et al. (2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
) but with slightly modified age ranges due to the incorporation of novel geochronological data, these are defined as:

  • Stage I (640-620 Ma): Pre-collisional plutons that predate the development of the main thrust foliation in the supracrustal belts. This corresponds to the main age range of pre-collisional magmatism in the large Tamboril/Santa Quitéria batholithic complex, in the NW of the province (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
    https://doi.org/https://doi.org/10.1016/...
    , Santos et al. 2008aSantos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
    https://doi.org/https://doi.org/10.1016/...
    , 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119., Ganade de Araújo et al. 2012bGanade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
    https://doi.org/https://doi.org/10.1016/...
    , 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
    https://doi.org/https://doi.org/10.1016/...
    ) and to a plethora of smaller magmatic epidote-bearing calc-alkaline I-type plutons (Conceição-type) found throughout the PAB and AP domains of the transversal zone and interpreted as probably related to a continental magmatic arc (Sial and Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
    https://doi.org/http://dx.doi.org/10.101...
    , Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
    https://doi.org/https://doi.org/10.1590/...
    , Santos et al. 2019Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:102384. https://doi.org/10.1016/j.jsames.2019.102384
    https://doi.org/https://doi.org/10.1016/...
    ). The Betânia granites of the internal RdP belt (Perpétuo 2017Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal. Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p.), and pre-collisional tonalites, granites, monzodiorites, and granodiorites of the Sergipano belt (Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
    https://doi.org/https://doi.org/10.1016/...
    , Oliveira et al. 2015aOliveira E.P., Bueno J.F., McNaughton N.K., SilvaFilho A.F., Nascimento R.S., Donatti-Filho J.P. 2015a. Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 58:257-280. https://doi.org/10.1016/j.jsames.2014.08.003
    https://doi.org/https://doi.org/10.1016/...
    ) and of the PEAL domain (Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
    https://doi.org/https://doi.org/10.1016/...
    ) are all dated at the same age range and also interpreted as emplaced in continental arc settings. Volcanic and volcaniclastic rocks of rhyolitic to dacitic composition interleaved within the syn-orogenic sedimentary belts of both the northern, transversal, and southern zones, as well as hypabyssal intrusions, are also dated in this same age range (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…). Their lithochemical and isotopic signatures support a genetic link with the granitic intrusions (Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…);

  • Stage II (625-590 Ma): Leucogranites and foliated two-mica granites, whose emplacement coincides with the peak of Brasiliano metamorphism and deformation (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
    https://doi.org/https://doi.org/10.1038/...
    , Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    ); in the Sergipano belt, these can span ages as young as ca. 570 Ma (Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
    https://doi.org/https://doi.org/10.1016/...
    ). There seems to be a slight diachronism between the NW Borborema Province, where syn-collisional magmatism has been proposed since ca. 615 Ma (e.g., Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
    https://doi.org/https://doi.org/10.1038/...
    ), and the transversal zone, where pre-collisional, magmatic arc plutonic and volcanic activity, seems to extend to ca. 620 Ma (e.g., Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
    https://doi.org/https://doi.org/10.1590/...
    , Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…). Caxito et al. (2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…) proposed a model to conciliate this diachronism, where continental collision in the NW Borborema Province pushed the northern Borborema blocks toward the central-southern Borborema blocks in a clockwise fashion, forcing or speeding subduction in the PAB belt of the transversal zone in the ca. 625-610 Ma interval;

  • Stage III (590-575 Ma): generally corresponds to granitic to syenitic and locally shoshonitic plutons, intruded in the transition between the collisional and the late-stage strike-slip deformations that crosscuts the province. Diachronism is also observed here, as syn-collisional granites were emplaced in the Sergipano belt with ages as young as ca. 570 Ma (Bueno et al. 2009Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
    https://doi.org/https://doi.org/10.1016/...
    ), while clearly post-collisional syenites of the Serra da Aldeia Suite were emplaced in the RdP belt with ages as old as ca. 586-576 Ma (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    , Perpétuo 2017Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal. Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p.). This diachronism of syn- and post-collisional magmatic activity, even in adjacent domains such as the RdP and Se belts, probably reflects the effects of zipper-like rotational closure of the intervening oceanic domains and/or syntaxis-antitaxis effects on mountain building related to the paleogeography of the continental margins, interacting with one another at different times;

  • Stage IV (575-550 Ma): late- and post-collisional plutons coeval to regional strike-slip deformation (e.g., Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
    https://doi.org/https://doi.org/10.1016/...
    ). Dextral HT-LP transpression of the Seridó belt is constrained to ca. 575 Ma through U-Pb dating of the coeval Acari granite and Santa Luzia migmatite; mylonitization in the Patos shear zone is constrained to ca. 566 Ma through U-Pb dating of a leucogranite with transitional contacts with host diatexites (Viegas et al. 2014Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. https://doi.org/10.1016/j.precamres.2013.12.020
    https://doi.org/https://doi.org/10.1016/...
    );

  • Stage V (550-530 Ma): generally non-deformed plutons, except along younger shear zones. Hollanda et al. (2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
    https://doi.org/https://doi.org/10.1016/...
    ) demonstrated that Cambrian plutonic rocks of the transversal zone were emplaced in a regional strain field combining extension and ductile dextral shearing, developing low- to medium-grade vertical mylonite belts with syn-kinematic intrusion of mafic stocks, mafic to felsic dykes and granite batholiths with U-Pb zircon ages between 548 and 533 Ma. Syn-kinematic micas from the associated mylonites yielded Ar-Ar plateau cooling ages between ca. 550 and 510 Ma (Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
    https://doi.org/https://doi.org/10.1016/...
    ).

Tectonic context of the Borborema Province

In the context of the amalgamation of the Gondwana paleocontinent, the Borborema Province represents the orogenic region between the São Francisco-Congo and West African-São Luís cratons (Figs. 1 and 2), structured by the collisional interaction between these two major lithospheric fragments and other possible smaller intervening fragments during the Proterozoic, such as, for example, the Parnaíba block, concealed below the Phanerozoic sedimentary rocks of the Parnaíba Basin (Trompette 1994Trompette R.R. 1994. Geology of Western Gondwana (2000-500 Ma). Pan-African-Brasiliano aggregation of South America and Africa. Rotterdam: Balkema, 350 p., Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
, Cordani et al. 2003Cordani U.G., Brito Neves B.B., D’agrella Filho M. 2003. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2):275-283. https://doi.org/10.1016/S1342-937X(05)70976-X
https://doi.org/https://doi.org/10.1016/...
). The region comprised between these two cratonic landmasses also involves part of the geological domains of NW Africa, which are bound to the east by the Saharan metacraton. Correlations between these two major areas will be discussed further on.

As previously explained, one of the theories for the geodynamic evolution of the Borborema Province is that this region would be part of a large lithospheric block stabilized at about 2.0 Ga (Neves 2003Neves S.P. 2003. Proterozoic history of the Borborema province (NE Brazil): Correlations with neighboring cratons and Pan-African belts and implications for the evolution of western Gondwana. Tectonics, 22(4):1031. http://dx.doi.org/10.1029/2001TC001352
https://doi.org/http://dx.doi.org/10.102...
, Neves et al. 2006Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
https://doi.org/https://doi.org/10.1016/...
), comprising the Amazonian, São Francisco-Congo, and West African-São Luís paleocontinents, as part of the hypothetical Atlantica supercontinent (Rogers 1996Rogers J.J.W. 1996. A history of continents in the past three billion years. Journal of Geology, 104(1):91-107.). In the cited works, this view is supported, in part, by an interpretation based on the detrital zircon U-Pb ages record, which is similar for several Neoproterozoic metavolcanosedimentary units throughout the province and involves primary age sources which are not yet recognized in the Borborema Province, but are common, for example, in the Amazonian Craton, mainly in the late Paleoproterozoic and Mesoproterozoic. If this hypothesis is correct, all these units would have been deposited upon a fairly continuous basement, which underwent an almost exclusively intracontinental stretching shortly before the Brasiliano deformation, metamorphism and plutonism that would, in this view, have been developed mainly in an intracontinental orogenic setting.

On the other hand, paleomagnetic data (Trindade et al. 2003Trindade R.I.F., Font E., D’Agrella-Filho M.S., Nogueira A.C.R., Riccomini C. 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton. Terra Nova, 15(6):441-446. https://doi.org/10.1046/j.1365-3121.2003.00510.x
https://doi.org/https://doi.org/10.1046/...
, 2006Trindade R.I.F., D’Agrella-Filho M.S., Epof I., Brito Neves B.B. 2006. Paleomagnetism of the early Cambrian Itabaiana mafic dikes, NE Brazil, and implications for the final assembly of Gondwana and its proximity to Laurentia. Earth and Planetary Science Letters, 244(1-2):361-377. https://doi.org/10.1016/j.epsl.2005.12.039
https://doi.org/https://doi.org/10.1016/...
, Tohver et al. 2006Tohver E., D’agrella-Filho M., Trindade R.I.F. 2006. Paleomagnetic record of Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research, 147(3-4):193-222. https://doi.org/10.1016/j.precamres.2006.01.015
https://doi.org/https://doi.org/10.1016/...
) suggest that between 1080 and 525 Ma ago, the São Francisco-Congo paleocontinent and the Rodinia supercontinent (including the future Amazonian and West African-São Luís cratons) were separated by a large ocean (the Goiás-Pharusian or Brasilides ocean). The Amazonian and West African-São Luís paleocontinents might also have been separated from each other by the Clymene ocean or seaway during the Neoproterozoic (e.g., Trindade et al. 2006Trindade R.I.F., D’Agrella-Filho M.S., Epof I., Brito Neves B.B. 2006. Paleomagnetism of the early Cambrian Itabaiana mafic dikes, NE Brazil, and implications for the final assembly of Gondwana and its proximity to Laurentia. Earth and Planetary Science Letters, 244(1-2):361-377. https://doi.org/10.1016/j.epsl.2005.12.039
https://doi.org/https://doi.org/10.1016/...
, Tohver et al. 2010Tohver E., Trindade R.I.F., Solum J.G., Hall C.M., Riccomini C., Nogueira A.C. 2010. Closing the Clymene Ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana from SE Amazon craton. Geology, 38(3):267-270. http://dx.doi.org/10.1130/G30510.1
https://doi.org/http://dx.doi.org/10.113...
). Thus, approximation and accretion of these continental blocks and, subsequently, the construction of the Borborema Province would have occurred with the progressive convergence between distinct paleoplates during the Neoproterozoic, most likely through plate tectonic processes similar to those found in Phanerozoic orogens. This hypothesis is supported by geological evidence, such as the occurrence of rock suites that fingerprint Neoproterozoic suture zones such as ophiolites, eclogites, and magmatic arc rocks (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2009Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
https://doi.org/http://dx.doi.org/10.101...
, 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
, Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
, 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
, Lages et al. 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
, Pitombeira et al. 2017Pitombeira J.P.A., Amaral W.S., Uchôa Filho E.C., Fuck R.A., Dantas E.L., Parente C.V., Costa F.C., Veríssimo C.U.V. 2017. Vestiges of a continental margin ophiolite type in the Novo Oriente region, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 73:78-99. https://doi.org/10.1016/j.jsames.2016.11.007
https://doi.org/https://doi.org/10.1016/...
). Geophysical (aeromagnetic, gravimetric, electromagnetic, and magnetotelluric) data also support the hypothesis of lithospheric structures related to major continental collision both in NW Africa (e.g., Trompette 1994Trompette R.R. 1994. Geology of Western Gondwana (2000-500 Ma). Pan-African-Brasiliano aggregation of South America and Africa. Rotterdam: Balkema, 350 p.) and in NE Brazil (Padilha et al. 2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
, 2016Padilha A.L., Vitorello I., Pádua M.B., Fuck R.A. 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Research, 275:70-83. https://doi.org/10.1016/j.precamres.2015.12.012
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2014Santos A.C., Padilha A.L., Fuck R.A., Pires A.C., Vitorello I., Pádua M.B. 2014. Deep structure of a stretched lithosphere: Magnetotelluric imaging of the southeastern Borborema province, NE Brazil. Tectonophysics, 610:39-50. https://doi.org/10.1016/j.tecto.2013.10.008
https://doi.org/https://doi.org/10.1016/...
, Lima et al. 2015Lima M.V.A.G., Berrocal J., Soares J.E.P., Fuck R.A. 2015. Deep seismic refraction experiment in northeast Brazil: New constraints for Borborema province evolution. Journal of South American Earth Sciences, 58:335-349. https://doi.org/10.1016/j.jsames.2014.10.007
https://doi.org/https://doi.org/10.1016/...
, Oliveira and Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
). In this context, the suture zones between different lithospheric blocks are marked by paired linear gravimetric anomalies (positive-negative in the upper and lower block or plate, respectively), especially in the Trans-Saharan Orogen, with possible continuity in the Sobral-Pedro II (Transbrasiliano) shear zone (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
), suggesting subduction of the West African-São Luís plate under the hypothetical Northeast Brazil-Central West African plate (Trompette 1994Trompette R.R. 1994. Geology of Western Gondwana (2000-500 Ma). Pan-African-Brasiliano aggregation of South America and Africa. Rotterdam: Balkema, 350 p.), which underwent reworking during the Brasiliano orogeny.

According to Oliveira and Medeiros (2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
), the most important geophysical anomalies of the Borborema Province, which could represent suture zones between ancient continental blocks, are:

  • the boundary between the southern zone and the São Francisco craton, represented by a strong dipole gravimetric anomaly whose axis crosses the inner portion of the Riacho do Pontal and the Sergipano belts and follows the approximate contour of the northern cratonic margin, truncating the Paleoproterozoic N-S trending gravimetric lineaments within the craton;

  • the Transbrasiliano shear zone, marked by the positive axis of a dipole anomaly (the negative axis coincides with the Tamboril/Santa Quitéria Complex).

Other important internal limits, which represent geophysical discontinuities of lithospheric expression, are:

  • the western branch of the Pernambuco shear zone and its continuation in the NE-SW trending Congo shear zone separating the AM and RC domains of the transversal zone (the eastern branch of the Pernambuco shear zone represents a shallow and discontinuous structure, with less expressive lateral displacement; Neves and Mariano 1999Neves S.P., Mariano G. 1999. Assessing the tectonic significance of a large-scale transcurrent shear zone system: the Pernambuco lineament, northeastern Brazil. Journal of Structural Geology, 21(10):1369-1383. https://doi.org/10.1016/S0191-8141(99)00097-8
    https://doi.org/https://doi.org/10.1016/...
    );

  • the Patos shear zone;

  • the NE-SW trending Jaguaribe shear zone and its continuation in the Tatajuba shear zone in the north.

NW AFRICA

The Trans-Saharan Orogen: Benino-Nigerian and Tuareg shields

The Trans-Saharan Orogen of NW Africa (Figs. 1 and 2) lies between the West African craton to the west and the enigmatic Saharan Metacraton (Abdelsalam et al. 2002Abdelsalam M., Liégeois J.P., Stern R.J. 2002. The Saharan meta-craton. Journal of African Earth Sciences, 34(3-4):119-136. https://doi.org/10.1016/S0899-5362(02)00013-1
https://doi.org/https://doi.org/10.1016/...
) to the east, representing the site of ancient orogenic activity related to the Pan-African Orogeny due to collision and amalgamation of the two major ancient landmasses (Caby 1987Caby R. 1987. The Pan-African belt of West Africa from the Sahara desert to the Gulf of Benin. In: Schaer J.-P., Rodgers J. (Eds.). Anatomy of Mountain Ranges. Princeton: Princeton University Press, p. 129-170.). “Metacraton” is a concept proposed and developed by Abdelsalam et al. (2002Abdelsalam M., Liégeois J.P., Stern R.J. 2002. The Saharan meta-craton. Journal of African Earth Sciences, 34(3-4):119-136. https://doi.org/10.1016/S0899-5362(02)00013-1
https://doi.org/https://doi.org/10.1016/...
) and Liégeois et al. (2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
, 2013Liégeois J.P., Abdelsalam M.G., Ennih N., Ouabadi A. 2013. Metacraton: nature, genesis and behavior. Gondwana Research, 23(1):220-237. https://doi.org/10.1016/j.gr.2012.02.016
https://doi.org/https://doi.org/10.1016/...
) for vast tracts of Precambrian lithosphere in the Saharan region, which would represent partially remobilized, deformed, and metamorphosed Archean/Paleoproterozoic fragments, intruded by plutons during the Pan-African Orogeny, either as a passive margin or in the context of intra-continental deformation.

The Trans-Saharan Orogen is composed of the Benino-Nigerian Shield, including the basement-dominated domains of West and East Nigeria and the Dahomeyides and Gourma belts of Togo, Benin, and Mali (Fig. 4), and of the Tuareg Shield, comprising the Hoggar region in Algeria, the Iforas region in Mali, and the Aïr region in Niger (Fig. 5).

The Benino-Nigerian Shield is commonly divided into two main domains in Nigeria, West Nigeria and East Nigeria (Ferré et al. 1996Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
https://doi.org/https://doi.org/10.1144/...
), separated by a ca. 500 km-long N-S structural lineament (Fig. 4). The West Nigeria Domain is characterized by Archean basement with sparse metavolcanosedimentary belts, while the East Nigeria domain is characterized by ca. 2.1 Ga rocks of Eburnean affinity crosscut by Neoproterozoic granite suites emplaced at 605-580 Ma with associated high-grade Neoproterozoic migmatitic rocks (Dickin et al. 1991Dickin A.P., Halliday A.N., Bowden P. 1991. A Pb, Sr and Nd isotope study of the basement and Mesozoic ring complexes of the Jos Plateau, Nigeria. Chemical Geology, 94(1):23-32. https://doi.org/10.1016/S0009-2541(10)80014-2
https://doi.org/https://doi.org/10.1016/...
, Ferré et al. 1996Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
https://doi.org/https://doi.org/10.1144/...
, 1998Ferré E.C., Caby R., Peucat J.J., Capdevila R., Monié P. 1998. Pan-African, post-collisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, 45(1-4):255-279. https://doi.org/10.1016/S0024-4937(98)00035-8
https://doi.org/https://doi.org/10.1016/...
, 2002Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
https://doi.org/https://doi.org/10.1016/...
). The West Nigeria domain bears remnants of some of the oldest rocks in Africa, with gneisses as old as 3571 ± 3 Ma (Kröner et al. 2001Kröner A., Ekwueme B.N., Pidgeon R.T. 2001. The oldest rocks in West Africa: SHRIMP zircon age for Early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. The Journal of Geology, 109(3):399-406. https://doi.org/10.1086/319979
https://doi.org/https://doi.org/10.1086/...
), an age range also found in zircon cores from ca. 3.0 Ga gneisses (Bruguier et al. 1994Bruguier O., Dada S.S., Lancelot J.R. 1994. Early Archaean component (> 3.5 Ga) within a 3.05 Ga orthogneiss from northern Nigeria: U-Pb zircon evidence. Earth and Planetary Science Letters, 125(1-4):89-103. https://doi.org/10.1016/0012-821X(94)90208-9
https://doi.org/https://doi.org/10.1016/...
), and numerous Nd TDM model ages between 2.7 and 3.5 Ga (Dada 1998Dada S.S. 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Research, 87(1-2):65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
https://doi.org/https://doi.org/10.1016/...
). The Nigerian schist belts, composed of greenschist and amphibolite facies metavolcanosedimentary rocks of probable Proterozoic age, also occur in this domain, and voluminous granitic plutons with widespread migmatization at ca. 620-580 Ma attests to substantial reworking during the Pan-African Orogeny (Dada 1998Dada S.S. 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Research, 87(1-2):65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
https://doi.org/https://doi.org/10.1016/...
).

The Tuareg Shield outcrops in the Hoggar region in southern Algeria, in the Iforas region in northeastern Mali, and in the Aïr region in northern Niger (Fig. 5). The Tuareg Shield is classically interpreted as the result of a collage of ca. 25 terranes (Black et al. 1994Black R., Latouche L., Liégeois J.P., Caby R., Bertrand J.M. 1994. Pan-African displaced terranes in the Tuareg shield (central Sahara). Geology, 22(7):641-644. https://doi.org/10.1130/0091-7613(1994)022%3C0641:PADTIT%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Liégeois 2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.), which were welded together and dislocated along vertical shear zones due to squeezing between the West African craton to the east and the Saharan metacraton to the west during the Pan-African Orogeny (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Liégeois 2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107., and references therein).

Some of the terranes of the Tuareg Shield represent Archean and Paleoproterozoic basement, which were variably reworked (i.e., deformed, metamorphosed and intruded by plutons) during the Pan-African Orogeny, such as the Laouni/Azrou-n-Fad/Tefedest/Egéré-Aleksod/Aouilène assembly of terranes in Central Hoggar, which was interpreted by Liégeois et al. (2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
) as representing a metacratonic unit dubbed LATEA, and the In Ouzzal/Iforas granulite units (IOGU/IGU) and surrounding Tirek, Kidal, Tassendjanet and Ahnet terranes, which could probably represent another archean-paleoproterozoic microcontinent in the West Tuareg Shield. To the east, the Assodé-Issalane and Tazat terranes are composed of Paleoproterozoic basement and were interpreted by Liégeois (2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.) as forming an “Orosirian Stripe” which could also represent a metacratonic unit in the East Tuareg Shield. The easternmost domains of Eastern Hoggar and Aïr comprise the Aouzegueur, Edembo, Djanet and Barghot terrains, also considered to be at least in part Paleoproterozoic and constitute the westernmost part of the Saharan paleocontinent.

Other terrains probably represent Neoproterozoic juvenile and/or transitional rocks docked or thrust upon the basement-dominated blocks, and the contacts between these mark the sites of ancient suture zones. These are represented by the Tilemsi island arc (ca. 730-650 Ma) separating the West Tuareg basement-dominated terrains from the Gourma HP-UHP nappes thrust upon the West African craton margin to the west, the Pharusian terrains and the Silet (former Iskel) magmatic arc separating the West Tuareg terrains from LATEA, and the Serouenout terrane separating LATEA from the “Orosirian Stripe” to the east. The Raghane shear zone marks the eastern boundary of the Orosirian Stripe and is interpreted by Liégeois (2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.) as the western boundary of the East Saharan paleocontinent.

The Dahomey belt of Ghana, Togo, and Benin (Fig. 4) and its continuation, the Gourma Belt in Mali, are recognized as resulting from the collision of the eastern margin of the West African craton with the Transaharan province to the east (Caby 1987Caby R. 1987. The Pan-African belt of West Africa from the Sahara desert to the Gulf of Benin. In: Schaer J.-P., Rodgers J. (Eds.). Anatomy of Mountain Ranges. Princeton: Princeton University Press, p. 129-170., Affaton et al. 1991Affaton P., Rahaman M.A., Trompette R., Sougy J. 1991. The Dahomeyide orogen: tectonothermal evolution and relationships with the Volta basin. In: Dallmeyer R.D., Lecorché J.P. (Eds.). The West African Orogens and Circum-Atlantic Correlatives. New York: Springer, p. 95-111., Castaing et al. 1994Castaing C., Feybesse J.L., Thiéblemont D., Triboulet C., Chevremont P. 1994. Paleogeographical reconstructions of the Pan-African-Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambrian Research, 69:327-344.). An orogenic architecture with passive-margin related rocks to the west bordering the West African craton and active-margin related rocks to the east in the internal portion of the belt is recognized for the Dahomey belt (Affaton et al. 1991Affaton P., Rahaman M.A., Trompette R., Sougy J. 1991. The Dahomeyide orogen: tectonothermal evolution and relationships with the Volta basin. In: Dallmeyer R.D., Lecorché J.P. (Eds.). The West African Orogens and Circum-Atlantic Correlatives. New York: Springer, p. 95-111., Agbossoumondé et al. 2004Agbossoumondé Y., Guillot S., Ménot R.P. 2004. Pan-African subduction-collision event evidenced by high-pressure granulites from the Agou Massif, southern Togo. Precambrian Research, 135(1-2):1-21. https://doi.org/10.1016/j.precamres.2004.06.005
https://doi.org/https://doi.org/10.1016/...
, Attoh and Nude 2008Attoh K., Nude P.M. 2008. Tectonic significance of carbonatite and ultrahigh-pressure rocks in the Pan-African Dahomeyide suture zone, southeastern Ghana. In: Ennih N., Liégeois J.-P. (Eds.). The Boundaries of the West African Craton. London, Geological Society, Special Publications , 297(1):217-231. https://doi.org/10.1144/SP297.10
https://doi.org/https://doi.org/10.1144/...
) and supported by U-Pb and Lu-Hf detrital zircon data (Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.). Important eclogite-facies metamorphism at ca. 620-610 Ma is recorded in both belts (Caby 1994Caby R. 1994. Precambrian coesite from northern Mali: first record and implications for plate tectonics in the Trans-Saharan segment of the Pan-African belt. European Journal of Mineralogy, 6(2):235-244., Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
), and Neoproterozoic arc terrains are represented, from north to south, by the Amalaoulaou, Iforas, and Kabyé-Agou complexes (Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42., Guillot et al. 2019Guillot S., Agbossoumondé Y., Bascou J., Berger J., Duclaux G., Hilairet N., Ménot R.P., Schwartz S. 2019. Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 320:261-280. https://doi.org/10.1016/j.precamres.2018.11.007
https://doi.org/https://doi.org/10.1016/...
).

Bordering the northeastern margin of the West African craton, the Anti-Atlas Belt of Morocco (Fig. 2) probably represents a continuation of the Trans-Saharan Orogen, with important Neoproterozoic ophiolitic remnants (Bou Azzer, Tasriwine; Saquaque et al. 1989Saquaque A., Admou H., Karson J., Hefferan K., Reuber I. 1989. Precambrian accretionary tectonics in the Bou-Azzer-El-Graara region, Anti-Atlas, Morocco. Geology, 17(12):1107-1110. https://doi.org/10.1130/0091-7613(1989)017%3C1107:PATITB%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Samson et al. 2004Samson S.D., Inglis J.D., D’lemos R.S., Admou H., Blichert-Toft J., Hefferan K. 2004. Geochronological, geochemical, and Nd-Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research, 135(1-2):133-147. https://doi.org/10.1016/j.precamres.2004.08.003
https://doi.org/https://doi.org/10.1016/...
, Bousquet et al. 2008Bousquet R., El Mamoun R., Saddiqi O., Goffé B., Möller A., Madi A. 2008. Mélanges and Ophiolites during the Pan-African Orogeny: the Case of the Bou-Azzer Ophiolite Suite (Morocco). In: Ennih N., Liégeois J.-P. (Eds.). The Boundaries of the West African Craton. London, Geological Society, Special Publications , 297:233-247. https://doi.org/10.1144/SP297.11
https://doi.org/https://doi.org/10.1144/...
), arc complexes (Saghro, Walsh et al. 2012Walsh G.J., Benziane J.N., Aleinikoff F., Harrison R.W., Yazidi A., Burton W.C., Quick J.E., Saadane A. 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216-219:23-62. https://doi.org/10.1016/j.precamres.2012.06.010
https://doi.org/https://doi.org/10.1016/...
) and relics of subduction-related rocks metamorphosed in blueschist-facies (Hefferan et al. 2002Hefferan K.P., Admou H., Hilal R., Karson J.A., Saquaque A., Juteau T., Bohn M.M., Samson S.D., Kornprobst J.M. 2002. Proterozoic blueschist-bearing mélange in the Anti-Atlas Mountains, Morocco. Precambrian Research, 118(3-4):179-194. https://doi.org/10.1016/S0301-9268(02)00109-2
https://doi.org/https://doi.org/10.1016/...
).

The Central African Orogen (Cameroon, Chad, and Central African Republic)

The areas affected by the Pan-African Orogeny in Cameroon (Fig. 4) are divided, from north to south, into the main structural units of the Western Cameroon, the Adamawa-Yadé and the Yaoundé domains (Toteu et al. 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
). Sometimes these are grouped as the Oubanguides Orogen or as part of the Central African fold belt. Here, we prefer the term Central African Orogen to encompass all of the orogenic systems, and avoid confusion with the external fold-thrust belts (e.g., the Yaoundé domain and the Central African fold belt of CAR), that are actually only a part of this system, which also encompasses the internal domains of Adamawa-Yadé and Western Cameroon. Penaye et al. (2006Penaye J., Kröner A., Toteu S.F., Van Schmus W.R., Doumnang J.C. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences, 44(4-5):530-542. https://doi.org/10.1016/j.jafrearsci.2005.11.018
https://doi.org/https://doi.org/10.1016/...
) also recognized the Mayo Kebbi domain of SW Chad, a very important unit made up of calc-alkaline suites emplaced during magmatic pulses at 737-723 and 665-640 Ma, intruded by porphyritic granodiorite and monzodiorite dated at ca. 570 Ma. The Cameroonian counterpart is known as the Sinassi Batholith (Bouyo Houketchang et al. 2016Bouyo Houketchang M., Penaye J., Njel U.O., Moussango I.A.P., Sep N.J.P., Nyama A.B., Wassouo W.J., Abaté E.J.M., Yaya F., Mahamat A., Ye H., Wu F. 2016. Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of Northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences, 116:9-41. https://doi.org/10.1016/j.jafrearsci.2015.12.005
https://doi.org/https://doi.org/10.1016/...
). The Mayo Kebbi area is interpreted as part of an arc complex marking the tectonic collage of the Adamawa-Yadé and Western Cameroon domains (Penaye et al. 2006Penaye J., Kröner A., Toteu S.F., Van Schmus W.R., Doumnang J.C. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences, 44(4-5):530-542. https://doi.org/10.1016/j.jafrearsci.2005.11.018
https://doi.org/https://doi.org/10.1016/...
). Adjacent to the Mayo Kebbi-Sinassi plutons and separated from the Adamawa-Yadé domain by the Tcholliré-Banyo shear zone, the Rey Bouba belt is interpreted as representing continental arc-related metavolcanosedimentary deposits developed between 670 and 630 Ma and metamorphosed at ca. 600 Ma (Bouyo Houketchang et al. 2015Bouyo Houketchang M., Zhao Y., Penaye J., Zhang S.H., Njel U.O. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40-53. https://doi.org/10.1016/j.precamres.2015.01.012
https://doi.org/https://doi.org/10.1016/...
).

The Western Cameroon domain, located west of the Tcholliré-Banyo shear zone, extends along the western border of Cameroon and consists of Neoproterozoic metavolcanosedimentary rocks of the arc-related Poli Group, formed between 830 and 665 Ma (Toteu et al. 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
, Ngako et al. 2008Ngako V., Affaton P., Njonfang E. 2008. Pan-African tectonics in northwestern Cameroon: implications for the history of western Gondwana. Gondwana Research, 14(3):509-522. https://doi.org/10.1016/j.gr.2008.02.002
https://doi.org/https://doi.org/10.1016/...
, Bouyo Houketchang et al., 2009Bouyo Houketchang M., Toteu S.F., Deloule E., Penaye J., Van Schmus W.R. 2009. U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences, 54(5):144-154. https://doi.org/10.1016/j.jafrearsci.2009.03.013
https://doi.org/https://doi.org/10.1016/...
, 2013Bouyo Houketchang M., Penaye J., Barbey P., Toteu S.F., Wandji P. 2013. Petrology of high-pressure granulite facies metapelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the Central African Fold Belt (CAFB) of north-central Cameroon. Precambrian Research, 224:412-433. https://doi.org/10.1016/j.precamres.2012.09.025
https://doi.org/https://doi.org/10.1016/...
) intruded by pre-, syn- and late-tectonic Pan-African granitoids of mainly calc-alkaline composition of 660 to 580 Ma and post-tectonic alkaline granitoids. These are superposed by molassic basins of the Mangbaï-type (Béa 1990Béa A. 1990. Rétromorphisme hydrothermal affectant les tholéiites et les sédiments sus-jacents dans les fossés paléozoïques de la région de Garoua (Cameroun). Comptes Rendus de l’Académie des Sciences, 310(5):597-602., Montes-Lauar et al. 1997Montes-Lauar C.R., Trompette R., Melfi A.J., Bellieni G., De Min A., Béa A., Peccerillo E.M., Affaton P., Pacca I.G. 1997. Pan-African Rb-Sr isochron of magmatic rocks from northern Cameroon. Preliminary results. In: South American Symposium on Isotope Geology, Brazil. Annals... p. 204-205.). ­Rb-Sr and Sm-Nd isotope data suggest that most of the rocks in this domain are either juvenile Neoproterozoic rocks or contaminated by ca. 2.1 Ga crust (Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
). This domain is sometimes considered as a continuation of the East Nigeria domain, including schists and gneisses (Ferré et al. 1996Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
https://doi.org/https://doi.org/10.1144/...
, 2002Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
https://doi.org/https://doi.org/10.1016/...
).

The Adamawa-Yadé domain is located east of the Tcholliré-Banyo shear zone. It includes vast remnants of Paleoproterozoic crust, mainly highly sheared metasedimentary belts and orthogneisses, which have undergone at 2.1 Ga Eburnean granulitic metamorphism and with significant Archean contributions revealed by inherited zircon and Nd isotope data (Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, Ganwa et al. 2016Ganwa A.A., Klötzli U.S., Hauzenberger C. 2016. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS U-Pb ages. Journal of African Earth Sciences, 120:12-22. https://doi.org/10.1016/j.jafrearsci.2016.04.013
https://doi.org/https://doi.org/10.1016/...
, Tchakounté et al. 2017Tchakounté J., Eglinger A., Toteu S.F., Zeh A., Nkoumbou C., Mvondo-Ondoa J., Penaye J., de Wit M., Barbey P. 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research, 299:210-229. https://doi.org/10.1016/j.precamres.2017.07.001
https://doi.org/https://doi.org/10.1016/...
). The Neoproterozoic Pan-African amphibolite-facies Lom metavolcanosedimentary belt and widespread syn- to late-tectonic crustal-derived granitoids also occur (Soba et al. 1991Soba D., Michard A., Toteu S.F., Norman D.I., Penaye J., Ngako V., Nzenti J.P., Dautel D. 1991. Données géochronologiques nouvelles (Rb-Sr, U-Pb et Sm-Nd) sur la zone mobile panafricaine de l’Est Cameroun: âge Protérozoïque supérieur de la série de Lom. Comptes Rendus de l’Académie des Sciences, 312:1453-1458., Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
, Tchameni et al. 2006Tchameni R., Pouclet A., Penaye J., Ganwa A.A., Toteu S.F. 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences, 44(4-5):511-529. https://doi.org/10.1016/j.jafrearsci.2005.11.017
https://doi.org/https://doi.org/10.1016/...
). This domain is interpreted as a Paleoproterozoic basement tract that was dismembered and reworked during the Pan-African Orogeny (Toteu et al. 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
).

Finally, the Yaoundé domain is interpreted as an allochthonous nappe terrane thrust southwards onto the Congo craton margin, composed of low- to high-grade Neoproterozoic schists with youngest detrital zircon grains at ca. 625 Ma (Toteu et al. 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
), paragneisses and orthogneisses, reaching granulite facies metamorphism during the Pan-African Orogeny (Nzenti et al. 1988Nzenti J.P., Barbey P., Macaudière J., Soba D. 1988. Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Research, 38(2):91-109. https://doi.org/10.1016/0301-9268(88)90086-1
https://doi.org/https://doi.org/10.1016/...
, Penaye et al. 1993Penaye J., Toteu S.F., Van Schmus W.R., Nzenti J.P. 1993. U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé series, Cameroon: reinterpretation of the granulitic rocks as the suture of a collision in the ‘‘Centrafrican belt”. Comptes Rendus de l’Académie des Sciences de Paris, 317(6):789-794., Toteu et al. 1994Toteu S.F., Van Schmus W.R., Penaye J., Nyobe J.B. 1994. U-Pb and Sm-Nd evidence for Eburnean and Pan-African high grade metamorphism in cratonic rocks of Southern Cameroon. Precambrian Research, 67:321-347., 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
, 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
, Owona et al. 2011Owona S., Schulz B., Ratschbacher L., Mvondo Ondoa J., Ekodeck G.E., Tchoua F.M., Affaton P. 2011. Pan-African metamorphic evolution in the southern Yaoundé Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 59:125-139. https://doi.org/10.1016/j.jafrearsci.2010.09.003
https://doi.org/https://doi.org/10.1016/...
, Kalsbeek et al. 2013Kalsbeek F., Ekwueme B.N., Penaye J., de Souza Z.S., Thrane K. 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research, 226:105-115. https://doi.org/10.1016/j.precamres.2012.12.006
https://doi.org/https://doi.org/10.1016/...
). Pre- to syn-tectonic plutonic rocks are preponderant, with mafic to intermediate rocks and serpentinized Cr- and Ni-rich ultramafic rocks associated with gabbros, diorites, and mafic dykes. The Yaoundé metasedimentary rocks are interpreted as Neoproterozoic passive to active margin deposits, with U-Pb and Nd isotope data indicating mixtures of Neoproterozoic juvenile and Paleoproterozoic sources, with strong contributions from the Congo craton (Penaye et al. 1993Penaye J., Toteu S.F., Van Schmus W.R., Nzenti J.P. 1993. U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé series, Cameroon: reinterpretation of the granulitic rocks as the suture of a collision in the ‘‘Centrafrican belt”. Comptes Rendus de l’Académie des Sciences de Paris, 317(6):789-794., Toteu et al. 1994Toteu S.F., Van Schmus W.R., Penaye J., Nyobe J.B. 1994. U-Pb and Sm-Nd evidence for Eburnean and Pan-African high grade metamorphism in cratonic rocks of Southern Cameroon. Precambrian Research, 67:321-347., 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, Kalsbeek et al. 2013Kalsbeek F., Ekwueme B.N., Penaye J., de Souza Z.S., Thrane K. 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research, 226:105-115. https://doi.org/10.1016/j.precamres.2012.12.006
https://doi.org/https://doi.org/10.1016/...
). The Yaoundé domain extends eastward to the Central African Republic as the Bolé metasedimentary rocks and the Gbaya high-grade gneisses (Pin and Poidevin 1987Pin C., Poidevin J.L. 1987. U-Pb zircon evidence for a Pan-African granulite facies metamorphism in the Central African Republic. A new interpretation of the High-Grade series of the northern border of the Congo Craton. Precambrian Research, 36(3-4):303-312. https://doi.org/10.1016/0301-9268(87)90027-1
https://doi.org/https://doi.org/10.1016/...
, Poidevin 1991Poidevin J.L. 1991. Les ceintures de roches vertes de la République Centrafricaine. Contribution à la connaissance du précambrien du nord du craton du Congo. PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France.), forming the Central African fold belt thrust upon the northern Congo craton margin (e.g., Shellnutt et al. 2017Shellnutt J.G., Pham N.H.T., Denyszyn S.W., Yeh M.W., Lee T.Y. 2017. Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad. Precambrian Research, 301:113-123. https://doi.org/10.1016/j.precamres.2017.08.021
https://doi.org/https://doi.org/10.1016/...
).

Domain-by-domain description and possible correlations between NE Brazil and NW Africa

Below a simplified domain-by-domain description of geologic units within the Borborema Province and probable correlations with NW Africa is presented (see the graphic chart for the chronology of tectonic events in each domain in Fig. 6).

Figure 6.
Simplified chart of the chronology of the main geodynamic events in each of the geological domains of NE Brazil and NW Africa. See text for data sources.

The regional shear zones that crosscut both NE Brazil and NW Africa are important keys to understanding the connections between these two major areas; various correlative schemes have been proposed. A continuation of the Transbrasiliano (Sobral/Pedro II) shear zone into the Kandi-4º50’ shear zone seems well established (Caby 1989Caby R. 1989. Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. In: Dallmeyer R.D. (Ed.). Terranes in the Circum-Atlantic Paleozoic Orogens. Special Paper Geological Society of America, 230, p. 145-158. https://doi.org/10.1130/SPE230-p145
https://doi.org/https://doi.org/10.1130/...
, Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
https://doi.org/https://doi.org/10.1144/...
, Cordani et al. 2013bCordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
https://doi.org/https://doi.org/10.5327/...
), as well as between the Senador Pompeu and Ile Ife shear zones. However, at the level of the Tuareg Shield, Brahimi et al. (2018Brahimi S., Liégeois J.P., Ghienne J.F., Munschy M., Bourmatte A. 2018. The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: Magnetic and gravimetric constraints. Earth-Science Reviews, 185:572-599. https://doi.org/10.1016/j.earscirev.2018.07.002
https://doi.org/https://doi.org/10.1016/...
) and Liégeois (2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.) suggest that, in fact, the extension of the Transbrasiliano- Kidal area is located west of the Silet terrane and not at the 4º50 lineament. In fact, these two shear zones (4º50 and the West Silet accident), as shown by magnetic data, converge both north and south of the Hoggar.

For the other shear zones, correlations are more contentious. Some authors suggest continuation of the Patos Shear Zone into the Garoua Shear Zone of NW Cameroon (e.g., Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
), while others suggest that the region between the Patos and Pernambuco shear zones opens in a wedge-like geometry toward NW Africa, and thus the Patos Shear Zone would continue through the limit between the East and West Nigeria provinces (Ferré et al. 1996Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
https://doi.org/https://doi.org/10.1144/...
) to the 8º30’ Shear Zone separating East from Central Tuareg Shield (e.g., Dada 2008Dada S.S. 2008. Proterozoic evolution of the Nigeria-Boborema province. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications, 294:122-136., Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications , 294:69-99.). According to the tectonic models for Cameroon (e.g., Toteu et al. 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
, 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
), the Garoua Shear Zone does not seem to represent a major lithospheric structure. Thus, in Figure 2, a connection of the Patos-8º30’ shear zones through the limit between West and East Nigeria is proposed. Continuation of the Pernambuco Shear Zone into the Adamawa Shear Zone, and splaying to the Tcholliré-Banyo Shear Zone marking the southern limit of the Mayo Kebbi Terrane, an exotic block accreted to the northern Adamawa-Yade Domain (Penaye et al. 2006Penaye J., Kröner A., Toteu S.F., Van Schmus W.R., Doumnang J.C. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences, 44(4-5):530-542. https://doi.org/10.1016/j.jafrearsci.2005.11.018
https://doi.org/https://doi.org/10.1016/...
), is preferred here.

The West Gondwana Orogen

The denomination “West Gondwana Orogen” (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
) is used for the region involved in the closure of the major Goiás-Pharusian (or Brasilides) ocean that encompasses part of the Northern Borborema Province (Médio Coreaú, Ceará Central and possibly part of the Rio Grande do Norte domains) in NE Brazil; the Trans-Saharan Orogen composed of the Benino-Nigerian and Tuareg shields in NW Africa; and the Tocantins Province bordering the western margin of the São Francisco craton in central Brazil (Fig. 2). This whole area was strongly deformed, metamorphosed, and injected by numerous plutons during the Late Neoproterozoic to Cambrian, characterizing typical accretionary and collisional processes during the Pan-African/Brasiliano Orogeny. The main suture zone of this orogen is probably located in the vicinities of the Transbrasiliano-Kandi-4º50’/West Silet shear zone (Cordani et al. 2013bCordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
https://doi.org/https://doi.org/10.5327/...
). For the remainder of the Borborema Province and NW Africa to be amalgamated, other oceanic tracts had to be consumed, such as the longitudinal Transnordestino-Central African ocean connecting the transversal Goiás-Pharusian and East African oceans (see next sections), and smaller hypothetical oceans such as the Piancó-Alto Brígida/Western Cameroon (PAB-WECA) seaway (see discussion in the next sections and models in Figs. 7, 8, 9, 10 and 11).

Figure 7.
Schematic model for NE Brazil-NW Africa evolution at 1000-900 Ma. The enigmatic Cariris Velhos belt might represent (i) a complete Wilson Cycle, with rifting of the northern Borborema block from the Greater São Francisco-Congo-Saharan paleocontinent followed by development of a continental arc system and continental collision; (ii) a peripheral continental arc system not linked to a complete Wilson Cycle; or (iii) a continental rift system.

Figure 8.
Schematic model for NE Brazil-NW Africa evolution at 900-800 Ma. See text for discussions. In pink, the Archean-Paleoproterozoic basement-dominated blocks of West Tuareg (IOGU/IGU and surrounding Tirek, Kidal, Tassendjanet and Ahnet terranes), Central Tuareg (LATEA) and East Tuareg or “Orosirian Strip” (Assodé-Issalane and Tazat), NOBO-BENI (Northern Borborema/Benino-Nigeria) and APAMCAPAY (Alto Pajeú-Alto Moxotó-Rio Capibaribe-Pernambuco-Alagoas/Adamawa-Yade) are shown.

Figure 9.
Schematic model for NE Brazil-NW Africa evolution at 800-700 Ma. See text for discussions. Notice the beginning of development of early island arcs with juvenile (intra-oceanic) signatures in both the Goiás-Pharusian and Adamastor oceans, and the development of new oceanic domains such as the Transnordestino-Central African ocean.

Figure 10.
Schematic model for NE Brazil-NW Africa evolution at 700-630 Ma. See text for discussions. With docking of the early stage island arcs in the paleocontinental margins, reversal of subduction polarity occurs with remelting of the accreted island arc + continental margins and development of extensive Ediacaran continental magmatic arc systems.

Figure 11.
Schematic model for NE Brazil-NW Africa evolution at 630-500 Ma. See text for discussions. The Goiás-Pharusian ocean closed at ca. 620 Ma, but final configuration of West Gondwana might have been achieved after closure of the Clymene ocean to the west and development of the extensive strike-slip system of NE Brazil and NW Africa due to a lateral escape phase.

The connections between the lithostructural units that make up the domains involved in the West Gondwana Orogen are being progressively tightened up, with recent contributions on isotopic and geochronological data which allow provenance patterns and tectonic meaning of lithostructural units to be further determined (Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
https://doi.org/https://doi.org/10.1144/...
, 2015Arthaud M.H., Fuck R.A., Dantas E.L., Santos T.J.S., Caby R., Armstrong R. 2015. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology. Journal of South American Earth Sciences, 58:223-237. https://doi.org/10.1016/j.jsames.2014.09.007
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119., Kalsbeek et al. 2012Kalsbeek F., Affaton P., Ekwueme B., Freid R., Thranea K. 2012. Geochronologyof granitoid and metasedimentary rocks from Togo and Benin, West Africa: comparisons with NE Brazil. Precambrian Research, 196-197:218-233. https://doi.org/10.1016/j.precamres.2011.12.006
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42., Guillot et al. 2019Guillot S., Agbossoumondé Y., Bascou J., Berger J., Duclaux G., Hilairet N., Ménot R.P., Schwartz S. 2019. Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 320:261-280. https://doi.org/10.1016/j.precamres.2018.11.007
https://doi.org/https://doi.org/10.1016/...
). Passive margin sedimentary units bordering the West African craton are superseded by active margin basins related to Neoproterozoic arc domains throughout the Médio Coreaú-Dahomeyides-Pharusian belts. These are separated from the Northern Borborema/Benino-Nigerian (NOBO-BENI; see discussion in the next sections) and LATEA reworked basement areas by the transcontinental-scale Transbrasiliano-Kandi-4º50’/West Silet shear zone. HP and UHP rocks such as coesite-bearing eclogites are found in the vicinities of this major structure both in NE Brazil and NW Africa (Caby 1994Caby R. 1994. Precambrian coesite from northern Mali: first record and implications for plate tectonics in the Trans-Saharan segment of the Pan-African belt. European Journal of Mineralogy, 6(2):235-244., Jahn et al. 2001Jahn B., Caby R., Monié P. 2001. The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178(1-4):143-158. https://doi.org/10.1016/S0009-2541(01)00264-9
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
) and are dated at ca. 608-620 Ma in both Mali, Togo, and Brazil, suggesting deep continental subduction such as in a typical Hymalaian collision in an at least 2,500 km-long trending zone during the Ediacaran (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
). Eclogites of the Tassendjanet-Tidéridjaouine terrane in the West Tuareg Shield, dated at ca. 623 Ma (Berger et al. 2014Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
https://doi.org/https://doi.org/10.1016/...
) are also possible correlatives. The Ceará Central domain in NE Brazil is characterized by the extensive Tamboril/Santa Quitéria magmatic complex, interpreted as encompassing both active margin arc magmatism and syn-collisional plutonic phases developed at 650-610 Ma (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
); this is roughly coeval with similar aged magmatic arc- related plutonic rocks in Benin, in Togo, and in the western Tuareg Shield (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.), besides corresponding to the main phase of continental arc magmatism further south in the Brasília belt (Laux et al. 2005Laux J.H., Pimentel M.M., Dantas E.L., Armstrong R.A., Junges S.L. 2005. Two Neoproterozoic crustal accretion events in the Brasília belt, central Brazil. Journal of South American Earth Sciences, 18(2):183-198. https://doi.org/10.1016/j.jsames.2004.09.003
https://doi.org/https://doi.org/10.1016/...
, Fuck et al. 2017Fuck R.A., Pimentel M.M., Alvarenga C.J., Dantas E.L. 2017. The northern Brasília belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.). São Francisco Craton, Eastern Brazil. Cham: Springer , p. 205-220.).

Neoproterozoic closure of the Goiás-Pharusian ocean occurred through crustal accretion processes, including the docking of various intraoceanic or transitional magmatic arcs, beginning as early as ca. 900-800 Ma (from south to north: the early intraoceanic phase of the Goiás Magmatic Arc in the Brasília Belt; Pimentel and Fuck 1992Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Laux et al. 2005Laux J.H., Pimentel M.M., Dantas E.L., Armstrong R.A., Junges S.L. 2005. Two Neoproterozoic crustal accretion events in the Brasília belt, central Brazil. Journal of South American Earth Sciences, 18(2):183-198. https://doi.org/10.1016/j.jsames.2004.09.003
https://doi.org/https://doi.org/10.1016/...
, Fuck et al. 2017Fuck R.A., Pimentel M.M., Alvarenga C.J., Dantas E.L. 2017. The northern Brasília belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.). São Francisco Craton, Eastern Brazil. Cham: Springer , p. 205-220.; the early stages of the Tamboril/Santa Quitéria Arc or Lagoa Caiçara Arc in NW Borborema; Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
; the early stages of the Silet (former Iskel) Arc in Hoggar; Caby et al. 1982Caby R., Andreopoulos-Renaud U., Gravelle M. 1982. Cadre géologique et géochronologie U/Pb sur zircon des batholites précoces dans le segment pan-africain du Hoggar central (Algérie). Bulletin de la Société Géologique de France, 24:677-684., Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
), but with possible younger accretion events such as, from south to north, in the Amalaoulaou Arc of Mali (onset at ca. 790 Ma; Berger et al. 2011Berger J., Caby R., Liégeois J.P., Mercier J.C.C., Demaiffe D. 2011. Deep inside a Neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali). American Mineralogist, 162:773-796. https://doi.org/10.1007/s00410-011-0624-5
https://doi.org/https://doi.org/10.1007/...
), the Tilemsi Arc (ca. 730 Ma) of western Hoggar (Caby et al. 1989Caby R., Andreopoulos-Renaud U., Pin C. 1989. Late Proterozoic arc-continent and continent-continent collision in the Pan-African trans-Saharan belt of Mali. Canadian Journal of Earth Sciences, 26(6):1136-1146. https://doi.org/10.1139/e89-097
https://doi.org/https://doi.org/10.1139/...
), and the Saghro Arc of Morocco (onset at ca. 760 Ma; Saquaque 1992Saquaque A. 1992. Un exemple de suture-arc: Le Precambrien de l’Anti-Atlas centre oriental (Maroc). PhD Dissertation, Université Cadi Ayyad, Marrakech, 366 p., Walsh et al. 2012Walsh G.J., Benziane J.N., Aleinikoff F., Harrison R.W., Yazidi A., Burton W.C., Quick J.E., Saadane A. 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216-219:23-62. https://doi.org/10.1016/j.precamres.2012.06.010
https://doi.org/https://doi.org/10.1016/...
). Whenever available, Nd isotope data for these massifs suggest the involvement of large volumes of juvenile mantle material (e.g., Pimentel and Fuck 1992Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Berger et al. 2011Berger J., Caby R., Liégeois J.P., Mercier J.C.C., Demaiffe D. 2011. Deep inside a Neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali). American Mineralogist, 162:773-796. https://doi.org/10.1007/s00410-011-0624-5
https://doi.org/https://doi.org/10.1007/...
, Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
) with TDM model ages close to the U-Pb zircon crystallization ages and positive εNd(t), εHf(t) and mantle-like O isotopic signatures, attesting to the intra-oceanic or transitional (i.e., developed over thinned or newly formed continental crust) nature of most of these units.

After successive accretionary processes and collisions during the Neoproterozoic, this ocean was closed giving rise to the West Gondwana Orogen that sutured the West African-São Luís and São Francisco-Congo cratons and the Saharan metacraton in NW Africa, NE and central Brazil. Thrusting of passive margin sequences, including possible ophiolitic remnants and HP and UHP rocks described in the western and central Tuareg Shield (Sautter 1986Sautter V. 1986. Les eclogites de lAleksod (sud algérien): des témoins in situ d’une collision intracontinentale. Journal of African Earth Sciences, 5:345-357., Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Liégeois et al. 2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
, Berger et al. 2014Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
https://doi.org/https://doi.org/10.1016/...
, Doukkari et al. 2014Doukkari S.A., Ouzegane K., Arab A., Kienast J.R., Godard G., Drareni A., Zetoutou S., Liégeois J.P. 2014. Phase relationships and P-T path in NCFMASHTO system of the eclogite from the Tighsi area (Egere terrane, Central Hoggar, Algeria). Journal of African Earth Sciences, 99(Part 2):276-286. https://doi.org/10.1016/j.jafrearsci.2014.02.016
https://doi.org/https://doi.org/10.1016/...
, 2019Doukkari S.A., Gaston G., Ouzegane K., Arab A., Bendaoud A. 2019. Petrography, Mineralogy and Thermodynamic Modeling of Eclogites from the Serkout Area, Central Hoggar, Algeria. In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer., Adjerid et al. 2015Adjerid Z., Godard G., Ouzegane K. 2015. High-pressure whiteschists from the Ti-N-Eggoleh area (Central Hoggar, Algeria): a record of Pan-African oceanic subduction. Lithos, 226:201-216. https://doi.org/10.1016/j.lithos.2015.02.013
https://doi.org/https://doi.org/10.1016/...
, Arab et al. 2019Arab A., Ouzegane K., Bendaoud A., Doukkari S., Godard G. 2019. The First Example of Kyanite-Staurolite-Garnet-Bearing Metapelites from the Hoggar (Egéré Terrane, South Algeria). In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer.), further north in the Neoproterozoic Bou Azzer ophiolitic mélange of the Anti-Atlas in Morocco, which also includes blueschist assemblages (Saquaque et al. 1989Saquaque A., Admou H., Karson J., Hefferan K., Reuber I. 1989. Precambrian accretionary tectonics in the Bou-Azzer-El-Graara region, Anti-Atlas, Morocco. Geology, 17(12):1107-1110. https://doi.org/10.1130/0091-7613(1989)017%3C1107:PATITB%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Hefferan et al. 2002Hefferan K.P., Admou H., Hilal R., Karson J.A., Saquaque A., Juteau T., Bohn M.M., Samson S.D., Kornprobst J.M. 2002. Proterozoic blueschist-bearing mélange in the Anti-Atlas Mountains, Morocco. Precambrian Research, 118(3-4):179-194. https://doi.org/10.1016/S0301-9268(02)00109-2
https://doi.org/https://doi.org/10.1016/...
, Bousquet et al. 2008Bousquet R., El Mamoun R., Saddiqi O., Goffé B., Möller A., Madi A. 2008. Mélanges and Ophiolites during the Pan-African Orogeny: the Case of the Bou-Azzer Ophiolite Suite (Morocco). In: Ennih N., Liégeois J.-P. (Eds.). The Boundaries of the West African Craton. London, Geological Society, Special Publications , 297:233-247. https://doi.org/10.1144/SP297.11
https://doi.org/https://doi.org/10.1144/...
), and of syn-orogenic volcanosedimentary sequences onto the cratonic borders, injection of multiple phases of syn-, late-, and post-orogenic plutons, regional greenschist- to amphibolite- facies metamorphism and local HP and UHP metamorphism related to continental subduction occurred throughout the orogenic zone.

It is important to notice that some authors suggest that the closure of the Goiás-Pharusian ocean at ca. 616-608 Ma was not the terminal event responsible for the amalgamation of West Gondwana. The closure of the Clymene ocean (Trindade et al. 2006Trindade R.I.F., D’Agrella-Filho M.S., Epof I., Brito Neves B.B. 2006. Paleomagnetism of the early Cambrian Itabaiana mafic dikes, NE Brazil, and implications for the final assembly of Gondwana and its proximity to Laurentia. Earth and Planetary Science Letters, 244(1-2):361-377. https://doi.org/10.1016/j.epsl.2005.12.039
https://doi.org/https://doi.org/10.1016/...
, Tohver et al. 2010Tohver E., Trindade R.I.F., Solum J.G., Hall C.M., Riccomini C., Nogueira A.C. 2010. Closing the Clymene Ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana from SE Amazon craton. Geology, 38(3):267-270. http://dx.doi.org/10.1130/G30510.1
https://doi.org/http://dx.doi.org/10.113...
, 2012Tohver E., Cawood P.A., Rossello E.A., Jourdan F. 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21(2-3):394-405. http://dx.doi.org/10.1016/j.gr.2011.04.001
https://doi.org/http://dx.doi.org/10.101...
) separating the West African-São Luís and Amazonian cratons to the west, testified by Neoproterozoic ophiolites and/or exhumed mantle in a hyperextended continental margin in the Araguaia belt region (Paixão et al. 2008Paixão M.A.P., Nilson A.A., Dantas E.L. 2008. The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central-northern Brazil, compared with correlatives in NW Africa. In: Pankhurst R.J., Trouw R.A.J., de Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications , 294(1):297-318. http://dx.doi.org/10.1144/SP294.16
https://doi.org/http://dx.doi.org/10.114...
, Hodel et al. 2019Hodel F., Trindade R.I.F., Macouin M., Meira V.T., Dantas E.L., Paixão M.A.P., Rospabé M., Castro M.P., Queiroga G.N., Alkmim A.R., Lana C.C. 2019. A Neoproterozoic hyper-extended margin associated with Rodinia’s demise and Gondwana’s build-up: The Araguaia Belt, central Brazil. Gondwana Research, 66:43-62. https://doi.org/10.1016/j.gr.2018.08.010
https://doi.org/https://doi.org/10.1016/...
) seems to have occurred much later, at ca. 530-520 Ma, in the early Cambrian (e.g., McGee et al. 2012McGee B., Collins A.S., Trindade R.I.F. 2012. G’Day Gondwana the final accretion of a supercontinent: U-Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21(2-3):316-322. http://dx.doi.org/10.1016/j.gr.2011.04.011
https://doi.org/http://dx.doi.org/10.101...
). Early Cambrian collisional events are also noticed elsewhere in West Gondwana (e.g., Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1-2):29-61. https://doi.org/10.1016/j.precamres.2004.03.010
https://doi.org/https://doi.org/10.1016/...
) and represent the last mountain building expressions of the Brasiliano Orogeny. The collision of the large Amazonian paleocontinent with the amalgamated West African-São Luís/Borborema/São Francisco-Congo paleocontinent might have influenced the final structuring of the Borborema Province, perhaps triggering the extensive development of late-stage strike-slip shear zones that characterize this region, as its hot, reworked lithosphere behaved as a less competent block in respect to the rigid lithosphere of the surrounding West African-São Luís and São Francisco-Congo cratons. On the other hand, Cordani et al. (2013aCordani U.G., Pimentel M.M., Araújo C.E.G., Basei M.A.S., Fuck R.A., Girardi V.A.V. 2013a. Was there an Ediacaran Clymene Ocean in Central South America? American Journal of Science, 313(6):517-539. https://doi.org/10.2475/06.2013.01
https://doi.org/https://doi.org/10.2475/...
) dispute the existence of an Ediacaran ocean separating the Amazonian and West African-São Luís cratons, suggesting instead that the Araguaia and Paraguay belts bordering the Amazonian craton represent mainly epicontinental seaways.

Médio Coreaú-Dahomeyides-Gourma-West Tuareg Shield (Pharusian)

The Médio Coreaú domain lies to the NW of the Transbrasiliano shear zone in Ceará, Brazil, and is composed of four main lithotectonic units:

  • Paleoproterozoic (2.35-2.1 Ga) TTG orthogneisses and high-grade rocks of the Granja Complex;

  • the Late Paleoproterozoic Saquinho metavolcanosedimentary unit;

  • the Neoproterozoic Martinópole and Ubajara metasedimentary groups;

  • post-collisional granites emplaced at 590-530 Ma (Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119. and references therein; Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.).

Santos et al. (2008aSantos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
https://doi.org/https://doi.org/10.1016/...
) described polycyclic deformation of this domain, with a Paleoproterozoic orogeny (2.2-2.0 Ga) that affected the basement rocks and three further phases developed during the Brasiliano Orogeny (ca. 620-557 Ma).

The Martinópole Group is divided, from bottom to top, into four formations: Goiabeira (metapelite, schist, paragneiss), São Joaquim (quartzite), Covão and Santa Terezinha (metagreywacke, schist, metavolcanics, conglomerate) formations (Santos et al. 2008aSantos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
https://doi.org/https://doi.org/10.1016/...
). Ganade de Araújo et al. (2012aGanade de Araújo C.E., Cordani U.G., Basei M.A.S., Castro N.A., Sato K., Sproesser W.M. 2012a. U-Pb detrital zircon provenance of metasedimentary rocks from the Ceará Central and Médio Coreaú Domains, Borborema Province, NE-Brazil: Tectonic implications for a long-lived Neoproterozoic active continental margin. Precambrian Research, 206-207:36-51. https://doi.org/10.1016/j.precamres.2012.02.021
https://doi.org/https://doi.org/10.1016/...
) demonstrated that the São Joaquim Formation presents very different provenance patterns in contrast with the upper units, showing mainly Paleoproterozic detrital zircon grains with main peaks at ca. 2.1 Ga, and thus interpreted this unit as deposited on a passive margin bordering the West African craton during the Proterozoic. A metavolcanic rock interleaved within the São Joaquim quartzites yielded a U-Pb age of 777 ± 11 Ma (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
). The upper units of the Martinópole Group display important ca. 700-660 Ma detrital zircon grains and were thus interpreted as derived from an active margin developed during eastward subduction of oceanic crust attached to the West African craton under the Borborema Province basement crust during the Neoproterozoic.

As noted by Santos et al. (2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119.), the Granja Complex represents a singular crustal block with a time frame of magmatism that is unknown in the adjacent Ceará Central domain or in adjacent areas of the São Luís-West Africa craton and could have constituted a crustal block with no affinity to neither of the former. A possible correlation with the Accra Plains migmatite of the Dahomey belt is proposed, but further geochronological work is needed in order to clarify this issue.

A correlation of the Neoproterozoic metasedimentary units of the MC domain, especially the Martinópole Group, with those of the western external zone of the Dahomeyides belt in Togo and Benin (e.g., the Atacora Structural Units) is proposed based on the similar detrital zircon age spectra of both units by Ganade de Araújo et al. (2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.), thus suggesting a similar provenance shift from passive margin deposits flanking the West African craton to active margin basins related to Brasiliano/Pan-African magmatism.

Correlations with the West Tuareg Shield are more complicated, as this region clearly records a more complex history of oceanic closure (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Liégeois 2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.). Accretion of exotic terranes such as the Neoproterozoic Tilemsi magmatic arc between the West African paleocontinent and the Archean-Paleoproterozoic granulitic terranes of West Hoggar (IOGU-OGU and the Tirek, Kidal, Tassendjanet and Ahnet terranes reworked during the Neoproterozoic; Ouzegane et al. 2003Ouzegane K., Kienast J.R., Bendaoud A., Drareni A. 2003. A review of Archaean and Paleoproterozoic evolution of the In Ouzzal granulitic terrane (Western Hoggar, Algeria). Journal of African Earth Sciences, 37(3-4):207-227. https://doi.org/10.1016/j.jafrearsci.2003.05.002
https://doi.org/https://doi.org/10.1016/...
, Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Bosch et al. 2016Bosch D., Bruguier O., Caby R., Buscail F., Hammor D. 2016. Orogenic development of Adrar des Iforas (Touareg Shield, NE Mali): new geochemical and geochronological data and geodynamic implications. Journal of Geodynamics, 96:104-130. https://doi.org/10.1016/j.jog.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, Fezaa et al. 2019Fezaa N., Liégeois J.P., Abdallah N., Bruguier O., De Waele B., Ouabadi A. 2019. The 600 Ma-old Pan-African magmatism in the In Ouzzal terrane (Tuareg Shield, Algeria): witness of the metacratonisation of a rigid block. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (eds.). The geology of the Arab world: an overview. Berlin: Springer , p. 109-148.) and the Silet (former Iskel; Béchiri-Benmerzoug et al. 2017Béchiri-Benmerzoug F., Bonin B., Bechiri H., Khéloui R., Talmat-Bouzeguela S., Bouzid K. 2017. Hoggar geochronology: a historical review of published isotopic data. Arab Journal of Geosciences, 10:351-383. https://doi.org/10.1007/s12517-017-3134-6
https://doi.org/https://doi.org/10.1007/...
) magmatic arc between the latter and LATEA (Liégeois et al. 2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
) suggest a more complex scenario, with intervening exotic blocks between the main plates involved in continental collision.

Neoproterozoic deformation in the MC domain is marked by an early phase of tangential deformation, marked by a medium- to low-angle SE-dipping foliation and a NE- or SE-oriented stretching lineation of sillimanite, kyanite, staurolite, and muscovite developed under amphibolite facies in the Martinópole Group and greenschist facies in the Ubajara Group. The tangential compression was superseded by strike-slip deformation, characterized by strongly sub-vertical NE-striking foliation defining large dextral-sense shear zones. Available U-Pb zircon and monazite ages from variably deformed igneous rocks indicate that the tangential collision happened around 620 Ma, and the transition to strike-slip tectonics took place between 614 and 591 Ma (Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119.). Mineral cooling dates suggest that transcurrent tectonics was active until at least ca. 540 Ma in the NW Borborema Province (Monié et al. 1997Monié P., Caby R., Arthaud M.H. 1997. The Neoproterozoic Brasiliano Orogeny in Northeast Brazil: 40Ar/39Ar and petrostructural data from Ceará. Precambrian Research, 81(3-4):241-264. https://doi.org/10.1016/S0301-9268(96)00037-X
https://doi.org/https://doi.org/10.1016/...
). Undeformed post-tectonic extensional granitoids were emplaced adjacent to the Transbrasiliano shear zone around 532 Ma, and cooling of the deeply buried parts of the orogen continued to about 552 Ma (Monié et al. 1997). Thus, a time frame for collisional tectonics at ca. 620 Ma, transition to strike-slip tectonics at 614-591 Ma, a predominant strike-slip regime from 591 to 540 Ma, and post-tectonic granite emplacement and regional cooling of the orogen at 540-532 Ma is defined for this part of the Borborema Province.

The Transbrasiliano-Kandi-4º50’/West Silet shear zone

the Transbrasiliano lineament (Schobbenhaus 1975Schobbenhaus C. (Ed.). 1975. Carta Geológica do Brasil ao Milionésimo - Folha Goiás (SD 22) (texto explicativo). Brasília: DNPM, 114 p.) is a major vertical NE-SW trending structure that crosscuts the entire Brazilian territory from the state of Ceará in NE Brazil (where it is locally called Sobral-Pedro II shear zone) through central Brazil (partly covered by the Phanerozoic sedimentary rocks in the Parnaíba Basin) down southwest until it is covered once again by Phanerozoic sedimentary rocks of the Paraná Basin. Various workers suggested that the Transbrasiliano lineament continues in Africa as the Kandi-4º50’ shear system (Caby 1989Caby R. 1989. Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. In: Dallmeyer R.D. (Ed.). Terranes in the Circum-Atlantic Paleozoic Orogens. Special Paper Geological Society of America, 230, p. 145-158. https://doi.org/10.1130/SPE230-p145
https://doi.org/https://doi.org/10.1130/...
, Trompette 1994Trompette R.R. 1994. Geology of Western Gondwana (2000-500 Ma). Pan-African-Brasiliano aggregation of South America and Africa. Rotterdam: Balkema, 350 p., Fairhead and Maus 2003Fairhead J.D., Maus S. 2003. CHAMP satellite and terrestrial magnetic data help define the tectonic model for South America and resolve the lingering problem of the pre-break-up fit of the South Atlantic Ocean. The Leading Edge, 22(8):779-783. http://dx.doi.org/10.1190/1.1605081
https://doi.org/http://dx.doi.org/10.119...
, Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119., Cordani et al. 2013bCordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
https://doi.org/https://doi.org/10.5327/...
). However, different connections have been proposed, such as a connection of the Transbrasiliano-Kandi to the Adrar fault separating the Pharusian belt from the remainder of the Tuareg Shield (Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119.) or to the West Silet shear zone (Liégeois 2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107., Brahimi et al. 2018Brahimi S., Liégeois J.P., Ghienne J.F., Munschy M., Bourmatte A. 2018. The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: Magnetic and gravimetric constraints. Earth-Science Reviews, 185:572-599. https://doi.org/10.1016/j.earscirev.2018.07.002
https://doi.org/https://doi.org/10.1016/...
).

Various lines of evidence suggest that the main suture zones related to closure of the Goiás-Pharusian ocean are located within or in the vinicities of the Transbrasiliano-Kandi-4º50’/West Silet shear system (Cordani et al. 2013bCordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
https://doi.org/https://doi.org/10.5327/...
):

the presence of HP and UHP rocks, many of them registering peak metamorphic conditions at around 620-610 Ma or slightly older, in the geologic domains closeby (Sautter 1986Sautter V. 1986. Les eclogites de lAleksod (sud algérien): des témoins in situ d’une collision intracontinentale. Journal of African Earth Sciences, 5:345-357., Liégeois et al. 2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2009Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
https://doi.org/http://dx.doi.org/10.101...
, 2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
, Berger et al. 2014Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
https://doi.org/https://doi.org/10.1016/...
, Doukkari et al. 2014Doukkari S.A., Ouzegane K., Arab A., Kienast J.R., Godard G., Drareni A., Zetoutou S., Liégeois J.P. 2014. Phase relationships and P-T path in NCFMASHTO system of the eclogite from the Tighsi area (Egere terrane, Central Hoggar, Algeria). Journal of African Earth Sciences, 99(Part 2):276-286. https://doi.org/10.1016/j.jafrearsci.2014.02.016
https://doi.org/https://doi.org/10.1016/...
, 2019Doukkari S.A., Gaston G., Ouzegane K., Arab A., Bendaoud A. 2019. Petrography, Mineralogy and Thermodynamic Modeling of Eclogites from the Serkout Area, Central Hoggar, Algeria. In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer., Adjerid et al. 2015Adjerid Z., Godard G., Ouzegane K. 2015. High-pressure whiteschists from the Ti-N-Eggoleh area (Central Hoggar, Algeria): a record of Pan-African oceanic subduction. Lithos, 226:201-216. https://doi.org/10.1016/j.lithos.2015.02.013
https://doi.org/https://doi.org/10.1016/...
, Amaral et al. 2012Amaral W.S., Santos T.J.S., Wernick E., Nogueira Neto J.D.A., Dantas E.L., Matteini M. 2012. High-pressure granulites from Cariré, Borborema Province, NE Brazil: tectonic setting, metamorphic conditions and U-Pb, Lu-Hf and Sm-Nd geochronology. Gondwana Research, 22(3-4):892-909. https://doi.org/10.1016/j.gr.2012.02.011
https://doi.org/https://doi.org/10.1016/...
, 2015Amaral W.S., Santos T.J.S., Ancelmi M.F., Fuck R.A., Dantas E.L., Matteini M., Moreto C.P.N. 2015. 1.57 Ga protolith age of the Neoproterozoic Forquilha eclogites, Borborema Province, NE-Brazil, constrained by U-Pb, Hf and Nd isotopes. Journal of South American Earth Sciences, 58:210-222. https://doi.org/10.1016/j.jsames.2014.10.001
https://doi.org/https://doi.org/10.1016/...
, Arab et al. 2019Arab A., Ouzegane K., Bendaoud A., Doukkari S., Godard G. 2019. The First Example of Kyanite-Staurolite-Garnet-Bearing Metapelites from the Hoggar (Egéré Terrane, South Algeria). In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer.);

  • the occurrence of Neoproterozoic arc-related batholithic complexes in the vicinities of the shear zone, both early intra-oceanic or transitional (early Goiás, Lagoa Caiçara, Amalaoulaou, Silet, Tilemsi arcs) and late continental arcs (late Goiás, Santa Quitéria, Togo-Benin, Iforas arcs);

  • the juxtaposition of geological domains of distinct age and constitution along the tectonic corridor;

  • high-density gravity anomalies beneath the Parnaíba Basin, interpreted as buried mafic and ultramafic rocks along the strike of the lineament (Lesquer et al. 1984Lesquer A., Beltrão J.F., Abreu F.A.M. 1984. Proterozoic links between northeastern Brazil and West Africa: a plate tectonic model based on gravity data. Tectonophysics, 110(1-2):9-26. https://doi.org/10.1016/0040-1951(84)90055-6
    https://doi.org/https://doi.org/10.1016/...
    ).

The ductile fabric kinematic indicators suggest mainly dextral movement during the Neoproterozoic in the Transbrasiliano shear zone at NW Borborema. Recently, evidence for brittle sinistral reactivation from the Ordovician onwards was presented and discussed by Amaral et al. (2017Amaral W.S., Kraus R.K., Dantas E.L., Fuck R.A., Pitombeira J.P.A. 2017. Sinistral reactivation of the Transbrasiliano Lineament: Structural and geochronological evidences in the Cariré Granulite Zone, Borborema Province - NE Brazil. Journal of South American Earth Sciences, 79:409-420. https://doi.org/10.1016/j.jsames.2017.08.022
https://doi.org/https://doi.org/10.1016/...
). These authors dated felsic dykes dislocated by faults parallel to the Transbrasiliano trend within the deformation corridor at the region of Cariré, Ceará, with younger concordant U-Pb ages at ca. 460 Ma. Very similar brittle reactivations of the 4º50’ and other main shear zones of the Tuareg Shield during the Ordovician are discussed by Guiraud et al. (2005Guiraud R., Bosworth W., Thierry J., Delplanque A. 2005. Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences, 43(1-3):83-143. https://doi.org/10.1016/j.jafrearsci.2005.07.017
https://doi.org/https://doi.org/10.1016/...
).

HP and UHP Rocks of the West Gondwana Orogen

Several occurrences of Neoproterozoic HP and UHP rocks (eclogites, retro-eclogites, and granulites) are recorded along the vicinities of the Transbrasiliano-Kandi-4º50’/West Silet shear system and surrounding domains on both sides of this major tectonic boundary throughout the West Gondwana Orogen. Ganade de Araújo et al. (2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
) studied eclogite occurrences in Mali, Togo and NE Brazil, and concluded that they represent relicts of an orogenic zone marked by deep continental subduction in the West Gondwana Orogen. U-Pb SHRIMP dating of zircon from the three occurrences studied by Ganade de Araújo et al. (2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
) indicate that UHP metamorphism occurred virtually synchronously over this wide geographical area at ca. 608-616 Ma. Santos et al. (2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
) presented a similar age of 615 Ma for a coesite-bearing retro-eclogite of NE Brazil. Igneous zircon cores indicate protolith ages of > 1.0 Ga for the Mali eclogites and ca. 700 Ma for the Togo ones; older ages of ca. 1.57 Ga have been presented for the protoliths of the Forquilha eclogites (Ceará, Brazil), interpreted by Amaral et al. (2015Amaral W.S., Santos T.J.S., Ancelmi M.F., Fuck R.A., Dantas E.L., Matteini M., Moreto C.P.N. 2015. 1.57 Ga protolith age of the Neoproterozoic Forquilha eclogites, Borborema Province, NE-Brazil, constrained by U-Pb, Hf and Nd isotopes. Journal of South American Earth Sciences, 58:210-222. https://doi.org/10.1016/j.jsames.2014.10.001
https://doi.org/https://doi.org/10.1016/...
) as mafic dykes emplaced in an extensional setting. The same is the case for the Telouine eclogites (Tassendjanet, western Hoggar), whose geochemistry shows that they correspond to continental basalts and that their Nd model ages are between 700 and 800 Ma (Berger et al. 2014Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
https://doi.org/https://doi.org/10.1016/...
).

Retro-eclogites are found in NE Brazil as boudins interleaved within partially melted HT metasedimentary sequences, in the Forquilha Zone of Ceará, adjacent to the Transbrasiliano shear zone, to the west of the Tamboril/Santa Quitéria Complex. The eclogite lenses are intensely retrogressed and are composed of garnet, Ca-rich pyroxene, hornblende, and Na-augite/plagioclase symplectite (Santos et al. 2009Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
https://doi.org/http://dx.doi.org/10.101...
, Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
). Recently, Santos et al. (2015Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
https://doi.org/https://doi.org/10.1016/...
) described coesite associated with atoll garnets in retro-eclogite samples of this area. Minimum P-T conditions for the decompression stage are established from the study of relict phases at 1.7 GPa and 770ºC (Santos et al. 2009Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
https://doi.org/http://dx.doi.org/10.101...
). Ti-in-zircon thermometry indicates temperatures around 700ºC for zircon formation (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
). Detrital zircon analysis of the metasedimentary rocks associated with the retro-eclogites (Ancelmi et al. 2015Ancelmi M.F., Santos T.J.S., Amaral W.S., Fuck R.A., Dantas E.L., Zincone S.A. 2015. Provenance of metasedimentary rocks from the Ceará Central Domain of Borborema Province, NE Brazil: implications for the significance of associated retrograded eclogites. Journal of South American Earth Sciences, 58:82-99. https://doi.org/10.1016/j.jsames.2014.12.007
https://doi.org/https://doi.org/10.1016/...
) shows a simple pattern with Paleoproterozoic zircon grains (1800-2480 Ma), reinforcing the suggestion that the Forquilha retro-eclogites represent Mesoproterozoic basaltic rocks related to a continental rift involved in the Late Neoproterozoic subduction/collision and then tectonically juxtaposed to an active margin sequence, whose sedimentation is derived from erosion of the Santa Quitéria Magmatic Arc (the Ceará Group, which contains ca. 650 Ma detrital zircon grains; Ganade de Araújo et al. 2012bGanade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
https://doi.org/https://doi.org/10.1016/...
, Garcia et al. 2014Garcia M.G.M., Santos T.J.S., Amaral W.S. 2014. Provenance and tectonic setting of Neoproterozoic supracrustal rocks from the Ceará Central Domain, Borborema Province (NE Brazil): constraints from geochemistry and detrital zircon ages. International Geology Review, 56(4):481-500. https://doi.org/10.1080/00206814.2013.875489
https://doi.org/https://doi.org/10.1080/...
).

Retro-eclogites are also found in the Itataia region of the CC domain bordering the eastern side of the Tamboril/Santa Quitéria Complex, interleaved within the aluminous migmatitic paragneisses of the Independência unit. These indicate minimum conditions of 1.4-1.7 GPa and 700-800ºC, with monazite U-Pb ages of ca. 630 Ma (Castro 2004Castro N.A. 2004. Evolução geológica proterozóica da região entre Madalena e Taperuaba, domínio tectônico Ceará Central (província Borborema). PhD Thesis, Universidade de São Paulo, São Paulo, 221 p.). The presence of retro-eclogites bordering both sides of the Tamboril/Santa Quitéria Complex, as well as electromagnetic evidence for convergent subduction zones below the NW Borborema lithosphere, led Padilha et al. (2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
) to propose a model involving a subduction polarity reversal, described in the next section.

In the Tuareg Shield, various HP metamorphic units could be related to continental subduction, and thus, considered as probable correspondents of the above discussed HP/UHP occurrences, such as the ca. 620 Ma HP metamorphic units (550-650ºC, 1.4-2.2 GPa) of Tideridjaouime-Tileouine-Tassendjanet exposed along the edge of the IOGU terrane or microcontinent (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Berger et al. 2014Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
https://doi.org/https://doi.org/10.1016/...
), the Tin Begane eclogites of southern LATEA (790ºC, 1.5 GPa; Boughrara 1999Boughrara M. 1999. Analyse pétrologique et géochronologique de la région de Tin Begane (Hoggar, Algérie): un exemple de la datation d’une série métamorphique en contexte polycyclique. Unpublished Thesis, Muséum Nationale d’Histoire Naturelle, Paris, 361 p.), the Azroun N’Fad eclogite, with a decompression path from 1.5 to 1.1 GPa between 800 and 700ºC (Zetoutou et al. 2004Zetoutou S., Ouzegane K., Boubazine S., Kiénast J.R. 2004. Azrou N’Fad (Central Hoggar, Algeria) one of the deepest terranes of LATEA: arguments based on P-T evolution in eclogite. Journal of African Earth Sciences, 39(3-5):193-200. https://doi.org/10.1016/j.jafrearsci.2004.07.049
https://doi.org/https://doi.org/10.1016/...
) and the Egeré-Aleksod terrane, where outcrops the deepest units within the LATEA metacraton, and where a complete P-T path is recognized in preserved eclogites. The starting conditions correspond to 1.3-1.4 GPa and 580ºC, followed by an increase up to 1.9 GPa and 650-700ºC at fluid-saturated conditions, followed by a retrogression involving near-isothermal decompression to 0.8-0.9 GPa and 700-750ºC at fluid-undersaturated conditions (Doukkari et al. 2014Doukkari S.A., Ouzegane K., Arab A., Kienast J.R., Godard G., Drareni A., Zetoutou S., Liégeois J.P. 2014. Phase relationships and P-T path in NCFMASHTO system of the eclogite from the Tighsi area (Egere terrane, Central Hoggar, Algeria). Journal of African Earth Sciences, 99(Part 2):276-286. https://doi.org/10.1016/j.jafrearsci.2014.02.016
https://doi.org/https://doi.org/10.1016/...
, 2015Doukkari S.A., Ouzegane K., Godard G., Diener J.F.A., Kienast J.R., Liégeois J.P., Arab A., Drareni A. 2015. Prograde and retrograde evolution of eclogite from Adrar Izzilatène (Egéré-Aleksod terrane, Hoggar, Algeria) determined from chemical zoning and pseudosections, with geodynamic implications. Lithos, 226:217-232. https://doi.org/10.1016/j.lithos.2014.12.007
https://doi.org/https://doi.org/10.1016/...
, 2019Doukkari S.A., Gaston G., Ouzegane K., Arab A., Bendaoud A. 2019. Petrography, Mineralogy and Thermodynamic Modeling of Eclogites from the Serkout Area, Central Hoggar, Algeria. In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer., Arab et al. 2019Arab A., Ouzegane K., Bendaoud A., Doukkari S., Godard G. 2019. The First Example of Kyanite-Staurolite-Garnet-Bearing Metapelites from the Hoggar (Egéré Terrane, South Algeria). In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer.).

High-pressure metamorphic conditions over juvenile oceanic rocks have also been recognized in central Hoggar, in eclogitic talc-schists from the Serouenout terrane (Adjerid et al. 2015Adjerid Z., Godard G., Ouzegane K. 2015. High-pressure whiteschists from the Ti-N-Eggoleh area (Central Hoggar, Algeria): a record of Pan-African oceanic subduction. Lithos, 226:201-216. https://doi.org/10.1016/j.lithos.2015.02.013
https://doi.org/https://doi.org/10.1016/...
); and in western Hoggar, at the Ahnet terrane, where a root of a Neoproterozoic island arc which underwent blueschist facies metamorphism outcrops (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
).

Magmatic arc rocks of the West Gondwana Orogen

The Santa Quitéria (or Tamboril/Santa Quitéria) Complex is a NE-SW trending complex of Brasiliano granitoid plutons and migmatites covering ca. 40,000 km2 of the Ceará State in NW Brazil, and is located ca. 200 km to the SE of the high-density gravity anomalies that represent the continuation of the Transbrasiliano shear zone under the Phanerozoic Parnaíba Basin sedimentary rocks (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
). This complex involves a large variety of dioritic to granitic bodies and is flanked by metavolcanosedimentary units interpreted by Fetter et al. (2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
) as the infilling of classic fore- and back-arc basins.

Fetter et al. (2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
) interpreted the extensive plutonic rocks of the Santa Quitéria Complex dated at ca. 665-591 Ma as representing a large continental arc batholith. Dating of metavolcanic rocks within the metasedimentary sequences indicates arc activity as early as 777 Ma. Nd TDM model ages of 1.6-0.8 Ga and associated εNd(600 Ma) between -10 and +3 are consistent with variable mixtures of juvenile Neoproterozoic magmas (such as those generated in a mantle wedge above a subduction zone) and the surrounding Paleoproterozoic gneisses of the Ceará Central domain basement (Fetter et al. 2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
). Ganade de Araújo et al. (2012bGanade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
https://doi.org/https://doi.org/10.1016/...
) presented a distinct interpretation based on geochemistry analysis of the plutonic rocks and the fact that the Santa Quitéria Complex U-Pb zircon ages are closely related in time with those of the ca. 620 Ma Forquilha eclogites and HT metamorphic rocks in the CC domain, thus pointing out to a syn-orogenic setting, arguably developed during the collisional stage. According to these authors, the crustal-derived magmatism would be the product of continental thickening resulting from the collision of the West African-São Luís craton and the Paleoproterozoic-Archean basement of the CC domain along the Transbrasiliano shear zone. Ganade de Araújo et al. (2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
) presented a more complete scenario for the evolution of the Tamboril-Santa Quitéria Complex based on U-Pb and Nd-Sr-O-Hf isotopes, suggesting:

  • an early period comprising juvenile arc magmatism at ca. 880-800 Ma (the Lagoa Caiçara arc), which might have continued to ca. 650 Ma, as indirectly evidenced by detrital zircon grains from associated syn-orogenic deposits;

  • a mature arc period at ca. 660-630 Ma, characterized by hybrid mantle-crust magmatic rocks;

  • crustal anatexis at 625-618 to ca. 600 Ma.

Recently, Ganade de Araújo et al. (2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.) interpreted a variety of granitoids in Togo and Benin aged between 670 and 610 Ma as arc-related plutons resulting from the east-dipping subduction of the Goiás-Pharusian oceanic lithosphere beneath the Benino-Nigerian Shield lithosphere, mainly sourced from crustal reservoirs with subordinate juvenile input. These could be chrono-correlated to the Santa Quitéria continental arc in NE Brazil. Detrital zircon U-Pb analysis of adjacent syn-orogenic deposits in the Benino-Nigerian Shield suggest that continental arc development could have started as early as ca. 780 Ma (Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.), thus suggesting temporal evolution of this probable arc system in the same time frame as that proposed by Fetter et al. (2003Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
https://doi.org/https://doi.org/10.1016/...
) and Ganade de Araújo et al. (2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
) for the Brazilian counterpart. The Tassendjanet and Kidal terranes (Iforas Arc) in the western portion of the Tuareg Shield (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Bosch et al. 2016Bosch D., Bruguier O., Caby R., Buscail F., Hammor D. 2016. Orogenic development of Adrar des Iforas (Touareg Shield, NE Mali): new geochemical and geochronological data and geodynamic implications. Journal of Geodynamics, 96:104-130. https://doi.org/10.1016/j.jog.2015.09.002
https://doi.org/https://doi.org/10.1016/...
) and the Kabyé massif of the Dahomeyides could be possible correlatives (Guillot et al. 2019Guillot S., Agbossoumondé Y., Bascou J., Berger J., Duclaux G., Hilairet N., Ménot R.P., Schwartz S. 2019. Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 320:261-280. https://doi.org/10.1016/j.precamres.2018.11.007
https://doi.org/https://doi.org/10.1016/...
). The late stages of the Silet arc dated at ca. 650-638 Ma (Béchiri-Benmerzoug et al. 2011Béchiri-Benmerzoug F., Liégeois J.P., Bonin B., Azzouni-Sekkal A., Bechiri H., Kheloui R., Matukov D.I., Sergeev S.A. 2011. The plutons from the cryogenian Iskel composite oceanic island arc (Hoggar, Tuareg Shield, Algeria): U-Pb on zircon SHRIMP geochronology, geochemistry and geodynamical setting. In: Hutton Symposium on Granites and Related Rocks, 7., 2011, Avila, Spain. Annals..., p. 17.) are other possible correlatives in the Tuareg Shield.

Although most authors interpret a SE-dipping subduction zone with consumption of the Goiás-Pharusian oceanic lithosphere beneath the northern Borborema (CC) lithosphere as responsible for magmatism of the accretionary phase of the Santa Quitéria Complex, the presence of relicts of eclogitic facies metamorphism on both sides of the complex has led to alternative interpretations suggesting a westward polarity of the subduction zone (Castro 2004Castro N.A. 2004. Evolução geológica proterozóica da região entre Madalena e Taperuaba, domínio tectônico Ceará Central (província Borborema). PhD Thesis, Universidade de São Paulo, São Paulo, 221 p.). Padilha et al. (2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
) detected opposed resistive slabs converging at mantle depths beneath the NW Borborema Province through electromagnetic studies, interpreting this feature as caused by a subduction polarity reversal. In the model presented by these authors, this would have occurred after the docking of oceanic arc rocks (the Lagoa Caiçara Arc) with the NW Borborema block due to westward subduction, followed by the closing of the oceanic domain between the West African-São Luís paleocontinent and partial melting of the accreted Lagoa Caiçara-NW Borborema lithosphere by new eastward-dipping subduction at ca. 650-610 Ma. This led to the formation of the mature continental arc phase of the Santa Quitéria Arc and ultimately to closure of the Goiás-Pharusian ocean and collision of the two main lithospheric blocks, squeezing the Lagoa Caiçara unit between them, development of syn-collisional anatexis and continental subduction-related eclogitic metamorphism (Ganade de Araújo et al. 2014bGanade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
https://doi.org/https://doi.org/10.1038/...
). An alternative model without subduction polarity reversal is presented by Ganade de Araújo et al. (2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
), who interpret the Lagoa Caiçara Complex as representing a transitional arc developed upon thinned continental crust, with the NW-dipping resistive slab of Padilha et al. (2014Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
https://doi.org/https://doi.org/10.1130/...
) interpreted as the scar of a back-arc closure and subduction during the continental collision at ca. 615-620 Ma.

Most of the rock suites interpreted as developed in magmatic arc settings in the vicinities of the Transbrasiliano-Kandi-4º50’/West Silet shear system seems to follow a similar island arc-continental collision model, suggesting the evolution of the Goiás-Pharusian realm as a typical “Pacific-type” ocean. Island arc formation started as early as ca. 900 Ma and as late as ca. 730 Ma (early Goiás in the Brasília belt; Lagoa Caiçara in NW Borborema; Amalaoulaou in Mali; Tilemsi in the west Tuareg Shield; Saghro in Morocco) and is characterized by juvenile magmatism with a strong mantle input probably formed in oceanic-oceanic subduction settings. These island arcs were then accreted to the continental margins as allochthonous terranes and the accreted margins were further remelted during oceanic-continental subduction, forming the late-stage continental arcs at ca. 650-610 Ma. This was immediately followed by continental collision at ca. 615-605 Ma, causing crustal anatexis and remelting of the whole crustal pile, including the associated pre-collisional basins (Pimentel and Fuck 1992Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
https://doi.org/https://doi.org/10.1130/...
, Saquaque 1992Saquaque A. 1992. Un exemple de suture-arc: Le Precambrien de l’Anti-Atlas centre oriental (Maroc). PhD Dissertation, Université Cadi Ayyad, Marrakech, 366 p., Laux et al. 2005Laux J.H., Pimentel M.M., Dantas E.L., Armstrong R.A., Junges S.L. 2005. Two Neoproterozoic crustal accretion events in the Brasília belt, central Brazil. Journal of South American Earth Sciences, 18(2):183-198. https://doi.org/10.1016/j.jsames.2004.09.003
https://doi.org/https://doi.org/10.1016/...
, Ganade de Araújo et al. 2014aGanade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
https://doi.org/https://doi.org/10.1016/...
, Caby et al. 1982Caby R., Andreopoulos-Renaud U., Gravelle M. 1982. Cadre géologique et géochronologie U/Pb sur zircon des batholites précoces dans le segment pan-africain du Hoggar central (Algérie). Bulletin de la Société Géologique de France, 24:677-684., 1989Caby R., Andreopoulos-Renaud U., Pin C. 1989. Late Proterozoic arc-continent and continent-continent collision in the Pan-African trans-Saharan belt of Mali. Canadian Journal of Earth Sciences, 26(6):1136-1146. https://doi.org/10.1139/e89-097
https://doi.org/https://doi.org/10.1139/...
, Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
, Berger et al. 2011Berger J., Caby R., Liégeois J.P., Mercier J.C.C., Demaiffe D. 2011. Deep inside a Neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali). American Mineralogist, 162:773-796. https://doi.org/10.1007/s00410-011-0624-5
https://doi.org/https://doi.org/10.1007/...
, Walsh et al. 2012Walsh G.J., Benziane J.N., Aleinikoff F., Harrison R.W., Yazidi A., Burton W.C., Quick J.E., Saadane A. 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216-219:23-62. https://doi.org/10.1016/j.precamres.2012.06.010
https://doi.org/https://doi.org/10.1016/...
).

Northern Borborema/Benino-Nigerian Shield (Nobo-Beni) and possible connections to the Tuareg Shield

The remainder of the northern Borborema Province, north of the Patos shear zone, is mainly composed of Archean and Paleoproterozoic basement rocks of the CC and RGN domains with interleaved Paleo-Mesoproterozoic (Orós-Jaguaribeano) and Neoproterozoic (Ceará, Seridó, and Lavras da Mangabeira) metavolcanosedimentary belts. Most of the basement rocks are Rhyacian; in fact, the fundamental crustal framework of the northern Borborema (and of all of the Borborema Province) was assembled during this very important Paleoproterozoic orogenic event. The Paleoproterozoic gneisses surround three major Archean nuclei located at the CC (Troia-Pedra Branca) and RGN (Granjeiro and São José do Campestre) domains. Alternatively, based on geophysical constraints and on the distinct geological units, Arthaud et al. (2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
https://doi.org/https://doi.org/10.1144/...
) proposed the Orós-Jaguaribe domain separating the RGN domain and the remainder of the CC domain and limited by the Portalegre shear zone to the east and the Senador Pompeu shear zone to the west. For the sake of simplification, this will be here treated as part of the Ceará Central domain, crosscut by a distinct Paleo-Mesoproterozoic metavolcanosedimentary belt (the Orós-Jaguaribeano belt).

Basement of the Ceará Central domain is constituted of the Troia-Pedra Branca massif, a gneissic Archean complex with crystallization ages around 2.86-2.68 Ga (Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106., Ganade de Araújo et al. 2017Ganade de Araújo C.E., Basei M., Grandjean F.C., Armstrong R., Brito R.S. 2017. Contrasting Archaean (2.85-2.68 Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition. Precambrian Research, 297:1-18. https://doi.org/10.1016/j.precamres.2017.05.007
https://doi.org/https://doi.org/10.1016/...
). This complex is surrounded by Paleoproterozoic orthogneiss and migmatites. U-Pb zircon geochronology and Sm-Nd whole-rock studies allow to recognize two major pulses of Paleoproterozoic crustal growth, the first at ca. 2.35-2.30, characterized exclusively by juvenile growth and accretion, and the second at ca. 2.19-2.05 Ga, involving the incorporation of reworked or enriched crust and Archean crustal fragments (Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106., Martins et al. 2009Martins G., Oliveira E.P., Lafon J.-M. 2009. The Algodões amphibolite-tonalite gneiss sequence, Borborema Province, NE Brazil: Geochemical and geochronological evidence for Palaeoproterozoic accretion of oceanic plateau/back-arc basalts and adakitic plutons. Gondwana Research, 15(1):71-85. https://doi.org/10.1016/j.gr.2008.06.002
https://doi.org/https://doi.org/10.1016/...
, Costa et al. 2015Costa F.G., Palheta E.S.M., Rodrigues J.B., Gomes I.P., Vasconcelos A.M. 2015. Geochemistry and U-Pb zircon ages of plutonic rocks from the Algodões granite-greenstone terrane, Troia Massif, northern Borborema Province, Brazil: Implications for Paleoproterozoic subduction-accretion processes. Journal of South American Earth Sciences, 59:45-68. https://doi.org/10.1016/j.jsames.2015.01.007
https://doi.org/https://doi.org/10.1016/...
). Also comprising the Paleoproterozoic basement, amphibolites, granulites, and paragnaisses occur, sometimes grouped as Canindé Complex (Ancelmi 2016Ancelmi M.F. 2016. Geocronologia e geoquímica das rochas arqueanas do Complexo Granjeiro, Província Borborema. PhD Thesis, Universidade Estadual de Campinas, Campinas, 159 p.). The Granjeiro Complex (mostly 2.7-2.5 Ga; Silva et al. 1997Silva L.C., McNaughton N.J., Vasconcelos A.M., Gomes J.R.C., Fletcher I.R. 1997. U-Pb SHRIMP ages in southern State of Ceará, Borborema Province, NE Brazil: TTG accretion and Proterozoic crustal reworking. In: International Symposium on Granites and Associated Mineralizations, Abstracts… p. 280-281., Ancelmi 2016Ancelmi M.F. 2016. Geocronologia e geoquímica das rochas arqueanas do Complexo Granjeiro, Província Borborema. PhD Thesis, Universidade Estadual de Campinas, Campinas, 159 p.) configures an Archean succession at the southern RGN domain, truncated by the Patos shear zone to the south, and is composed of orthogneisses and a metavolcanosedimentary sequence composed of metamafic-ultramafic rocks, metachert, banded iron formations, marbles and other metasedimentary rocks. Recently, Pitarello et al. (2019Pitarello M.Z., dos Santos T.J., Ancelmi M.F. 2019. Syn-to post-depositional processes related to high grade metamorphic BIFs: Geochemical and geochronological evidences from a Paleo to Neoarchean (3.5-2.6 Ga) terrane in NE Brazil. Journal of South American Earth Sciences, 96:102312. https://doi.org/10.1016/j.jsames.2019.102312
https://doi.org/https://doi.org/10.1016/...
) reported U-Pb ages for the Granjeiro Complex from 3535 ± 14 to 2384 ± 35 Ma, suggesting that some of the oldest rocks in South America might be present in this area.

Eastward in the São José do Campestre massif of the Rio Grande do Norte domain, Dantas et al. (2004Dantas E.L., Van Schmus W.R., Hackspacher P.C., Fetter A.H., Brito Neves B.B., Cordani U., Nutman A.P., Williams I.S. 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4):113-137. https://orcid.org/0000-0003-2125-3050
https://doi.org/https://orcid.org/0000-0...
, 2013) characterized another of the oldest fragments of continental crust in South America, occurring as an isolated enclave of migmatitic gneisses comprising an area of ca. 6,000 km2 around the city of Natal. The oldest isotopic ages in this crustal block were obtained from the Bom Jesus tonalitic migmatitic gneiss, with crystallization of the igneous protoliths at ca. 3.45 Ga, as indicated by the TIMS and SHRIMP U-Pb zircon analyses (Dantas et al. 2004Dantas E.L., Van Schmus W.R., Hackspacher P.C., Fetter A.H., Brito Neves B.B., Cordani U., Nutman A.P., Williams I.S. 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4):113-137. https://orcid.org/0000-0003-2125-3050
https://doi.org/https://orcid.org/0000-0...
), and TDM model ages of > 3.7 Ga. This older core is flanked by both reworked and juvenile 3.25-3.18 Ga rocks intruded by 3.0 and 2.69 Ga plutonic bodies. This protracted evolution is interpreted by Dantas et al. (2004Dantas E.L., Van Schmus W.R., Hackspacher P.C., Fetter A.H., Brito Neves B.B., Cordani U., Nutman A.P., Williams I.S. 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4):113-137. https://orcid.org/0000-0003-2125-3050
https://doi.org/https://orcid.org/0000-0...
) as a characteristic of detached pieces of an evolved craton or larger crustal mass that became entrained within other crustal blocks during the Paleoproterozoic (2.2-2.0 Ga) orogenic event, which characterizes the surrounding larger tracts of gneissic rocks of the RGN domain around the São José do Campestre massif.

Recently, older Paleo to Eoarchean mafic-ultramafic rocks were characterized in the RGN domain by Santos et al. (2020Santos F.G., Cavalcanti Neto M.T.O., Ferreira V.P., Bertotti A. 2020. Eo to Paleoarchean metamafic-ultramafic rocks from the central portion of the Rio Grande do Norte Domain, Borborema Province, northeast Brazil: The oldest South American platform rock. Journal of South American Earth Sciences, 97:102410. https://doi.org/10.1016/j.jsames.2019.102410
https://doi.org/https://doi.org/10.1016/...
). The authors obtained U-Pb (SHRIMP) ages of 3526 ± 5 Ma (MSWD = 0.0084) for the serpentinites of the Serra Verde mine and 3,747 ± 12 Ma (MSWD = 9.8) for serpentinites from the Oiticica mine, interpreted as fragments of Archean greenstone belts. These represent the oldest crustal fragments yet described in the whole South American platform, and further studies will surely be necessary in order to better constrain their significance and implications for Archean geodynamics.

These recent findings also suggest that other Paleo and Eoarchean crustal fragments might be present in the Borborema Province. Barros (2019Barros R.A. 2019. Evolução Geológica e Contextualização Tectônica do Bloco Cristalândia do Piauí, Faixa Rio Preto, Piauí/Bahia. Masters Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 208 p.), for example, recovered Archean zircon crystals from the Cristalândia do Piauí block, in the Rio Preto belt, with evolved εHf and TDMHf model ages of 3.6-4.3 Ga, which might suggest the presence of cryptic (reworked) Eoarchean or even Hadean crust in the basement of the Borborema Province. Thus, the “race” is open for the finding of still older crustal fragments, which will certainly provide crucial clues for the understading of the early stages of Earth’s history.

The remainder of the RGN domain basement is composed of Paleoproterozoic gneisses and migmatites, with crystallization ages mainly in the 2.25-2.01 Ga range (Van Schmus et al. 1995Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronolgic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
, Silva et al. 1997Silva L.C., McNaughton N.J., Vasconcelos A.M., Gomes J.R.C., Fletcher I.R. 1997. U-Pb SHRIMP ages in southern State of Ceará, Borborema Province, NE Brazil: TTG accretion and Proterozoic crustal reworking. In: International Symposium on Granites and Associated Mineralizations, Abstracts… p. 280-281., Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106., Souza et al. 2007Souza Z.S., Martin H., Peucat J.-J., Jardim de Sá E.F., Macedo M.H.F. 2007. Calc-alkaline magmatism at the Archean-Proterozoic transition: the Caicó Complex basement (NE Brazil). Journal of Petrology, 48(11):55-84. https://doi.org/10.1093/petrology/egm055
https://doi.org/https://doi.org/10.1093/...
, 2016Souza Z.S., Kalsbeek F., Deng X.-D., Frei R., Kokfelt T.F., Dantas E.L., Li J.-W., Pimentel M.M., Galindo A.C. 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences, 68:68-96. https://doi.org/10.1016/j.jsames.2015.10.006
https://doi.org/https://doi.org/10.1016/...
, Hollanda et al. 2011Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Liu D., Armstrong R.A. 2011. Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. Journal of South American Earth Sciences, 32(4):287-300. https://doi.org/10.1016/j.jsames.2011.02.008
https://doi.org/https://doi.org/10.1016/...
, Medeiros et al. 2012Medeiros V.C., Nascimento M.A.L., Galindo A.C., Dantas E.L. 2012. Augen gnaisses riacianos no Domínio Rio Piranhas-Seridó - Província Borborema, Nordeste do Brasil. Geologia USP, Série Científica, 12(2):3-14. https://doi.org/10.5327/Z1519-874X2012000200001
https://doi.org/https://doi.org/10.5327/...
, Sá et al. 2014Sá J.M., Sousa L.C., Legrand J.M., Galindo A.C., Maia H.N., Fillippi R.R. 2014. U-Pb and Sm-Nd data of the Rhyacian and Statherian Orthogneisses from Rio Piranhas-Seridó and Jaguaribeano Terranes, Borborema Province, Northeast of Brazil. Geologia USP, Série Científica, 14(3):97-110. https://doi.org/10.5327/Z1519-874X201400030007
https://doi.org/https://doi.org/10.5327/...
). Locally, however, the presence of rocks as old as ca. 2.4 Ga has been described (Hollanda et al. 2011Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Liu D., Armstrong R.A. 2011. Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. Journal of South American Earth Sciences, 32(4):287-300. https://doi.org/10.1016/j.jsames.2011.02.008
https://doi.org/https://doi.org/10.1016/...
). Unlike the MC and CC basements, these rocks show evidence of incorporation of large amounts of crustal material during magma genesis.

The Orós-Jaguaribeano metavolcanosedimentary belt crosscuts the Ceará State in a bifurcated sigmoidal shape. It consists of a metasedimentary sequence (mainly quartzites with subordinate carbonatic rocks) with interleaved bimodal volcanism with a predominance of felsic volcanics interpreted as deposited in a rift-related setting at ca. 1.8-1.75 Ga (Sá et al. 1995Sá J.M., McReath I., Leterrier J. 1995. Petrology, geochemistry and geodynamic setting of Proterozoic igneous suites of the Orós fold belt (Borborema Province, Northeast Brazil). Journal of South American Earth Sciences, 8(3-4):299-314. https://doi.org/10.1016/0895-9811(95)00015-8
https://doi.org/https://doi.org/10.1016/...
), coeval to similar rift sequences of the São Francisco craton and Brasília belt such as the Espinhaço, Chapada Diamantina, and Araí basins (Fig. 3; Guadagnin and Chemale Jr. 2015Guadagnin F., Chemale Jr. F. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60:104-116. https://doi.org/10.1016/j.jsames.2015.02.007
https://doi.org/https://doi.org/10.1016/...
and references therein). This probably represents a first attempt to break the hypothetical paleocontinent formed during the 2.2-2.0 Ga orogenic phase. Felsic plutonics with geochemical signatures and ages similar to the rhyolites occur and are crosscut by alkaline anorogenic intrusives at 1.7 Ga, all successions being crosscut by a ca. 0.9 Ga mafic-ultramafic sill (Sá et al. 1995Sá J.M., McReath I., Leterrier J. 1995. Petrology, geochemistry and geodynamic setting of Proterozoic igneous suites of the Orós fold belt (Borborema Province, Northeast Brazil). Journal of South American Earth Sciences, 8(3-4):299-314. https://doi.org/10.1016/0895-9811(95)00015-8
https://doi.org/https://doi.org/10.1016/...
). The succession was later deformed and metamorphosed during the Brasiliano Orogeny, accompanied by the intrusion of syn-orogenic granites.

The Ceará Group comprises most of the metasedimentary cover exposed within the CC domain. This unit is composed of metagreywacke, metapelites, quartzites, marbles, and calc-silicate rocks associated with amphibolites, with some local felsic metavolcanics. A westward to southwestward verging low-angle foliation formed during nappe stacking is the most prominent deformational feature of the unit (Caby and Arthaud 1986Caby R., Arthaud M.H. 1986. Major Precambrian nappes of the Brazilian Belt, Ceará, Northeast Brazil. Geology, 14(10):871-874. https://doi.org/10.1130/0091-7613(1986)14%3C871:MPNOTB%3E2.0.CO;2
https://doi.org/https://doi.org/10.1130/...
), associated with regional amphibolite-facies metamorphism. U-Pb dating of garnet amphibolites interpreted as basic volcanic rocks indicates rifting of the Archean-Paleoproterozoic basement and commencement of deposition of the Ceará Group at ca. 749 ± 5 Ma (Arthaud et al. 2015Arthaud M.H., Fuck R.A., Dantas E.L., Santos T.J.S., Caby R., Armstrong R. 2015. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology. Journal of South American Earth Sciences, 58:223-237. https://doi.org/10.1016/j.jsames.2014.09.007
https://doi.org/https://doi.org/10.1016/...
). Detrital zircon data show three main age groups, in Paleoproterozoic (ca. 2.2-2.0 Ga), in early Neoproterozoic (ca. 1,000-850 Ma), and at ca. 660 Ma. The latter is close to the peak of pre-collisional magmatic activity of the Santa Quitéria Arc, and thus most of the Ceará Group is interpreted as deposited in a syn-orogenic basin with detritus deriving mainly from the Brasiliano mountain chain to the NW (Ganade de Araújo et al. 2012bGanade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
https://doi.org/https://doi.org/10.1016/...
, Garcia et al. 2014Garcia M.G.M., Santos T.J.S., Amaral W.S. 2014. Provenance and tectonic setting of Neoproterozoic supracrustal rocks from the Ceará Central Domain, Borborema Province (NE Brazil): constraints from geochemistry and detrital zircon ages. International Geology Review, 56(4):481-500. https://doi.org/10.1080/00206814.2013.875489
https://doi.org/https://doi.org/10.1080/...
, Arthaud et al. 2015Arthaud M.H., Fuck R.A., Dantas E.L., Santos T.J.S., Caby R., Armstrong R. 2015. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology. Journal of South American Earth Sciences, 58:223-237. https://doi.org/10.1016/j.jsames.2014.09.007
https://doi.org/https://doi.org/10.1016/...
). Also comprising the supracrustal rocks of the CC Domain, the Novo Oriente Group is a low-grade metavolcanosedimentary unit thrust over the southern portion of the Tamboril/Santa Quitéria Complex with a loosely constrained maximum depositional age based on detrital zircon U-Pb analysis at ca. 2.0 Ga and TDM model ages at ca. 1.4-1.7 Ga for associated metabasic rocks (Ganade de Araújo et al. 2010Ganade de Araújo C.E., Pinéo T.R.G., Caby R., Costa F.G., Cavalcante J.C., Vasconcelos A.M., Rodrigues J.B. 2010. Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): A dismembered segment of a magma-poor passive margin or a restricted rift-related basin? Gondwana Research, 18(2-3):497-513. https://doi.org/10.1016/j.gr.2010.02.001
https://doi.org/https://doi.org/10.1016/...
). The intercalations of mafic and ultramafic rocks of uncertain age were interpreted as probable remnants of a continental margin-type ophiolite (Pitombeira et al. 2017Pitombeira J.P.A., Amaral W.S., Uchôa Filho E.C., Fuck R.A., Dantas E.L., Parente C.V., Costa F.C., Veríssimo C.U.V. 2017. Vestiges of a continental margin ophiolite type in the Novo Oriente region, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 73:78-99. https://doi.org/10.1016/j.jsames.2016.11.007
https://doi.org/https://doi.org/10.1016/...
).

The Seridó belt crosscuts the RGN domain in a sigmoidal shape, and is composed of metasedimentary rocks of the Equador (quartzites), Jucurutu (paragneisses, marbles, and banded iron formations) and Seridó (greywacke schists) formations. The Equador Formation is characterized by exclusively Archean-Paleoproterozoic detrital zircon U-Pb age populations, while the Seridó and Jucurutu formations are characterized by distinct major late Neoproterozoic detrital zircon age peaks (Van Schmus et al. 2003Van Schmus W.R., Brito Neves B.B., Williams I.S., Hackspacker P.C., Fetter A.H., Dantas E.L., Babinski M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4):287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
https://doi.org/https://doi.org/10.1016/...
, Hollanda et al. 2015Hollanda M.H.B.M., Archanjo C.J., Bautista J.M.R., Souza L.C. 2015. Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance. Precambrian Research, 258:186-207. https://doi.org/10.1016/j.precamres.2014.12.009
https://doi.org/https://doi.org/10.1016/...
), with younger grains at ca. 630 Ma. Metasedimentary rocks of the Lavras da Mangabeira region, bordering the northern margin of the Patos shear zone, yield similar provenance patterns and were interpreted by Hollanda et al. (2015Hollanda M.H.B.M., Archanjo C.J., Bautista J.M.R., Souza L.C. 2015. Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance. Precambrian Research, 258:186-207. https://doi.org/10.1016/j.precamres.2014.12.009
https://doi.org/https://doi.org/10.1016/...
) as correlatives to the Seridó units. A major provenance shift between the lower Equador quartzites and the upper Seridó Formation metagraywackes is proposed for the sedimentary record of the Seridó Belt. Syn-orogenic granites associated with HT-LP transpression of the belt are dated at ca. 595-575 Ma (Archanjo et al. 2008Archanjo C.J., Hollanda M.H.B.M., Rodrigues S.W., Brito Neves B.B., Armstrong R. 2008. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 30(3):310-326. https://doi.org/10.1016/j.jsg.2007.11.011
https://doi.org/https://doi.org/10.1016/...
, Hollanda et al. 2010Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
https://doi.org/https://doi.org/10.1016/...
). These data provide a lower limit for deposition of the Seridó Formation, which must have been deposited between 630 and 595 Ma.

The Jucurutu marbles sit atop Banded Iron Formation (BIF) and are locally associated with diamictites of uncertain stratigraphic position. They show negatively fractionated δ13C values near the basal contact, mostly around -5‰, superseded upsection by positive values up to +10‰, with 87Sr/86Sr ratios at 0.7074-0.7075. The isotope stratigraphy suggests deposition during the late Cryogenian to early Ediacaran, and correlation of possibly glaciogenic-related diamictites, BIF, and marbles with other worldwide sequences of this age (Nascimento et al. 2004Nascimento R.S.C., Sial A.N., Pimentel M.M. 2004. Chemostratigraphy of medium-grade marbles of the Late Neoproterozoic Seridó Group, Seridó Fold Belt, Northeastern Brazil. Gondwana Research, 7(3):731-744. https://doi.org/10.1016/S1342-937X(05)71059-5
https://doi.org/https://doi.org/10.1016/...
, 2007Nascimento R.S.C., Sial A.N., Pimentel M.M. 2007. C- and Sr-isotope systematics applied to Neoproterozoic marbles of the Seridó belt, northeastern Brazil. Chemical Geology, 237(1-2):1209-228. http://dx.doi.org/10.1016/j.chemgeo.2006.06.017
https://doi.org/http://dx.doi.org/10.101...
, Sial et al. 2015Sial A.N., Campos M.S., Gaucher C., Frei R., Ferreira V.P., Nascimento R.C., Pimentel M.M., Pereira N.S., Rodler A. 2015. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 61:33-52. http://dx.doi.org/10.1016/j.jsames.2015.04.001
https://doi.org/http://dx.doi.org/10.101...
). Chemostratigraphic data, including Cr isotope data, led Sial et al. (2015Sial A.N., Campos M.S., Gaucher C., Frei R., Ferreira V.P., Nascimento R.C., Pimentel M.M., Pereira N.S., Rodler A. 2015. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 61:33-52. http://dx.doi.org/10.1016/j.jsames.2015.04.001
https://doi.org/http://dx.doi.org/10.101...
) to interpret the Jucurutu BIF as deposited in a restricted rift basin with anoxic and acidic deep waters under the influence of hydrothermal vents, while the overlying marbles possibly represent post-glacial cap carbonate sequences deposited in anoxic to slightly oxic shallow marine environments.

Striking similarities can be observed between the northern Borborema Province and the Benino-Nigerian Shield of NW Africa (e.g., Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
, Ferré et al. 2002Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
https://doi.org/https://doi.org/10.1016/...
, Dada 1998Dada S.S. 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Research, 87(1-2):65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
https://doi.org/https://doi.org/10.1016/...
, 2008Dada S.S. 2008. Proterozoic evolution of the Nigeria-Boborema province. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications, 294:122-136.). Paleo- (3.6-3.5 Ga), Meso- (3.2-3.1 Ga), and Neoarchean (2.7-2.5 Ga) crust remnants are present in both provinces; including the oldest rocks in West Africa (migmatitic gneiss from Kabala, Kaduna, Nigeria, with zircon dated by U-Pb at 3571 ± 3 Ma; Kröner et al. 2001Kröner A., Ekwueme B.N., Pidgeon R.T. 2001. The oldest rocks in West Africa: SHRIMP zircon age for Early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. The Journal of Geology, 109(3):399-406. https://doi.org/10.1086/319979
https://doi.org/https://doi.org/10.1086/...
; see also Bruguier et al. 1994Bruguier O., Dada S.S., Lancelot J.R. 1994. Early Archaean component (> 3.5 Ga) within a 3.05 Ga orthogneiss from northern Nigeria: U-Pb zircon evidence. Earth and Planetary Science Letters, 125(1-4):89-103. https://doi.org/10.1016/0012-821X(94)90208-9
https://doi.org/https://doi.org/10.1016/...
), as well as the extensive 2.1-2.0 Ga orogenic events. The classical “Schist Belts” of Nigeria (Turner 1983Turner D.C. 1983. Upper Proterozoic schist belts in Nigerians Sector on the Pan-African Province of west Africa. Precambrian Research, 21(1-2):55-79. https://doi.org/10.1016/0301-9268(83)90005-0
https://doi.org/https://doi.org/10.1016/...
) might correlate either to the Paleo-Mesoproterozoic Orós-Jaguaribeano belt or to the Neoproterozoic Seridó belt, or, more likely, might bear correlatives to both Proterozoic metasedimentary units (Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
). Nappe deformation, regional metamorphism up to the granulite facies, and emplacement of syn-collisional biotite-muscovite granites at ca. 615 Ma followed by strike-slip deformation at ca. 585 Ma (Ferré et al. 2002Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
https://doi.org/https://doi.org/10.1016/...
) are approximately coeval with similar events in the northern Borborema Province (e.g., Souza et al. 2016Souza Z.S., Kalsbeek F., Deng X.-D., Frei R., Kokfelt T.F., Dantas E.L., Li J.-W., Pimentel M.M., Galindo A.C. 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences, 68:68-96. https://doi.org/10.1016/j.jsames.2015.10.006
https://doi.org/https://doi.org/10.1016/...
).

A very important correlation can be drawn between the Orós-Jaguaribeano belt of Ceará and monocyclic Late Paleoproterozoic metasedimentary rocks identified in the western Tuareg Shield (Caby and Andreopoulos-Renaud 1983Caby R., Andreopoulos-Renaud U. 1983. Age à 1800 Ma du magmatisme sub-alcalin associé aux metasediments monocycliques dans la chaîne pan-Africaine du Sahara central. Journal of African Earth Sciences, 1(3-4):193-197. https://doi.org/10.1016/S0731-7247(83)80003-2
https://doi.org/https://doi.org/10.1016/...
, Moussine-Pouchkine et al. 1988Moussine-Pouchkine A., Bertrand-Sarfati J., Ball E., Caby R. 1988. Les séries sedimentaires et volcaniques anorogeniques proterozoïques impliquées dans la chaıne pan africaine: la region de l’Adrar Ahnet (NW Hoggar, Algerie). Journal of African Earth Sciences, 7(1):57-75. https://doi.org/10.1016/0899-5362(88)90053-X
https://doi.org/https://doi.org/10.1016/...
, Bertrand-Sarfati et al. 1987Bertrand-Sarfati J., Moussine-Pouchkine A., Caby R. 1987. Les corrélations du Protérozoıque au Cambrien en Afrique de l’Ouest: nouvelle interpretation géodynamique. Bulletin de la Societé Geologique de France, 3:855-865., Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
). Felsic metavolcanic rocks interlayered within a metasedimentary succession composed of aluminous quartzite, pebbly layers, and metapelite were dated (U-Pb in zircon) at 1837 and 1755 Ma in Adrar des Iforas and western Hoggar, respectively (Caby and Andreopoulos-Renaud 1983Caby R., Andreopoulos-Renaud U. 1983. Age à 1800 Ma du magmatisme sub-alcalin associé aux metasediments monocycliques dans la chaîne pan-Africaine du Sahara central. Journal of African Earth Sciences, 1(3-4):193-197. https://doi.org/10.1016/S0731-7247(83)80003-2
https://doi.org/https://doi.org/10.1016/...
), providing a direct chronocorrelation with the rift-related sequences of the Orós-Jaguaribeano belt and of the extensive Espinhaço rift system of eastern-central Brazil (Guadagnin and Chemale Jr. 2015Guadagnin F., Chemale Jr. F. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60:104-116. https://doi.org/10.1016/j.jsames.2015.02.007
https://doi.org/https://doi.org/10.1016/...
, and references therein).

With the continuation of the Transbrasiliano-Kandi shear zone as the 4º50’/West Silet shear zones of the Tuareg Shield, there is a possibility that the LATEA metacraton of the Central Tuareg Shield (Liégeois et al. 2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
) represents a similar crustal section to the Benino-Nigerian Shield and the northern Borborema Province blocks. These areas would then be bounded by the Patos shear zone in Brazil, which defines the southern border of the northern Borborema Province, by the limit between the West and East Nigeria provinces in Nigeria (Ferré et al. 1996Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
https://doi.org/https://doi.org/10.1144/...
) and by the Ounane shear zone which defines the eastern border of the LATEA metacraton (Fig. 2). In effect, the basement of the LATEA metacraton is composed of granulite facies rocks metamorphosed between 2.07 and 1.9 Ga (Bertrand et al. 1986Bertrand J.M., Michard A., Boullier A.M., Dautel D. 1986. Structure and U-Pb geochronology of Central Hoggar (Algeria): a reappraisal of its Pan-African evolution. Tectonics, 5(7):955-972. https://doi.org/10.1029/TC005i007p00955
https://doi.org/https://doi.org/10.1029/...
, Bendaoud et al. 2008Bendaoud A., Ouzegane K., Godard G., Liégeois J.P., Kienast J.R., Bruguier O., Drareni A. 2008. Geochronology and metamorphic PTX evolution of the Eburnean granulite-facies metapelites of Tidjenouine (Central Hoggar, Algeria): witness of the LATEA metacratonic evolution. London, Geological Society, Special Publications , 297:111-146. https://doi.org/10.1144/SP297.6
https://doi.org/https://doi.org/10.1144/...
, Peucat et al. 2003Peucat J.J., Drareni A., Latouche L., Deloule E., Vidal P. 2003. U-Pb zircon (TIMS & SIMS) and Sm-Nd whole rock geochronology of the Gour Oumelalen granulitic basement, Hoggar Massif, Tuareg Shield, Algeria. Journal of African Earth Sciences, 37(3-4):229-239. https://doi.org/10.1016/j.jafrearsci.2003.03.001
https://doi.org/https://doi.org/10.1016/...
) whose protoliths are either Paleoproterozoic or Archean (up to 2.7 Ga according to U-Pb zircon ages and showing TDM Nd model ages of up to 3.3 Ga; Peucat et al. 2003Peucat J.J., Drareni A., Latouche L., Deloule E., Vidal P. 2003. U-Pb zircon (TIMS & SIMS) and Sm-Nd whole rock geochronology of the Gour Oumelalen granulitic basement, Hoggar Massif, Tuareg Shield, Algeria. Journal of African Earth Sciences, 37(3-4):229-239. https://doi.org/10.1016/j.jafrearsci.2003.03.001
https://doi.org/https://doi.org/10.1016/...
). These were strongly deformed, metamorphosed, and injected by granitoid plutons (e.g., Henry et al. 2009Henry B., Liégeois J.P., Nouar O., Derder M.E.M., Bayou B., Bruguier O., Ouabadi A., Belhai D., Amenna M., Hemmi A., Ayache M. 2009. Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: an AMS and U-Pb zircon age study. Tectonophysics, 474(3-4):417-434. https://doi.org/10.1016/j.tecto.2009.04.022
https://doi.org/https://doi.org/10.1016/...
) during the Pan-African Orogeny, due to the collision between the West African craton to the west and the Saharan metacraton to the east. The main difference in comparison to the Benino-Nigerian Shield and northern Borborema Province is that possibly Neoproterozoic juvenile oceanic units were thrust upon the LATEA metacraton during the Late Neoproterozoic (Laouni thrust sheets), suggesting that the terrains that compose the LATEA metacraton might have been separated from the southern Trans-Saharan (Benino-Nigerian) units by oceanic tracts during the Neoproterozoic. LATEA was also apparently not intruded by subduction-related magmas during this period, functioning as a continental block bounded by passive margins during the Pan-African Orogeny (Liégeois et al. 2003Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
https://doi.org/https://doi.org/10.1016/...
).

Finally, the Assodé-Issalane and Tazat terranes of the oriental part of central Hoggar were interpreted by Liégeois (2019Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview. Berlin: Springer Geology, p. 83-107.) as forming an “Orosirian Stripe”, which could also represent Paleoproterozoic basement similar to what is found southward in the Benino-Nigerian Shield and in the northern Borborema Province. These are bounded to the east by terrains interpreted as belonging to the western Saharan metacraton. Those are thrust over by metavolcanosedimentary successions bearing probable Neoproterozoic ophiolite remnants emplaced at ca. 730 Ma (such as the Aouzegueur Terrane in Aïr, Niger; Boullier et al. 1991Boullier A.M., Rocci G., Cosson Y. 1991. La chaîne pan-africaine d’Aouzegueur en Aïr (Niger): un trait majeur du bouclier touareg. Comptes Rendus de l’Académie des Sciences de Paris, 313(2):63-68., Liégeois et al. 1994Liégeois J.P., Black R., Navez J., Latouche L. 1994. Early and late Pan-African orogenies in the Aïr assembly of terranes (Tuareg shield, Niger). Precambrian Research, 67(1-2):59-88. https://doi.org/10.1016/0301-9268(94)90005-1
https://doi.org/https://doi.org/10.1016/...
). A flat-lying molassic sequence (Proche-Ténéré) bearing rhyolites dated at ca. 660 Ma (Bertrand et al. 1978Bertrand J.M., Caby R., Ducrot J., Lancelot J.R., Moussine-Pouchkine A., Saadallah A. 1978. The late Pan-African intracontinental linear fold belt of the eastern Hoggar (central Sahara, Algeria): geology, structural development, U/Pb geochronology, tectonic implications for the Hoggar shield. Precambrian Research, 7(4):349-376. https://doi.org/10.1016/0301-9268(78)90047-5
https://doi.org/https://doi.org/10.1016/...
, Caby and Andreopoulos-Renaud 1987Caby R., Andreopoulos-Renaud U. 1987. Le Hoggar oriental, bloc cratonisé à 730 Ma dans la chaîne pan-africaine du Nord du continent africain. Precambrian Research, 36(3-4):335-44.) suggests that this crustal block was neocratonized at this time (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
https://doi.org/https://doi.org/10.1016/...
). Recently, younger deformational and plutonism events at 557-555 Ma were described as a result of intracontinental processes (Murzukian event; Fezaa et al. 2010Fezaa N., Liégeois J.P., Abdallah N., Cherfouh E.H., De Waele B., Bruguier O., Ouabadi A. 2010. Late Ediacaran geological evolution (575-555 Ma) of the Djanet Terrane, Eastern Hoggar, Algeria, evidence for a Murzukian intracontinental episode. Precambrian Research, 180(3-4):299-327. https://doi.org/10.1016/j.precamres.2010.05.011
https://doi.org/https://doi.org/10.1016/...
), with no clear links with the other Ediacaran events further west in the central Tuareg Shield.

The similarities between the Archean-Paleoproterozoic basement of northern Borborema, Benino-Nigerian Shield and of the east, central and west Tuareg Shield, specifically the presence of Archean nuclei strongly reworked during the extensive ca. 2.2-2.0 Ga Orogeny, the presence of ca. 1.7-1.5 Ga rift sequences and vestigial Neoproterozoic metavolcanosedimentary belts call for further investigations in order to understand the extent and tectonic significance of the northern Borborema/Benino-Nigerian connection (a fragment of a Paleoproterozoic paleocontinent? - here dubbed ­NOBO-BENI) and its possible correlation with the terrains composing the Tuareg Shield. Could all of these three domains represent a major Archean-Paleoproterozoic “metacratonic” unit, which underwent crustal rifting and drifting separating the Tuareg Shield basement-dominated terrains from each other and from their southern correlatives during the Neoproterozoic; or could they represent distinct lithospheric fragments that drifted and became amalgamated only during the late Neoproterozoic? Either way, both of these crustal fragments (NOBO-BENI, West, Central and East Tuareg) became squeezed between the West African-São Luís/Saharan/São Francisco-Congo paleocontinents and were reworked during the Late Neoproterozoic to Cambrian, with widespread deformation, metamorphism, and plutonism related to the continental collisions of the Pan-African Orogeny.

Eastern Transversal Zone (Alto Pajeú-Alto Moxotó-Rio Capibaribe)/Pernambuco-Alagoas/Adamawa-Yadé (Apamcapay)

The transversal zone of the Borborema Province is bounded by the E-W trending Patos and Pernambuco dextral-sense shear zones. A series of subsidiary NE-SW trending sigmoidal shear zones branch and connect the two major shear zones, separating the transversal zone in several almond-shaped crustal sections (Fig. 3). Interpretations for the geological evolution of the transversal zone are contentious (Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
), from the accretion of exotic terranes bounded by major faults (e.g., Santos et al. 2000Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G., Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE-Brazil. In: International Geological Congress, 31., 2000, Rio de Janeiro. Annals… CD-ROM., Santos L.C.M.L. et al. 2017bSantos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. https://doi.org/10.1016/j.jsg.2017.09.012
https://doi.org/https://doi.org/10.1016/...
, 2018Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J. 2018. Accretion tectonics in Western Gondwana deduced from Sm-Nd isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics, 37(8):2727-2743. https://doi.org/10.1029/2018TC005130
https://doi.org/https://doi.org/10.1029/...
) to a major reworking of Archean-Paleoproterozoic crust during the Neoproterozoic in a mostly intracontinental setting (Neves et al. 2009Neves S.P., Bruguier O., Silva J.M.R., Bosch D., Alcantara V.C., Lima C.M. 2009. The age distributions of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): evidence for intracontinental sedimentation and orogenesis? Precambrian Research, 175(1-4):187-205. https://doi.org/10.1016/j.precamres.2009.09.009
https://doi.org/https://doi.org/10.1016/...
).

The easternmost AM and RC domains are mostly composed of Archean (ca. 2.6-2.5 Ga) and Paleoproterozoic (2.2-1.9 Ga; Neves et al. 2015Neves S.P., Bruguier O., Silva J.M.R., Mariano G., Silva Filho A.F., Teixeira C.M.L. 2015. From extension to shortening: Dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). Journal of South American Earth Sciences, 58:238-256. https://doi.org/10.1016/j.jsames.2014.06.004
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2017bSantos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. https://doi.org/10.1016/j.jsg.2017.09.012
https://doi.org/https://doi.org/10.1016/...
) high-grade rocks (gneisses and migmatites), covered by Proterozoic metasedimentary successions (the Sertânia and Surubim complexes, with youngest detrital zircon U-Pb ages around 650 Ma; Neves et al. 2009Neves S.P., Bruguier O., Silva J.M.R., Bosch D., Alcantara V.C., Lima C.M. 2009. The age distributions of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): evidence for intracontinental sedimentation and orogenesis? Precambrian Research, 175(1-4):187-205. https://doi.org/10.1016/j.precamres.2009.09.009
https://doi.org/https://doi.org/10.1016/...
) akin to vestigial schist belts, all of them intruded by late Neoproterozoic plutonic rocks. Statherian-Calymmian intrusions occur in the RC (Passira anorthositic complex and related rocks; Accioly 2001Accioly A.C.A. 2001. Geologia, geoquímica e significado tectônico do Complexo Metanortosítico de Passira, Província Borborema, Nordeste Brasileiro. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 166 p., Sá et al. 2002Sá J.M., Bertrand J.M., Leterrier J., Macedo M.H.F. 2002. Geochemistry and geochronology of pre-Brasiliano rocks from the Transversal Zone, Borborema Province, Brazil. Journal of South American Earth Sciences, 14(8):851-866. https://doi.org/10.1016/S0895-9811(01)00081-5
https://doi.org/https://doi.org/10.1016/...
), AM, and the southern portion of the AP domains (Coloete and Carnoió alkaline granites and syenites; Lages et al. 2019Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
https://doi.org/https://doi.org/10.1016/...
). These are dated in the 1.7-1.5 Ga age range and commonly interpreted as A-type granites related to intraplate extensional events, although Lages et al. (2019Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
https://doi.org/https://doi.org/10.1016/...
) presented an alternative view that part of these intrusions might have been related to a crustal accretion event. The Limoeiro mafic-ultramafic complex occurs in the RC domain and hosts important Ni-Cu-PGE deposits (Mota-e-Silva et al. 2013Mota-e-Silva J., Ferreira Filho C.F., Della Giustina M.E. 2013. The Limoeiro Deposit: Ni-Cu-PGE Sulfide Mineralization Hosted Within na Ultramafic Tubular Magma Conduit in the Borborema Province, Northeastern Brazil. Economic Geology, 108:1753-1771. https://doi.org/10.2113/econgeo.108.7.1753
https://doi.org/https://doi.org/10.2113/...
). The complex is metamorphosed at ca. 634 Ma but the age of magmatic emplacement and crystallization is poorly constrained to around 800 Ma as the recovered zircon crystals underwent Pb-loss during the metamorphic event (Mota-e-Silva 2014Mota-e-Silva J. 2014. O depósito sulfetado Ni-Cu-(pge) de Limoeiro: metalogênese, magmatismo máfico e metamorfismo no leste da Província Borborema. PhD Thesis, Universidade de Brasília, Brasília, 278 p.).

The AP domain is unique in the geology of the Borborema Province because it hosts a ca. 700 km long sigmoidal belt of early Tonian metaplutonic, volcanic, and sedimentary rocks, named Cariris Velhos belt (Brito Neves et al. 1995Brito Neves B.B., Van Schmus W.R., Santos E.J., Campos Neto M.C., Kozuch M. 1995. O evento Carirís Velhos na Província Borborema: intergração de dados, implicações e perspectivas. Revista Brasileira de Geociências, 25(4):279-296., Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
). Augen-gneisses are closely associated with pelitic metasedimentary, metavolcanic, and metavolcaniclastic rocks (Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
). U-Pb dating of both the gneisses and metavolcanic rocks yielded ages between 1000 and 920 Ma (Brito Neves et al. 1995Brito Neves B.B., Van Schmus W.R., Santos E.J., Campos Neto M.C., Kozuch M. 1995. O evento Carirís Velhos na Província Borborema: intergração de dados, implicações e perspectivas. Revista Brasileira de Geociências, 25(4):279-296., Van Schmus et al. 1995Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronolgic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
https://doi.org/https://doi.org/10.1016/...
, Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Santos et al. 2019Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:102384. https://doi.org/10.1016/j.jsames.2019.102384
https://doi.org/https://doi.org/10.1016/...
), which according to Santos et al. (2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
) defines the time span for an orogenic event. Geochemistry of both supracrustal and intrusive rocks is similar to those of mature continental arc rocks, but subordinate intra-plate characteristics are found, especially in the Riacho Gravatá subdomain, a contiguous stripe of supracrustal rocks with bimodal volcanics (but mostly felsic) and immature terrigenous metasedimentary rocks at the NW portion of the AP domain that has been interpreted as an adjacent back-arc region (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
) or as the record of the initial breakup of the Borborema Province basement (Guimarães et al. 2012Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M.B., Silva Filho A.F., Armstrong R. 2012. U-Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: Onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. Precambrian Research, 192-195:52-77. https://doi.org/10.1016/j.precamres.2011.10.008
https://doi.org/https://doi.org/10.1016/...
).

In the southern zone of the Borborema Province 1000-920 Ma old rocks are also found, at the internal zone of the Riacho do Pontal belt (Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/http://dx.doi.org/10.101...
, 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
, 2020Caxito F.A., Santos L.M.C.L., Uhlein A., Dantas E.L., Alkmim A.R., Lana C.C. 2020. New U-Pb (SHRIMP) and first Hf isotope constraints on the Tonian (1000-920 Ma) Cariris Velhos event, Borborema Province, NE Brazil. Brazilian Journal of Geology, in press.). There, augen-gneisses of the Afeição Suite, dated at 1000-960 Ma and with identical chemical and isotopic characteristics, are interpreted as a continuation of the Cariris Velhos belt, displaced from their transversal zone counterparts by late Neoproterozoic-Cambrian movement of the Pernambuco shear zone (Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/http://dx.doi.org/10.101...
). Sparse occurrences in the southern zone have also been reported in the PEAL domain (Silva Filho et al. 2002Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal evolution of the Pernambuco-Alagoas complex, Borborema Province, NE Brazil; Nd isotopic data from Neoproterozoic granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
https://doi.org/https://doi.org/10.1016/...
, Cruz et al. 2014bCruz R.F., Pimentel M.M., Accioly A.C.A., Rodrigues J.B. 2014b. Geological and isotopic characteristics of granites from the Western Pernambuco-Alagoas Domain: implications for the crustal evolution of the Neoproterozoic Borborema Province. Brazilian Journal of Geology, 44(4):627-652. https://doi.org/10.5327/Z23174889201400040008
https://doi.org/https://doi.org/10.5327/...
) and in the Sergipano belt (Carvalho 2005Carvalho M.J. 2005. Tectonic Evolution of the Marancó-Poço Redondo Domain: Records of the Cariris Velhos and Brasiliano Orogenesis in the Sergipano Belt, NE Brazil. PhD Thesis, Universidade de Campinas, Campinas, 202 p., Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
). All of these occurrences show Sm-Nd data with slightly negative to positive εNd(t) and TDM mostly concentrated at 1.2-1.5 Ga, indicating an interaction of the old continental crust with an important input of juvenile mantle melts. This led most authors to interpret the Cariris Velhos belt as the representative of a continental margin magmatic arc with possible back-arc associations (Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Santos et al. 2010Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/http://dx.doi.org/10.101...
, 2020Caxito F.A., Santos L.M.C.L., Uhlein A., Dantas E.L., Alkmim A.R., Lana C.C. 2020. New U-Pb (SHRIMP) and first Hf isotope constraints on the Tonian (1000-920 Ma) Cariris Velhos event, Borborema Province, NE Brazil. Brazilian Journal of Geology, in press.). Alternative interpretations were put forward, making the case that these granites and supracrustals might represent continental rift remnants (Neves 2003Neves S.P. 2003. Proterozoic history of the Borborema province (NE Brazil): Correlations with neighboring cratons and Pan-African belts and implications for the evolution of western Gondwana. Tectonics, 22(4):1031. http://dx.doi.org/10.1029/2001TC001352
https://doi.org/http://dx.doi.org/10.102...
, Guimarães et al. 2012Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M.B., Silva Filho A.F., Armstrong R. 2012. U-Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: Onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. Precambrian Research, 192-195:52-77. https://doi.org/10.1016/j.precamres.2011.10.008
https://doi.org/https://doi.org/10.1016/...
). Arguably, the lack up to date of sound evidence for a well-defined Cariris Velhos-related metamorphic event hampers the geodynamic interpretation of this belt (see discussion of this and other contentious points in the interpretation of the Cariris Velhos belt in Caxito et al. 2020Caxito F.A., Santos L.M.C.L., Uhlein A., Dantas E.L., Alkmim A.R., Lana C.C. 2020. New U-Pb (SHRIMP) and first Hf isotope constraints on the Tonian (1000-920 Ma) Cariris Velhos event, Borborema Province, NE Brazil. Brazilian Journal of Geology, in press.).

Recent studies on the nearby mafic-ultramafic Floresta Complex (also known as Serrote das Pedras Pretas Complex) point to a proto to marginal arc-back-arc basin system evolved between 1025 and 975 Ma, which was metamorphosed into eclogite facies during the Brasiliano Orogeny, as indicated by ca. 625 Ma zircon rim dates from probable retro-eclogites (Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
). The nearby Bodocó mafic-ultramafic Complex and related eclogites (Beurlen et al. 1992Beurlen H., Silva Filho A.F., Guimarães I.P., Brito S.B. 1992. Proterozoic C-type eclogites hosting unusual Ti-Fe ± Cr ± Cu mineralization in northeastern Brazil. Precambrian Research, 58(1-4):195-214. https://doi.org/10.1016/0301-9268(92)90119-9
https://doi.org/https://doi.org/10.1016/...
) bear possible correlatives. These are all novel data that need additional refining and detailed studies, but open up various avenues of possible future research directions. For example, the occurrence of back-arc-related rocks with similar age range than the augen-gneisses and metavolcanic rocks might lend additional support for the suggestion of an arc system for the Cariris Velhos belt in the area, and the occurrence of eclogitic metamorphism at 625 Ma might reinforce the interpretation of continental collision of distinct lithospheric blocks during the Brasiliano Orogeny in the transversal zone.

The other domains of the transversal zone are the PAB belt, which will be discussed in the next item, and the westernmost São Pedro or São José do Caiano domain. This domain is the least studied one of the transversal zone. Recently, Basto et al. (2019Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: Evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
https://doi.org/https://doi.org/10.1016/...
) described the Ipueirinha Group within this domain, forming a sigmoidal belt of metagraywackes and quartzites with intercalations of metaultramafic rocks and metarhyolites, and interpreted as deposited in an arc-related basin during the Ediacaran. Detrital zircon data indicate deposition after ca. 636 Ma, and U-Pb dating of zircon from granite sills and monazite indicate metamorphism and strike-slip deformation at ca. 575 Ma. Here, we interpret the São Pedro or São José do Caiano Domain as part of NOBO-BENI (discussed in the previous item), following Basto et al.’s (2019Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: Evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
https://doi.org/https://doi.org/10.1016/...
) interpretation that the Ipueirinha Belt represents an arc-related basin associated to the Tamboril-Santa Quitéria Complex. This interpretation is reinforced by recent U-Pb data from Pitarello et al. (2019Pitarello M.Z., dos Santos T.J., Ancelmi M.F. 2019. Syn-to post-depositional processes related to high grade metamorphic BIFs: Geochemical and geochronological evidences from a Paleo to Neoarchean (3.5-2.6 Ga) terrane in NE Brazil. Journal of South American Earth Sciences, 96:102312. https://doi.org/10.1016/j.jsames.2019.102312
https://doi.org/https://doi.org/10.1016/...
), who interpret part of the basement of the São Pedro domain as pertaining to the Granjeiro Complex (3.5-2.5 Ga), which also comprises the basement to the southernmost RGN domain.

Bounding the curvilinear belts of the transversal zone to the south is the PEAL domain, a complex crustal block composed of a Paleoproterozoic basement with intrusions of ca. 1.0 Ga Cariris Velhos and Late Ediacaran Brasiliano plutonic rocks (Silva Filho et al. 2002Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal evolution of the Pernambuco-Alagoas complex, Borborema Province, NE Brazil; Nd isotopic data from Neoproterozoic granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
https://doi.org/https://doi.org/10.1016/...
, 2014Silva Filho A.F., Guimarães I.P., Van Schmus W.R., Armstrong R.A., Rangel da Silva J.M., Osako L.S., Cocentino L. 2014. SHRIMP U-Pb zircon geochronology and Nd signatures of supracrustal sequences and orthogneisses constrain the Neoproterozoic evolution of the Pernambuco-Alagoas domain, southern part of Borborema Province, NE Brazil. International Journal of Earth Sciences, 103(8):2155-2190. https://doi.org/10.1007/s00531-014-1035-4
https://doi.org/https://doi.org/10.1007/...
, 2016Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154., Cruz et al. 2014bCruz R.F., Pimentel M.M., Accioly A.C.A., Rodrigues J.B. 2014b. Geological and isotopic characteristics of granites from the Western Pernambuco-Alagoas Domain: implications for the crustal evolution of the Neoproterozoic Borborema Province. Brazilian Journal of Geology, 44(4):627-652. https://doi.org/10.5327/Z23174889201400040008
https://doi.org/https://doi.org/10.5327/...
, Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
), also with local Neoproterozoic metasedimentary belts (youngest detrital zircon grains at ca. 650 Ma; Cruz et al. 2014aCruz R.F., Pimentel M.M., Accioly A.C.A. 2014a. Provenance of metasedimentary rocks of the Western Pernambuco-Alagoas Domain: Contribution to understand the crustal evolution of southern Borborema Province. Journal of South American Earth Sciences, 56:54-67. https://doi.org/10.1016/j.jsames.2014.06.011
https://doi.org/https://doi.org/10.1016/...
, Silva Filho et al. 2014Silva Filho A.F., Guimarães I.P., Van Schmus W.R., Armstrong R.A., Rangel da Silva J.M., Osako L.S., Cocentino L. 2014. SHRIMP U-Pb zircon geochronology and Nd signatures of supracrustal sequences and orthogneisses constrain the Neoproterozoic evolution of the Pernambuco-Alagoas domain, southern part of Borborema Province, NE Brazil. International Journal of Earth Sciences, 103(8):2155-2190. https://doi.org/10.1007/s00531-014-1035-4
https://doi.org/https://doi.org/10.1007/...
, Neves et al. 2016Neves S.P., Silva J.M.R., Bruguier O. 2016. The transition zone between the Pernambuco-Alagoas Domain and the Sergipano Belt (Borborema Province, NE Brazil): Geochronological constraints on the ages of deposition, tectonic setting and metamorphism of metasedimentary rocks. Journal of South American Earth Sciences, 72:266-278. https://doi.org/10.1016/j.jsames.2016.09.010
https://doi.org/https://doi.org/10.1016/...
). The occurrence of ca. 620-610 Ma high-K syn-collisional plutonic rocks related to the Brasiliano Orogeny is also recorded (Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
, Silva Filho et al. 2016Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154.). In plate tectonics models, the PEAL block is commonly interpreted as a microcontinent that acted as an upper plate during northwards subduction of the São Francisco-Congo plate in the early Ediacaran, giving rise to the Riacho do Pontal (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
) and Sergipano (Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
) mountain belts after collision with the lower plate (São Francisco-Congo Paleocontinent). This interpretation seems in agreement with recent contributions that interpret arc-related rocks emplaced within the PEAL domain (the Major Isidoro pluton dated at 642 Ma; Silva et al. 2015Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
https://doi.org/https://doi.org/10.1016/...
), probably due to northward subduction of the São Francisco paleoplate below the PEAL crust. Caxito et al. (2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
) suggested that the PEAL domain continues northward to the AP, AM and RC domains of the transversal zone, constituting a microcontinent dubbed “Central-Southern Borborema Block”. This hypothetical microcontinent would probably have continued to the basement-dominated Adamawa-Yadé (AY) domain of Cameroon and is thus here renamed APAMCAPAY.

The APAMCAPAY lithospheric block would have been bounded to the north by the Neoproterozoic PAB belt in Brazil, and by the Neoproterozoic-dominated Western Cameroon and juvenile Mayo Kebbi domains in Cameroon. To the south, it would be bounded by the RP-RdP-Se-Yaoundé-Central African belts. In this model, the eastern portion of the Pernambuco shear zone would not represent a terrane boundary, but a late-stage structure crosscutting rocks of similar age and composition within APAMCAPAY, a proposition also put forward in other works (e.g., Neves and Mariano 1999Neves S.P., Mariano G. 1999. Assessing the tectonic significance of a large-scale transcurrent shear zone system: the Pernambuco lineament, northeastern Brazil. Journal of Structural Geology, 21(10):1369-1383. https://doi.org/10.1016/S0191-8141(99)00097-8
https://doi.org/https://doi.org/10.1016/...
, Oliveira and Medeiros 2018Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
https://doi.org/https://doi.org/10.1016/...
). The interpretation that the Rio Capibaribe, Alto Moxotó and Alto Pajeú domains were part of the same lithospheric block from 2.0 Ga onward is supported by the occurrence, in all of the three domains, of ca. 1.7-1.5 Ga A-type intrusions related to the intraplate magmatic activity (Accioly 2001Accioly A.C.A. 2001. Geologia, geoquímica e significado tectônico do Complexo Metanortosítico de Passira, Província Borborema, Nordeste Brasileiro. PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 166 p., Sá et al. 2002Sá J.M., Bertrand J.M., Leterrier J., Macedo M.H.F. 2002. Geochemistry and geochronology of pre-Brasiliano rocks from the Transversal Zone, Borborema Province, Brazil. Journal of South American Earth Sciences, 14(8):851-866. https://doi.org/10.1016/S0895-9811(01)00081-5
https://doi.org/https://doi.org/10.1016/...
, Lages et al. 2019Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
https://doi.org/https://doi.org/10.1016/...
), which might represent early unsuccessful attempts of continental breakup of a contiguous continental tract in this area. In effect, the widespread occurrence of similar ca. 2.0-2.2 Ga orogenic rocks and 1.7-1.5 Ga continental rift systems (that failed to evolve to a drift stage) and anorogenic magmatism in the São Francisco Craton (Barbosa and Sabaté 2004Barbosa J.S., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Research, 133(1-2):1-27. https://doi.org/10.1016/j.precamres.2004.03.001
https://doi.org/https://doi.org/10.1016/...
, Guadagnin and Chemale Jr. 2015Guadagnin F., Chemale Jr. F. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60:104-116. https://doi.org/10.1016/j.jsames.2015.02.007
https://doi.org/https://doi.org/10.1016/...
and references therein) might suggest that APAMCAPAY was once part of a Greater São Francisco-Congo Paleocontinent from ca. 2.0 until the onset of widespread continental rifting at ca. 900 Ma (Salgado et al. 2016Salgado S.S., Ferreira Filho C.F., Caxito F.A., Uhlein A., Dantas E.L., Stevenson R. 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, RPO: onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. Journal of South American Earth Sciences, 70:324-339. https://doi.org/10.1016/j.jsames.2016.06.001
https://doi.org/https://doi.org/10.1016/...
). This rifting event would finally evolve to a complete drift stage, causing hyperextension of the paleocontinental margins in the early Neoproterozoic (Figs. 8 and 9), leading to detachment and decratonization of Archean-Paleoproterozoic lithospheric stripes such as APAMCAPAY and similar blocks off the paleocontinental margins in the surrounding Tocantins and Mantiqueira provinces (see geological models of Figs. 7 to 11), and the birth of new oceanic realms such as the Transnordestino-Central African ocean (Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
).

Arguably, the most complicated correlation problem between the transversal zone and the African provinces is the virtual absence of early Tonian rocks that could be related to a similar event as the Cariris Velhos, in NW Africa. The key for all of these correlations might be hiding in the basement of the Benue Trough (Fig. 4); geophysical information might help to reveal these issues in the near future.

Piancó-Alto Brígida/Western Cameroon: a possible Pab-Weca Seaway?

The PAB belt is composed of a metavolcanosedimentary unit (Cachoeirinha Group; Medeiros and Jardim de Sá 2009Medeiros V.C., Jardim de Sá E.F. 2009. O Grupo Cachoeirinha (Zona Transversal, NE do Brasil) redefinição e proposta de formalização. Revista de Geologia, 22:124-136.) with a lower metaconglomerate unit (Serra dos Olhos D’água Formation) and younger detrital zircon grains at 880 Ma (Marulanda 2013Marulanda C.O. 2013. Estudo de proveniência em sequências supracrustais neoproterozóicas da Zona Transversal, Província Borborema. Master Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo.), and an upper metagreywacke succession (Santana dos Garrotes Formation) with younger detrital zircon grains at ca. 650 Ma (Brito Neves and Campos Neto 2016Brito Neves B.B., Campos Neto M.C. 2016. A Faixa de dobramentos do Rio Salgado, norte-noroeste da Zona Transversal - Província Borborema (PB-CE). Geologia USP, Série Científica, 16(3):3-17. http://dx.doi.org/10.11606/issn.2316-9095.v16i3p3-17
https://doi.org/http://dx.doi.org/10.116...
) and felsic metavolcanic intercalations dated by U-Pb on zircon at ca. 630-610 Ma (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Brito Neves and Campos Neto 2016Brito Neves B.B., Campos Neto M.C. 2016. A Faixa de dobramentos do Rio Salgado, norte-noroeste da Zona Transversal - Província Borborema (PB-CE). Geologia USP, Série Científica, 16(3):3-17. http://dx.doi.org/10.11606/issn.2316-9095.v16i3p3-17
https://doi.org/http://dx.doi.org/10.116...
, Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…). Ediacaran pre-, syn-, and post-collisional granites are conspicuous and some of the most classic granite suites of the Borborema Province are described in this region (e.g., Guimarães et al. 2004Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
https://doi.org/https://doi.org/10.1016/...
, Sial and Ferreira 2016Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
https://doi.org/http://dx.doi.org/10.101...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
), such as the 650-620 Ma “Conceição-type” magmatic epidote-bearing calc-alkaline granitoids (εNd(t) = -1 to -4, TDM < 2.0 Ga, δ18O (zircon) values from 7.1 to 10‰VSMOW, interpreted as emplaced in a possible magmatic arc scenario) and the 590-540 Ma “Itaporanga-type” high-K calc-alkaline series (εNd(t) = -8 to -20, TDM = 1.5 to 2.5 Ga; δ18O (zircon) from 6.4 to 7.9‰VSMOW; compatible with expressive remelting of continental crust). Evidence for Neoproterozoic subduction (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
, Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…), continental collision in the form of retro-eclogites (Beurlen et al. 1992Beurlen H., Silva Filho A.F., Guimarães I.P., Brito S.B. 1992. Proterozoic C-type eclogites hosting unusual Ti-Fe ± Cr ± Cu mineralization in northeastern Brazil. Precambrian Research, 58(1-4):195-214. https://doi.org/10.1016/0301-9268(92)90119-9
https://doi.org/https://doi.org/10.1016/...
, Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
), and probable Neoproterozoic oceanic crust remnants (Lages et al. 2017Lages G.A., Dantas E.L., Oliveira R.G., Santos L.C.M.L. 2017. A sequência ofiolítica de Gurjão: Caracterização geoquímica e isotópica, Província Borborema. In: Simpósio de Geologia do Nordeste, 27., 2017. Annals... Brazil: SBG.) that support the development of a complete plate tectonics cycle, including the development of oceanic crust, subduction, and continental collision in the PAB area are gathering up, although still elusive (see discussion in Neves 2018Neves S.P. 2018. Comment on “A preserved early Ediacaran magmatic arc at the northernmost part of the transversal zone - central domain of the Borborema Province, Northeast of South America”, by B. B. de Brito Neves et al. (2016). Brazilian Journal of Geology, 48(3):623-630. https://doi.org/10.1590/2317-4889201820180049
https://doi.org/https://doi.org/10.1590/...
).

Correlations of the PAB belt with the Seridó belt further north, displaced by dextral-sense shearing of the Patos shear zone, have been proposed (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema province. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic Evolution of South América. Rio de Janeiro, 31st International Geological Congress, p. 151-182., Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). However, continental arc-related rocks, ophiolites, and retro-eclogitic remnants are not yet described in the Seridó area, and thus an intracontinental evolution for the Seridó belt as a metavolcanosedimentary belt developed upon the continental crust of NOBO-BENI (akin to the Nigerian Schist Belts) cannot be discarded.

The Western Cameroon domain that occurs NW of the Tcholliré-Banyo shear zone is characterized by Pan-African plutonic rocks, apparently with lesser contributions of Paleoproterozoic basement (Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
, Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications , 294:69-99., Bouyo Houketchang et al. 2009Bouyo Houketchang M., Toteu S.F., Deloule E., Penaye J., Van Schmus W.R. 2009. U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences, 54(5):144-154. https://doi.org/10.1016/j.jafrearsci.2009.03.013
https://doi.org/https://doi.org/10.1016/...
, 2016Bouyo Houketchang M., Penaye J., Njel U.O., Moussango I.A.P., Sep N.J.P., Nyama A.B., Wassouo W.J., Abaté E.J.M., Yaya F., Mahamat A., Ye H., Wu F. 2016. Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of Northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences, 116:9-41. https://doi.org/10.1016/j.jafrearsci.2015.12.005
https://doi.org/https://doi.org/10.1016/...
). Further NE in the Western Cameroon domain, the Mayo Kebbi terrane of SW Chad seems to represent a juvenile arc accreted at ca. 740 Ma to the remobilized AY Paleoproterozoic microcontinent (Penaye et al. 2006Penaye J., Kröner A., Toteu S.F., Van Schmus W.R., Doumnang J.C. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences, 44(4-5):530-542. https://doi.org/10.1016/j.jafrearsci.2005.11.018
https://doi.org/https://doi.org/10.1016/...
) or to the borders of the Saharan metacraton, indicating different evolution in comparison to the AY domain, and the Rey Bouba belt represents a Neoproterozoic arc-related basin between the Mayo Kebbi and AY domains (Bouyo Houketchang et al. 2015Bouyo Houketchang M., Zhao Y., Penaye J., Zhang S.H., Njel U.O. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40-53. https://doi.org/10.1016/j.precamres.2015.01.012
https://doi.org/https://doi.org/10.1016/...
). Brasiliano/Pan-African syn-collisional plutonism, deformation, and metamorphism are ubiquitous in both areas, with calc-alkaline arc-related plutons at ca. 640 Ma and continental collision at 640-580 Ma (Ngako et al. 2008Ngako V., Affaton P., Njonfang E. 2008. Pan-African tectonics in northwestern Cameroon: implications for the history of western Gondwana. Gondwana Research, 14(3):509-522. https://doi.org/10.1016/j.gr.2008.02.002
https://doi.org/https://doi.org/10.1016/...
). U-Pb (TIMS-ID and SIMS) and Sm-Nd dating of metamorphic zircon rims and garnet-whole rock pairs give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in north-central Cameroon (Bouyo Houketchang et al. 2009Bouyo Houketchang M., Toteu S.F., Deloule E., Penaye J., Van Schmus W.R. 2009. U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences, 54(5):144-154. https://doi.org/10.1016/j.jafrearsci.2009.03.013
https://doi.org/https://doi.org/10.1016/...
, 2013Bouyo Houketchang M., Penaye J., Barbey P., Toteu S.F., Wandji P. 2013. Petrology of high-pressure granulite facies metapelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the Central African Fold Belt (CAFB) of north-central Cameroon. Precambrian Research, 224:412-433. https://doi.org/10.1016/j.precamres.2012.09.025
https://doi.org/https://doi.org/10.1016/...
).

The Neoproterozoic evolution of the PAB belt and of the Western Cameroon domain contrasts both with the eastern transversal zone domains and with the AY domain to the south, and with the East Nigeria Domain and northern Borborema domains to the north, where Archean and Paleoproterozoic inheritance is more obvious (e.g., Toteu et al. 2001Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
https://doi.org/https://doi.org/10.1016/...
, Ferré et al. 2002Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
https://doi.org/https://doi.org/10.1016/...
, Van Schmus et al. 2011Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
https://doi.org/https://doi.org/10.1016/...
, Souza et al. 2016Souza Z.S., Kalsbeek F., Deng X.-D., Frei R., Kokfelt T.F., Dantas E.L., Li J.-W., Pimentel M.M., Galindo A.C. 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences, 68:68-96. https://doi.org/10.1016/j.jsames.2015.10.006
https://doi.org/https://doi.org/10.1016/...
, Ganwa et al. 2016Ganwa A.A., Klötzli U.S., Hauzenberger C. 2016. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS U-Pb ages. Journal of African Earth Sciences, 120:12-22. https://doi.org/10.1016/j.jafrearsci.2016.04.013
https://doi.org/https://doi.org/10.1016/...
, Tchakounté et al. 2017Tchakounté J., Eglinger A., Toteu S.F., Zeh A., Nkoumbou C., Mvondo-Ondoa J., Penaye J., de Wit M., Barbey P. 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research, 299:210-229. https://doi.org/10.1016/j.precamres.2017.07.001
https://doi.org/https://doi.org/10.1016/...
). Thus, a connection between the PAB belt and the Western Cameroon domain is proposed here, which would represent an oceanic domain separating the NOBO-BENI and APACAMPAY blocks during the Neoproterozoic. Subduction, accretion, and collision processes probably took place in this domain and caused the collision of NOBO-BENI and APACAMPAY toward the end of the Neoproterozoic.

Southern Borborema-Yaoundé-CAR: a Transnordestino-Central African ocean?

The southern portion of the Borborema Province is composed of a curvilinear E-W trending arrange of fold-thrust belts that thrust the northern São Francisco-Congo craton margin and extends from the RP-RdP-Se belts in Brazil to the Yaoundé-Central African belt in the African side. Recent discoveries of Neoproterozoic oceanic crust rocks (ophiolites) and the characterization of all components necessary for a complete Wilson Cycle (rift-drift-subduction-accretion-collision related rocks) in the RdP (Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
https://doi.org/http://dx.doi.org/10.101...
, 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
) and Se (Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
) belts suggest the opening and closure of Proterozoic oceans between the Borborema blocks to the north and the São Francisco-Congo craton to the south. In fact, the São Francisco-Congo craton is surrounded by Neoproterozoic oceanic fragments and juvenile terranes and, thus, probably drifted as a separate continent during most of the Neoproterozoic (Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
). The exception is the RP fold belt, which represents an essentially aulacogenic structure with the infilling of a rift basin during the Neoproterozoic (Caxito et al. 2012bCaxito F.A., Halverson G.P., Uhlein A., Stevenson R., Gonçalves-Dias T., Uhlein G.J. 2012b. Marinoan glaciation in east-central Brazil. Precambrian Research, 200-203:38-58. http://dx.doi.org/10.1016/j.precamres.2012.01.005
https://doi.org/http://dx.doi.org/10.101...
, 2014aCaxito F.A., Dantas E.L., Stevenson R., Uhlein A. 2014a. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins to collisional orogens: the case of the Rio Preto fold belt on the northwest SãoFrancisco Craton margin, NE Brazil. Gondwana Research, 26(2):741-754. http://dx.doi.org/10.1016/j.gr.2013.07.007
https://doi.org/http://dx.doi.org/10.101...
, 2017Caxito F.A., Uhlein A., Dantas E., Stevenson R., Egydio-Silva M., Salgado S.S. 2017. The Rio Preto and Riacho do Pontal Belts. In: Heilbron M., Cordani U., Alkmim F. (Eds.). São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Berlin: Springer, p. 221-239.) which was later inverted during the Brasiliano Orogeny.

Caxito et al. (2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
) interpreted the development of a complete Wilson Cycle during the Neoproterozoic in the RdP belt area based on lithostratigraphic, lithochemical, geochronological, and isotopic data. A five-stage model is proposed:

  • rift phase, with the development of a triple junction rift system at ca. 900-820 Ma, leading to intense mafic-ultramafic magmatism of the Brejo Seco Ni-Cu-PGE mineralized layered intrusion (ca. 900 Ma; Salgado et al. 2016Salgado S.S., Ferreira Filho C.F., Caxito F.A., Uhlein A., Dantas E.L., Stevenson R. 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, RPO: onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. Journal of South American Earth Sciences, 70:324-339. https://doi.org/10.1016/j.jsames.2016.06.001
    https://doi.org/https://doi.org/10.1016/...
    ), probably related to a plume head. This was followed by the development of a continental rift system testified by the Paulistana Complex metavolcanosedimentary succession, with metagabbros and metabasalts dated at ca. 882 Ma (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    ) and younger detrital zircon grains at ca. 900 Ma (Brito Neves et al. 2015Brito Neves B.B., Van Schmus W.R., Angelim L.A.A. 2015. Contribuição ao conhecimento da evolução geológica do Sistema Riacho do Pontal - PE, BA, PI. Geologia USP, Série Científica, 15(1):57-93. http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
    https://doi.org/http://dx.doi.org/10.116...
    , Santos F.H. et al. 2017Santos L.C.M.L., Dantas E.L., Cawood P.A., Santos E.J., Fuck R.A. 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. Journal of South American Earth Sciences, 79:342-363. https://doi.org/10.1016/j.jsames.2017.08.013
    https://doi.org/https://doi.org/10.1016/...
    );

  • drift phase: evolution of the rift system to a broad passive margin in the northern São Francisco craton edge, represented by the Barra Bonita Formation platformal sediments. This drift phase was caused by continued continental stretching and culminated in the development of new oceanic crust, represented by the Monte Orebe ophiolite around 820 ago (Sm-Nd whole-rock isochron), composed of MORB-like metabasalts with εNd(t) at ca. +4.5 (Caxito et al. 2014bCaxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
    https://doi.org/http://dx.doi.org/10.101...
    );

  • convergence phase: started at ca. 630-620 Ma, with emplacement of the calc-alkaline Betânia granite, probably related to a continental magmatic arc setting (Perpétuo 2017Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal. Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p.), culminating in an inversion of the basins, obduction of oceanic crust slices, and sedimentation of the Mandacaru Formation syn-orogenic greywackes, with younger detrital zircon U-Pb populations at ca. 650 Ma (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    ). Part of the Santa Filomena Complex to the north, with similar late Cryogenian detrital zircon grains, might be coeval (Brito Neves et al. 2015Brito Neves B.B., Van Schmus W.R., Angelim L.A.A. 2015. Contribuição ao conhecimento da evolução geológica do Sistema Riacho do Pontal - PE, BA, PI. Geologia USP, Série Científica, 15(1):57-93. http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
    https://doi.org/http://dx.doi.org/10.116...
    , Santos F.H. et al. 2017Santos F.H., Amaral W.S., Uchôa Filho E., Martins D.T. 2017. Detrital zircon U-Pb ages and whole-rock geochemistry of the Neoproterozoic Paulistana and Santa Filomena complexes, Borborema Province, northeastern Brazil: implications for source area composition, provenance, and tectonic setting. International Geology Review, 59(15):1861-1884. https://doi.org/10.1080/00206814.2017.1300074
    https://doi.org/https://doi.org/10.1080/...
    );

  • collisional phase: continental collision between the São Francisco craton (lower plate) and the PEAL block (upper plate) around 620-590 Ma, with stacking of the Casa Nova nappes upon the lower plate, crustal thickening, deformation, metamorphism, melt generation, and intrusion of the syn-collisional Rajada Suite two-mica granites (ca. 610 Ma; Brito Neves et al. 2015Brito Neves B.B., Van Schmus W.R., Angelim L.A.A. 2015. Contribuição ao conhecimento da evolução geológica do Sistema Riacho do Pontal - PE, BA, PI. Geologia USP, Série Científica, 15(1):57-93. http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
    https://doi.org/http://dx.doi.org/10.116...
    , Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    );

  • lateral escape phase: this stage occurred around 590-530 Ma, generating the western branch of the E-W trending Pernambuco shear zone, which truncates the northern part of the orogen. This phase was accompanied by extensive alkaline magmatism of the Serra da Aldeia Suite, dated at 586-576 Ma (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    https://doi.org/https://doi.org/10.1016/...
    , Perpétuo 2017Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal. Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p.).

Oliveira et al. (2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
) present a synthesis of the geologic evolution of the Sergipano belt, and Oliveira et al. (2006Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
https://doi.org/https://doi.org/10.1016/...
) present a correlation of the Sergipano and Yaoundé (Oubanguides) belts. According to these authors, the evolution of the Se belt starts with the development of a ca. 980-960 Ma continental arc characterized by tonalitic gneisses of the Poço Redondo domain, developed on the southern margin of the PEAL domain. Lithospheric extension of this block was followed by intrusion of A-type granites and development of the Canindé rift sequence, in turn, followed by passive margin development in both the southern PEAL margin and in the northern São Francisco craton margin. Rifting continued to ca. 640 Ma, with emplacement of a bimodal association with A-type granites dated at ca. 715 Ma and a layered gabbro complex at 700 Ma, magma-mingled gabbro-quartz monzodiorite at 688 Ma and rapakivi granites at 684 and 641 Ma. Also in the Canindé domain, deformed pillow basalts and marble lenses are interpreted by Oliveira et al. (2006Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
https://doi.org/https://doi.org/10.1016/...
) as probable oceanic floor relicts. Arc-type granites intruded the Canindé domain at ca. 630 Ma, and convergence of the PEAL block and the São Francisco-Congo craton caused deformation and metamorphism of passive margin sedimentary successions and syn-collisional granite emplacement in the Macururé, Canindé, and Poço Redondo-Marancó domains between 620 and 570 Ma. Then, exhumation and erosion of the PEAL block along with the Canindé, Poço Redondo-Marancó, and Macururé domains to the north provided debris for infilling of foreland sedimentary basins of the Estância and Vaza Barris domains to the south.

The metasedimentary sequences of the Se belt preserve important remnants of the widespread Neoproterozoic glaciations. Sial et al. (2010Sial A.N., Gaucher C., Silva-Filho M.A., Ferreira V.P., Pimentel M.M., Lacerda L.D., Silva-Filho E.V., Cezario W. 2010. C-, Sr isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil. Precambrian Research, 182(4):351-372. https://doi.org/10.1016/j.precamres.2010.05.008
https://doi.org/https://doi.org/10.1016/...
) describe two distinct cap carbonate successions overlying glaciogenic diamictites, represented by the Jacoca Formation resting on top of the Ribeirópolis Formation (and correlative Acauã Formation sitting on top of the Juetê Formation further west) and the Olhos D’água Formation resting on top of the Palestina Formation diamictites. The δ13C values of these carbonate units are typical of post-glacial cap carbonates, around -5‰ at the base and rising upwards to ca. 10‰ for the Olhos D’água Formation. Strontium isotope ratios within the range of late Neoproterozoic seawater (0.7060-0.7090) provide additional support and, along with detrital zircon age data, suggest that the Jacoca Formation (and correlative Acauã Formation) are probably mid-Cryogenian (Sturtian), while the Palestina and Olhos D’água formations represent the diamictite-cap carbonate pair of the late-Cryogenian (Marinoan) glaciation (Caxito et al. 2012aCaxito F.A., Uhlein A., Sanglard J.C.D., Gonçalves-Dias T., Mendes M.C.O. 2012a. Depositional systems and stratigraphic review proposal of the Rio Preto Fold Belt, northwestern Bahia-southern Piauí. Revista Brasileira de Geociências, 42(3):523-538. http://dx.doi.org/10.5327/Z0375-75362012000300007
https://doi.org/http://dx.doi.org/10.532...
). The Canabravinha Formation diamictites of the Rio Preto belt (Egydio Silva et al. 1989Egydio-Silva M., Karmann I., Trompette R. 1989. Litoestratigrafia do Supergrupo Espinhaço e Grupo Bambuí no noroeste do estado da Bahia. Revista Brasileira de Geociências, 19(2):141-152.) are interpreted as mass-flow deposits associated with a faulted margin of a rift basin (Caxito et al. 2012bCaxito F.A., Halverson G.P., Uhlein A., Stevenson R., Gonçalves-Dias T., Uhlein G.J. 2012b. Marinoan glaciation in east-central Brazil. Precambrian Research, 200-203:38-58. http://dx.doi.org/10.1016/j.precamres.2012.01.005
https://doi.org/http://dx.doi.org/10.101...
, 2014aCaxito F.A., Dantas E.L., Stevenson R., Uhlein A. 2014a. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins to collisional orogens: the case of the Rio Preto fold belt on the northwest SãoFrancisco Craton margin, NE Brazil. Gondwana Research, 26(2):741-754. http://dx.doi.org/10.1016/j.gr.2013.07.007
https://doi.org/http://dx.doi.org/10.101...
, 2017Caxito F.A., Uhlein A., Dantas E., Stevenson R., Egydio-Silva M., Salgado S.S. 2017. The Rio Preto and Riacho do Pontal Belts. In: Heilbron M., Cordani U., Alkmim F. (Eds.). São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Berlin: Springer, p. 221-239.), but might represent a reworking of glacial debris and thus probably correlate with the Palestina diamictites of the Se belt (Caxito et al. 2012aCaxito F.A., Uhlein A., Sanglard J.C.D., Gonçalves-Dias T., Mendes M.C.O. 2012a. Depositional systems and stratigraphic review proposal of the Rio Preto Fold Belt, northwestern Bahia-southern Piauí. Revista Brasileira de Geociências, 42(3):523-538. http://dx.doi.org/10.5327/Z0375-75362012000300007
https://doi.org/http://dx.doi.org/10.532...
).

As discussed by Oliveira et al. (2006Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
https://doi.org/https://doi.org/10.1016/...
), the Yaoundé belt of Cameroon mirrors the lithotectonic distribution of units in the Se belt, comprising schists, quartzites, gneisses, and migmatites thrust upon the São Francisco-Congo craton northernmost margin, with a decrease of metamorphic grade toward the craton. Continental collision in the Yaoundé belt is marked by 620-610 Ma granulite facies metamorphism and deformation (Toteu et al. 2004Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
https://doi.org/https://doi.org/10.1139/...
, Li et al. 2017Li X.H., Chen Y., Tchouankoue J.P., Liu C.Z., Li J., Ling X.X., Tang G.Q., Liu Y. 2017. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Research, 294:307-321. https://doi.org/10.1016/j.precamres.2017.04.006
https://doi.org/https://doi.org/10.1016/...
). Most of the metasedimentary rocks show the ubiquitous presence of ca. 625 Ma detrital zircon grains, indicating syn-orogenic deposition (Toteu et al. 2006Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
https://doi.org/https://doi.org/10.1016/...
), in a similar manner to the Estância and Vaza Barris domains of the Se belt (Oliveira et al. 2015bOliveira E.P., McNaughton N.J., Windley B.F., Carvalho M.J., Nascimento R.S. 2015b. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins. Tectonophysics, 662:183-194. https://doi.org/10.1016/j.tecto.2015.02.017
https://doi.org/https://doi.org/10.1016/...
) and to the Mandacaru Formation metagreywackes of the RdP belt (Caxito et al. 2016Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
https://doi.org/https://doi.org/10.1016/...
). Increasing evidence also suggests that the infrastructure of both the RP, RdP, Se and Yaoundé belts involve the reworking of various amounts of Paleoproterozoic crust with local Archean inliers, probably representing the reworked northern margin of the São Francisco-Congo craton (Penaye et al. 2004Penaye J., Toteu S.F., Tchameni R., Van Schmus R.W., Tchakounté J., Ganwa A.A., Minyem D., Nsifa N.E. 2004. The 2.1 Ga West Central African belt in Cameroon: extension and evolution. Journal of African Earth Sciences, 39(3-5):159-164. https://doi.org/10.1016/j.jafrearsci.2004.07.053
https://doi.org/https://doi.org/10.1016/...
, Lerouge et al. 2006Lerouge C., Cocherie A., Toteu S.F., Penaye J., Milési J.P., Tchameni R., Nsifa E.N., Fanning C.M., Deloule E. 2006. Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 44(4-5):413-427. https://doi.org/10.1016/j.jafrearsci.2005.11.010
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2015Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Pedrosa-Soares A.C. 2015. Orosirian (ca. 1.96 Ga) mafic crust of the northwestern São Francisco Craton margin: Petrography, geochemistry and geochronology of amphibolites from the Rio Preto fold belt basement, NE Brazil. Journal of South American Earth Sciences, 59:95-111. https://doi.org/10.1016/j.jsames.2015.02.003
https://doi.org/https://doi.org/10.1016/...
, Lima 2018Lima H.M., 2018. Evolução tectônica da porção nordeste da faixa sergipana, Província Borborema, estado de Alagoas, NE do Brasil. PhD Thesis, Universidade de Brasília, Brasília, 161 p., Loose and Schenk 2018Loose D., Schenk V. 2018. 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Research, 304:1-11. https://doi.org/10.1016/j.precamres.2017.10.018
https://doi.org/https://doi.org/10.1016/...
, Bouyo Houketchang et al. 2019Bouyo Houketchang M., Penaye J., Mouri H., Toteu S.F. 2019. Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. Journal of African Earth Sciences, 149:215-234. https://doi.org/10.1016/j.jafrearsci.2018.08.010
https://doi.org/https://doi.org/10.1016/...
).

Continuation of the Yaoundé belt through the Central African Fold Belt (CAFB) in the Central African Republic (e.g., Pin and Poidevin 1987Pin C., Poidevin J.L. 1987. U-Pb zircon evidence for a Pan-African granulite facies metamorphism in the Central African Republic. A new interpretation of the High-Grade series of the northern border of the Congo Craton. Precambrian Research, 36(3-4):303-312. https://doi.org/10.1016/0301-9268(87)90027-1
https://doi.org/https://doi.org/10.1016/...
) and in south-central Chad (e.g., Shellnutt et al. 2017Shellnutt J.G., Pham N.H.T., Denyszyn S.W., Yeh M.W., Lee T.Y. 2017. Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad. Precambrian Research, 301:113-123. https://doi.org/10.1016/j.precamres.2017.08.021
https://doi.org/https://doi.org/10.1016/...
) is confirmed by preliminary U-Pb data that show Ediacaran ages for plutonism and deformation. Thus, this orogenic belt, as part of the Central African Orogen, probably surrounds the northern São Francisco-Congo craton margin and the southern Sahara metacraton margin, joining the East African Orogen (Stern 1994Stern R.J. 1994. Arc assembly and continental collision in the Neoproterozoic East-African Orogen - implications for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Sciences, 22:319-351. https://doi.org/10.1146/annurev.ea.22.050194.001535
https://doi.org/https://doi.org/10.1146/...
) on the other side of Africa.

According to the many similarities discussed here, the RP-RdP-Se-Yaoundé-Central African orogenic system seems to represent a complete plate tectonics cycle during the Neoproterozoic, including remnants of oceanic crust that separated the São Francisco-Congo paleocontinent to the south and the APAMCAPAY and Saharan paleocontinents to the north, in all of the portions of the system (Nkoumbou et al. 2006Nkoumbou C., Goune C.Y., Villiéras F., Nkpwouo D., Yvon J., Ekodeck G.E., Tchoua F. 2006. Découverte des roches à affinité ophiolitique dans la chaîne panafricaine au Cameroun: les talcschistes de Ngoung, Lamal Pougue et Bibodi Lamal. Comptes Rendus Geoscience, 338(16):1167-1175. https://doi.org/10.1016/j.crte.2006.07.008
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2010Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
https://doi.org/https://doi.org/10.1016/...
, Caxito et al. 2014dCaxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
https://doi.org/http://dx.doi.org/10.113...
). The RP belt at the western end of this system seems to represent a simple inverted rift basin (aulacogenic structure) that would provide the link between the RdP (Monte Orebe)- Se-Yaoundé-Central African ocean, here called Transnordestino-Central African Ocean, to the east, and the much larger Goiás-Pharusian Ocean to the west, similar to the link between the Mediterranean and Atlantic oceans today. The RP basin would later be inverted in a doubly-vergent fan-like structure during the Brasiliano Orogeny, similar to the structure of the present-day Pyrenees (Caxito et al. 2014cCaxito F.A., Uhlein A., Morales L.F.G., Egydio-Silva M., Sanglard J.C.D., Gonçalves-Dias T., Mendes M.C.O., 2014c. Structural analysis of the Rio Preto fold belt (northwestern Bahia/southern Piauí), a doubly vergent asymmetric fan developed during the Brasiliano Orogeny. Anais da Academia Brasileira de Ciências, 86(3):1101-1113. http://dx.doi.org/10.1590/0001-3765201420130173
https://doi.org/http://dx.doi.org/10.159...
).

DISCUSSION AND CONCLUDING REMARKS: TOWARD AN INTEGRATED MODEL OF GEOLOGICAL EVOLUTION FOR NE BRAZIL-NW AFRICA

Based on the integrated field, petrographic, stratigraphic, petrological, structural, geophysical, geochemical, isotopic, and geochronological wealth of data available in the last decades for the Borborema Province, the Trans-Saharan Orogen (Tuareg and Benino-Nigerian shields), and the Central African Orogen, a few general lines of comparison can be drawn, illustrated in the preliminary models of evolution for NE Brazil-NW Africa during the Neoproterozoic (Figs. 7, 8, 9, 10 and 11). These models should be taken as a background upon which new data will surely be added and used to modify and refine the interpretations and working hypothesis presented here. Also, it should be kept in mind that the diachronism of events will be the rule rather than the exception in such long-ranging, transcontinental correlation schemes, i.e., while convergent events are taking place at certain areas, extensional, transcurrent or collisional events might be taking place in other ones. Even adjacent areas might show some slight diachronism due to the geometry of the interacting paleocontinental borders, with reentrants and promontories causing sintaxial and antitaxial structures during the development of the resulting mountain chains. Finally, most of the times, on a curved surface planet, each of these events might occur in a zipper-like fashion and not as straight thousands-of-km perfectly synchronized fronts.

Correlation of the fold belts that margin the São Luís-West African and the São Francisco-Congo cratons in both the Brazilian and African sides (i.e., the belts that frame the Borborema-NW Africa provinces on its western and southern sides) seems progressively better established (e.g., Brito Neves et al. 2002Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
https://doi.org/https://doi.org/10.1016/...
, Oliveira et al. 2006Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
https://doi.org/https://doi.org/10.1016/...
, Santos et al. 2008bSantos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119., Ganade de Araújo et al. 2016Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.). The MC domain of NE Brazil represents a continuation of the passive margin to syn-orogenic deposits of the Dahomeyides and Gourma belts that extend from Togo-Benin to the western Tuareg Shield provinces; these deposits extend further south to the Brasília belt of central Brazil. In the same way, the RP-RdP-Se-Yaoundé-Central African belts connection can be established with corresponding passive margin and syn-orogenic deposits on both sides of the Atlantic.

Correlations within the interior of the supracited domains and away from the fold belts flanking the major cratonic landmasses are more complicated, and detailed field, isotopic, geochronological, and petrological data are necessary for further development of the current models. Basement of both the Borborema Province, the Benino-Nigerian Shield, East, Central, and West Tuareg Shield and the Adamawa-Yadé domain of Cameroon yielded similar Archean (3.5-2.7 Ga) and widespread Paleoproterozoic (2.3-1.9 Ga) ages with local rifting and anorogenic magmatism at 1.8-1.7 Ga that is also common in the São Francisco-Congo craton and in the Araçuaí and Brasília belts basement further south. Thus, it is possible that APAMCAPAY, and perhaps NOBO-BENI, were part of a Greater São Francisco-Congo paleocontinent (Fig. 7) from ca. 2.0 Ga until the widespread rifting in the early Neoproterozoic (Fig. 8) created new oceans and separated its constituents in individual blocks (Fig. 9). These individual blocks then drifted apart during the Neoproterozoic until subduction (Fig. 10) and continental collision (Fig. 11) joined them together once again in West Gondwana.

It is unclear whether all or part of the basement-dominated terrains of the Tuareg Shield could have evolved in a similar way, i.e., through hyperextension and detachment of a former major paleocontinental landmass. This hypothesis is illustrated in Figures 7 and 8, but is certainly contentious at this point. If this is correct, then the Greater São Francisco-Congo paleocontinent would actually involve a much larger area, perhaps encompassing both the terrains which would later participate in amalgamation of the Saharan metacraton and those that became detached from the continental margins to develop into the West (IOGU/IGU, Tirek, Kidal, Tassendjanet and Ahnet) and the Central Tuareg (LATEA and Assodé-Issalane/Tazat forming the Orosirian Stripe) microcontinents.

Occurrences of Neoproterozoic ophiolitic thrusts in southern LATEA suggest that, for at least part of the Proterozoic, the Tuareg Shield basement-dominated terrains were probably separated by an oceanic tract (the hypothetical Laouni seaway, which could have been part of the Goiás-Pharusian ocean) from NOBO-BENI southward. As the West and Central Tuareg basement-dominated blocks are separated one from another and from the West African and Saharan paleocontinents by juvenile Neoproterozoic terrains (Tilemsi, Silet, Serouenout and Aouzegueur), they probably constituted isolated continental fragments during most of the Neoproterozoic, after hyperextension and detachment of the Greater São Francisco-Congo-(Saharan?) paleocontinental border (Figs. 5, 6 and 7).

A major, Pacific-type oceanic domain (the Goiás-Pharusian or Brasilides ocean) separated the West African-São Luís Craton from the Archean-Paleoproterozoic blocks of northern Borborema/ Benino-Nigerian Shield (NOBO-BENI) and the basement-dominated domains of the West Tuareg Shield (IOGU/IGU, Tirek, Kidal, Tassendjanet and Ahnet) during the early Neoproterozoic. On the opposed Borborema margin, the RP-RdP-Se-Yaoundé-Central African belt bordering the northern São Francisco-Congo craton also presents components of complete plate tectonics cycles, including ophiolitic remnants of a former Neoproterozoic ocean (the Transnordestino-Central African ocean) that separated the São Francisco-Congo paleocontinent from the Archean-Paleoproterozoic blocks in the Central-southern Borborema Province (AP, AM, RC and PEAL) and AY (APAMCAPAY).

Thus, the West Gondwana Orogen seems to have evolved through the typical “extroversion” mechanism proposed by Murphy and Nance (2003Murphy J.B., Nance R.D. 2003. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence. Geology, 31(10):873-876. https://doi.org/10.1130/G19668.1
https://doi.org/https://doi.org/10.1130/...
), i.e., through the closure of the Pacific-type Goiás-Pharusian ocean with development of extensive magmatic arc tracts during the Neoproterozoic, and finally a collision with the Rodinia-derived Amazonian craton. On the other hand, the Central African Orogen and its continuation in the orogenic belts that border the northern São Francisco-Congo craton margin seem to have developed through typical “introversion” processes, i.e., the opening and closing of internal oceans through the classical Wilson Cycle of plate tectonics. This could reveal a pattern where transversal oceanic realms such as the Transnordestino-Central African ocean, PAB-WECA and Laouni seaways would represent internal oceans developed through introversion breakup processes of the Greater São Francisco-Congo paleocontinent and reagglutination of the detached fragments in a similar position due to closure of the major, external longitudinal Goiás-Pharusian ocean, giving rise to the West Gondwana Orogen to the west. West Gondwana seems, thus, to have been formed through a combination of extroversion and introversion processes acting through the major longitudinal Goiás-Pharusian realm and restricted transversal internal oceans generated due to the breakup and hyperextension of a Greater São Francisco-Congo-(Saharan?) paleocontinent margins.

An open issue and complicated correlation problem to solve is the definition of the geodynamic meaning of the 1000-920 Ma Cariris Velhos belt of metavolcanosedimentary and plutonic rocks that crosscuts the central portion of the Borborema Province in NE Brazil, whose correlatives are yet poorly constrained or undiscovered in NW Africa (maybe hiding below the Benue trough?). This belt is interpreted by some authors as representing a continental magmatic arc developed during the early Tonian, which would then lead to an interpretation that the NOBO-BENI and APACAMPAY portions of the Borborema Province were not joined until this point - or alternatively, that they rifted apart from each other before the onset of subduction. Other authors interpret it as a continental rift system, which would allow for NOBO-BENI and APAMCAPAY to be joined before the onset of Tonian rifting in the Borborema Province.

NOBO-BENI is separated from APAMCAPAY by the PAB metavolcanosedimentary belt and by the Neoproterozoic-dominated Western Cameroon and Mayo Kebbi domains. Evidence for Neoproterozoic subduction (Kozuch 2003Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting. PhD Thesis, University of Kansas, Lawrence, 199 p., Medeiros 2004Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil. PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p., Bouyo Houketchang et al. 2015Bouyo Houketchang M., Zhao Y., Penaye J., Zhang S.H., Njel U.O. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40-53. https://doi.org/10.1016/j.precamres.2015.01.012
https://doi.org/https://doi.org/10.1016/...
, Brito Neves et al. 2016Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
https://doi.org/https://doi.org/10.1590/...
, Caxito et al. 2019Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals…), continental collision in the form of retro-eclogites (Beurlen et al. 1992Beurlen H., Silva Filho A.F., Guimarães I.P., Brito S.B. 1992. Proterozoic C-type eclogites hosting unusual Ti-Fe ± Cr ± Cu mineralization in northeastern Brazil. Precambrian Research, 58(1-4):195-214. https://doi.org/10.1016/0301-9268(92)90119-9
https://doi.org/https://doi.org/10.1016/...
, Lages and Dantas 2016Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
https://doi.org/https://doi.org/10.1016/...
), and probable Neoproterozoic oceanic crust remnants (Lages et al. 2017Lages G.A., Dantas E.L., Oliveira R.G., Santos L.C.M.L. 2017. A sequência ofiolítica de Gurjão: Caracterização geoquímica e isotópica, Província Borborema. In: Simpósio de Geologia do Nordeste, 27., 2017. Annals... Brazil: SBG.) that support the development of a complete plate tectonics cycle, including the development of oceanic crust, subduction, and continental collision in the PAB area was presented in the past years, but is still preliminary and controversial (see discussion in Neves 2018Neves S.P. 2018. Comment on “A preserved early Ediacaran magmatic arc at the northernmost part of the transversal zone - central domain of the Borborema Province, Northeast of South America”, by B. B. de Brito Neves et al. (2016). Brazilian Journal of Geology, 48(3):623-630. https://doi.org/10.1590/2317-4889201820180049
https://doi.org/https://doi.org/10.1590/...
).

The proposed connections of NOBO-BENI (and possibly the basement-dominated blocks of the Tuareg Shield) and of APAMCAPAY as two single Archean-Paleoproterozoic decratonized blocks generated from rifting and hyperextension of the margins of a major ca. 2.0 Ga paleocontinent (Greater São Francisco-Congo), drifted apart from each other during the Neoproterozoic, and then accreted, involved in continental collision and strongly reworked (i.e., metacratonized) through introversion-style tectonics during the Pan-African/Brasiliano Orogeny remains to be tested; at this point, though, an alternative interpretation that each of these domains consisted of multiple fragmented blocks during the Proterozoic that drifted and were accreted to one another akin to exotic terranes is also possible. Further studies might help to recognize key rock units such as ophiolites, HP/UHP rocks and magmatic arcs within the Borborema Province, the Trans-Saharan, and the Central African orogens, and thus further refine and modify the proposed models.

ACKNOWLEDGMENTS

We would like to thank professors Alcides Sial, Valderez Ferreira, and Claudio Ricommini for the kind invitation to contribute to this volume. The ideas and correlations presented here are in great part fruit of discussion with various scientists interested in the geological evolution of the Borborema Province and of West Gondwana in general. As it would be impossible to cite all of those whose fruitful discussions contributed to the present ideas, we express our gratitude to all of the scientists whose works are referenced in this paper, and who have devoted their careers to contribute to the scientific understanding of such a marvelous region. In special, we thank the late prof. Edilton Santos, to whom this paper is dedicated. The first author is a Fellow of the Brazilian Research Council (CNPq) and acknowledges the support received. An original version of the paper was greatly enhanced after fruitful discussions, corrections and suggestions by R. Fuck (twice), Zakaria Hamimi, and an anonymous reviewer.

REFERENCES

  • Abdelsalam M., Liégeois J.P., Stern R.J. 2002. The Saharan meta-craton. Journal of African Earth Sciences, 34(3-4):119-136. https://doi.org/10.1016/S0899-5362(02)00013-1
    » https://doi.org/https://doi.org/10.1016/S0899-5362(02)00013-1
  • Accioly A.C.A. 2001. Geologia, geoquímica e significado tectônico do Complexo Metanortosítico de Passira, Província Borborema, Nordeste Brasileiro PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 166 p.
  • Adjerid Z., Godard G., Ouzegane K. 2015. High-pressure whiteschists from the Ti-N-Eggoleh area (Central Hoggar, Algeria): a record of Pan-African oceanic subduction. Lithos, 226:201-216. https://doi.org/10.1016/j.lithos.2015.02.013
    » https://doi.org/https://doi.org/10.1016/j.lithos.2015.02.013
  • Affaton P., Rahaman M.A., Trompette R., Sougy J. 1991. The Dahomeyide orogen: tectonothermal evolution and relationships with the Volta basin. In: Dallmeyer R.D., Lecorché J.P. (Eds.). The West African Orogens and Circum-Atlantic Correlatives New York: Springer, p. 95-111.
  • Agbossoumondé Y., Guillot S., Ménot R.P. 2004. Pan-African subduction-collision event evidenced by high-pressure granulites from the Agou Massif, southern Togo. Precambrian Research, 135(1-2):1-21. https://doi.org/10.1016/j.precamres.2004.06.005
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.06.005
  • Almeida F.F.M. 1967. Origem e evolução da plataforma brasileira. Boletim DNPM/DGM, 241. 36 p.
  • Almeida F.F.M., Hasui Y., Brito Neves B.B. 1976. The upper Precambrian of South America. Boletim IG-USP, 7:45-80.
  • Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. Earth Science Reviews, 17(1-2):1-29.
  • Amaral W.S., Kraus R.K., Dantas E.L., Fuck R.A., Pitombeira J.P.A. 2017. Sinistral reactivation of the Transbrasiliano Lineament: Structural and geochronological evidences in the Cariré Granulite Zone, Borborema Province - NE Brazil. Journal of South American Earth Sciences, 79:409-420. https://doi.org/10.1016/j.jsames.2017.08.022
    » https://doi.org/https://doi.org/10.1016/j.jsames.2017.08.022
  • Amaral W.S., Santos T.J.S., Ancelmi M.F., Fuck R.A., Dantas E.L., Matteini M., Moreto C.P.N. 2015. 1.57 Ga protolith age of the Neoproterozoic Forquilha eclogites, Borborema Province, NE-Brazil, constrained by U-Pb, Hf and Nd isotopes. Journal of South American Earth Sciences, 58:210-222. https://doi.org/10.1016/j.jsames.2014.10.001
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.10.001
  • Amaral W.S., Santos T.J.S., Wernick E. 2011. Occurrence and geochemistry of metamafic rocks from the Forquilha Eclogite Zone, Central Ceará (NE Brazil): geodynamic implications. Geological Journal, 46(2-3):137-155.
  • Amaral W.S., Santos T.J.S., Wernick E., Nogueira Neto J.D.A., Dantas E.L., Matteini M. 2012. High-pressure granulites from Cariré, Borborema Province, NE Brazil: tectonic setting, metamorphic conditions and U-Pb, Lu-Hf and Sm-Nd geochronology. Gondwana Research, 22(3-4):892-909. https://doi.org/10.1016/j.gr.2012.02.011
    » https://doi.org/https://doi.org/10.1016/j.gr.2012.02.011
  • Ancelmi M.F. 2016. Geocronologia e geoquímica das rochas arqueanas do Complexo Granjeiro, Província Borborema PhD Thesis, Universidade Estadual de Campinas, Campinas, 159 p.
  • Ancelmi M.F., Santos T.J.S., Amaral W.S., Fuck R.A., Dantas E.L., Zincone S.A. 2015. Provenance of metasedimentary rocks from the Ceará Central Domain of Borborema Province, NE Brazil: implications for the significance of associated retrograded eclogites. Journal of South American Earth Sciences, 58:82-99. https://doi.org/10.1016/j.jsames.2014.12.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.12.007
  • Arab A., Ouzegane K., Bendaoud A., Doukkari S., Godard G. 2019. The First Example of Kyanite-Staurolite-Garnet-Bearing Metapelites from the Hoggar (Egéré Terrane, South Algeria). In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer.
  • Archanjo C.J., Hollanda M.H.B.M., Rodrigues S.W., Brito Neves B.B., Armstrong R. 2008. Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 30(3):310-326. https://doi.org/10.1016/j.jsg.2007.11.011
    » https://doi.org/https://doi.org/10.1016/j.jsg.2007.11.011
  • Archanjo C.J., Silva E.R., Caby R. 1999. Magnetic fabric and pluton emplacement in a transpressive shear zone system: the Itaporanga porphyritic granitic pluton (Northeast Brazil). Tectonophysics, 312(2-4):331-345. https://doi.org/10.1016/S0040-1951(99)00176-6
    » https://doi.org/https://doi.org/10.1016/S0040-1951(99)00176-6
  • Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London, Geological Society, Special Publications, 294(1):49-67. https://doi.org/10.1144/SP294.4
    » https://doi.org/https://doi.org/10.1144/SP294.4
  • Arthaud M.H., Fuck R.A., Dantas E.L., Santos T.J.S., Caby R., Armstrong R. 2015. The Neoproterozoic Ceará Group, Ceará Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U-Pb and Sm-Nd geochronology. Journal of South American Earth Sciences, 58:223-237. https://doi.org/10.1016/j.jsames.2014.09.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.09.007
  • Attoh K., Nude P.M. 2008. Tectonic significance of carbonatite and ultrahigh-pressure rocks in the Pan-African Dahomeyide suture zone, southeastern Ghana. In: Ennih N., Liégeois J.-P. (Eds.). The Boundaries of the West African Craton London, Geological Society, Special Publications , 297(1):217-231. https://doi.org/10.1144/SP297.10
    » https://doi.org/https://doi.org/10.1144/SP297.10
  • Barbosa J.S., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Research, 133(1-2):1-27. https://doi.org/10.1016/j.precamres.2004.03.001
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.03.001
  • Barros R.A. 2019. Evolução Geológica e Contextualização Tectônica do Bloco Cristalândia do Piauí, Faixa Rio Preto, Piauí/Bahia Masters Dissertation, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, 208 p.
  • Basto C.F., Caxito F.A., Vale J.A.R., Silveira D.A., Rodrigues J.B., Alkmim A.R., Valeriano C.M., Santos E.J. 2019. An Ediacaran back-arc basin preserved in the Transversal Zone of the Borborema Province: Evidence from geochemistry, geochronology and isotope systematics of the Ipueirinha Group, NE Brazil. Precambrian Research, 320:213-231. https://doi.org/10.1016/j.precamres.2018.11.002
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.11.002
  • Béa A. 1990. Rétromorphisme hydrothermal affectant les tholéiites et les sédiments sus-jacents dans les fossés paléozoïques de la région de Garoua (Cameroun). Comptes Rendus de l’Académie des Sciences, 310(5):597-602.
  • Béchiri-Benmerzoug F., Bonin B., Bechiri H., Khéloui R., Talmat-Bouzeguela S., Bouzid K. 2017. Hoggar geochronology: a historical review of published isotopic data. Arab Journal of Geosciences, 10:351-383. https://doi.org/10.1007/s12517-017-3134-6
    » https://doi.org/https://doi.org/10.1007/s12517-017-3134-6
  • Béchiri-Benmerzoug F., Liégeois J.P., Bonin B., Azzouni-Sekkal A., Bechiri H., Kheloui R., Matukov D.I., Sergeev S.A. 2011. The plutons from the cryogenian Iskel composite oceanic island arc (Hoggar, Tuareg Shield, Algeria): U-Pb on zircon SHRIMP geochronology, geochemistry and geodynamical setting. In: Hutton Symposium on Granites and Related Rocks, 7., 2011, Avila, Spain. Annals.., p. 17.
  • Bendaoud A., Ouzegane K., Godard G., Liégeois J.P., Kienast J.R., Bruguier O., Drareni A. 2008. Geochronology and metamorphic PTX evolution of the Eburnean granulite-facies metapelites of Tidjenouine (Central Hoggar, Algeria): witness of the LATEA metacratonic evolution. London, Geological Society, Special Publications , 297:111-146. https://doi.org/10.1144/SP297.6
    » https://doi.org/https://doi.org/10.1144/SP297.6
  • Berger J., Caby R., Liégeois J.P., Mercier J.C.C., Demaiffe D. 2011. Deep inside a Neoproterozoic intra-oceanic arc: growth, differentiation and exhumation of the Amalaoulaou complex (Gourma, Mali). American Mineralogist, 162:773-796. https://doi.org/10.1007/s00410-011-0624-5
    » https://doi.org/https://doi.org/10.1007/s00410-011-0624-5
  • Berger J., Ouzegane K., Bendaoud A., Liégeois J.P., Kiénast J.R., Bruguier O., Caby R. 2014. Continental subduction recorded by Neoproterozoic eclogite and garnet amphibolites from Western Hoggar (Tassendjanet terrane, Tuareg Shield, Algeria). Precambrian Research, 247:139-158. https://doi.org/10.1016/j.precamres.2014.04.002
    » https://doi.org/https://doi.org/10.1016/j.precamres.2014.04.002
  • Bertrand J.M., Caby R., Ducrot J., Lancelot J.R., Moussine-Pouchkine A., Saadallah A. 1978. The late Pan-African intracontinental linear fold belt of the eastern Hoggar (central Sahara, Algeria): geology, structural development, U/Pb geochronology, tectonic implications for the Hoggar shield. Precambrian Research, 7(4):349-376. https://doi.org/10.1016/0301-9268(78)90047-5
    » https://doi.org/https://doi.org/10.1016/0301-9268(78)90047-5
  • Bertrand J.M., Michard A., Boullier A.M., Dautel D. 1986. Structure and U-Pb geochronology of Central Hoggar (Algeria): a reappraisal of its Pan-African evolution. Tectonics, 5(7):955-972. https://doi.org/10.1029/TC005i007p00955
    » https://doi.org/https://doi.org/10.1029/TC005i007p00955
  • Bertrand-Sarfati J., Moussine-Pouchkine A., Caby R. 1987. Les corrélations du Protérozoıque au Cambrien en Afrique de l’Ouest: nouvelle interpretation géodynamique. Bulletin de la Societé Geologique de France, 3:855-865.
  • Beurlen H., Silva Filho A.F., Guimarães I.P., Brito S.B. 1992. Proterozoic C-type eclogites hosting unusual Ti-Fe ± Cr ± Cu mineralization in northeastern Brazil. Precambrian Research, 58(1-4):195-214. https://doi.org/10.1016/0301-9268(92)90119-9
    » https://doi.org/https://doi.org/10.1016/0301-9268(92)90119-9
  • Black R., Latouche L., Liégeois J.P., Caby R., Bertrand J.M. 1994. Pan-African displaced terranes in the Tuareg shield (central Sahara). Geology, 22(7):641-644. https://doi.org/10.1130/0091-7613(1994)022%3C0641:PADTIT%3E2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1994)022%3C0641:PADTIT%3E2.3.CO;2
  • Bosch D., Bruguier O., Caby R., Buscail F., Hammor D. 2016. Orogenic development of Adrar des Iforas (Touareg Shield, NE Mali): new geochemical and geochronological data and geodynamic implications. Journal of Geodynamics, 96:104-130. https://doi.org/10.1016/j.jog.2015.09.002
    » https://doi.org/https://doi.org/10.1016/j.jog.2015.09.002
  • Boughrara M. 1999. Analyse pétrologique et géochronologique de la région de Tin Begane (Hoggar, Algérie): un exemple de la datation d’une série métamorphique en contexte polycyclique Unpublished Thesis, Muséum Nationale d’Histoire Naturelle, Paris, 361 p.
  • Boullier A.M., Rocci G., Cosson Y. 1991. La chaîne pan-africaine d’Aouzegueur en Aïr (Niger): un trait majeur du bouclier touareg. Comptes Rendus de l’Académie des Sciences de Paris, 313(2):63-68.
  • Bousquet R., El Mamoun R., Saddiqi O., Goffé B., Möller A., Madi A. 2008. Mélanges and Ophiolites during the Pan-African Orogeny: the Case of the Bou-Azzer Ophiolite Suite (Morocco). In: Ennih N., Liégeois J.-P. (Eds.). The Boundaries of the West African Craton London, Geological Society, Special Publications , 297:233-247. https://doi.org/10.1144/SP297.11
    » https://doi.org/https://doi.org/10.1144/SP297.11
  • Bouyo Houketchang M., Penaye J., Barbey P., Toteu S.F., Wandji P. 2013. Petrology of high-pressure granulite facies metapelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the Central African Fold Belt (CAFB) of north-central Cameroon. Precambrian Research, 224:412-433. https://doi.org/10.1016/j.precamres.2012.09.025
    » https://doi.org/https://doi.org/10.1016/j.precamres.2012.09.025
  • Bouyo Houketchang M., Penaye J., Mouri H., Toteu S.F. 2019. Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. Journal of African Earth Sciences, 149:215-234. https://doi.org/10.1016/j.jafrearsci.2018.08.010
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2018.08.010
  • Bouyo Houketchang M., Penaye J., Njel U.O., Moussango I.A.P., Sep N.J.P., Nyama A.B., Wassouo W.J., Abaté E.J.M., Yaya F., Mahamat A., Ye H., Wu F. 2016. Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of Northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences, 116:9-41. https://doi.org/10.1016/j.jafrearsci.2015.12.005
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2015.12.005
  • Bouyo Houketchang M., Toteu S.F., Deloule E., Penaye J., Van Schmus W.R. 2009. U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: Evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Sciences, 54(5):144-154. https://doi.org/10.1016/j.jafrearsci.2009.03.013
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2009.03.013
  • Bouyo Houketchang M., Zhao Y., Penaye J., Zhang S.H., Njel U.O. 2015. Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research, 261, 40-53. https://doi.org/10.1016/j.precamres.2015.01.012
    » https://doi.org/https://doi.org/10.1016/j.precamres.2015.01.012
  • Brahimi S., Liégeois J.P., Ghienne J.F., Munschy M., Bourmatte A. 2018. The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: Magnetic and gravimetric constraints. Earth-Science Reviews, 185:572-599. https://doi.org/10.1016/j.earscirev.2018.07.002
    » https://doi.org/https://doi.org/10.1016/j.earscirev.2018.07.002
  • Brito Neves B.B. 1975. Regionalização Geotectônica do Pré-Cambriano Nordestino PhD Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 198 p.
  • Brito Neves B.B. 1983. O mapa geológico do Nordeste oriental, escala 1:1.000.000 Free-Docency Thesis, Instituto de Geociências, Universidade de São Paulo, São Paulo, 177 p.
  • Brito Neves B.B., Campos Neto M.C. 2016. A Faixa de dobramentos do Rio Salgado, norte-noroeste da Zona Transversal - Província Borborema (PB-CE). Geologia USP, Série Científica, 16(3):3-17. http://dx.doi.org/10.11606/issn.2316-9095.v16i3p3-17
    » https://doi.org/http://dx.doi.org/10.11606/issn.2316-9095.v16i3p3-17
  • Brito Neves B.B., Passarelli C.R., Basei M.A.S., Santos E.J. 2003. Idades U-Pb em zircão de alguns granitos clássicos da Província Borborema. Geologia USP Série Científica, 3:25-38. https://doi.org/10.5327/S1519-874X2003000100003
    » https://doi.org/https://doi.org/10.5327/S1519-874X2003000100003
  • Brito Neves B.B., Santos E.J., Fuck R.A., Santos L.C.M.L. 2016. Arco Magmático eoediacariano na porção setentrional da Zona Transversal, sub-província central da Província Borborema, nordeste da América do Sul. Brazilian Journal of Geology, 46(4):491-508. https://doi.org/10.1590/2317-4889201620160004
    » https://doi.org/https://doi.org/10.1590/2317-4889201620160004
  • Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema province. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic Evolution of South América Rio de Janeiro, 31st International Geological Congress, p. 151-182.
  • Brito Neves B.B., Van Schmus W.R., Angelim L.A.A. 2015. Contribuição ao conhecimento da evolução geológica do Sistema Riacho do Pontal - PE, BA, PI. Geologia USP, Série Científica, 15(1):57-93. http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
    » https://doi.org/http://dx.doi.org/10.11606/issn.2316-9095.v15i1p57-93
  • Brito Neves B.B., Van Schmus W.R., Fetter A.H. 2002. North-western Africa - North-eastern Brazil. Major tectonic links and correlation problems. Journal of African Earth Sciences, 34(3-4):275-278. https://doi.org/10.1016/S0899-5362(02)00025-8
    » https://doi.org/https://doi.org/10.1016/S0899-5362(02)00025-8
  • Brito Neves B.B., Van Schmus W.R., Santos E.J., Campos Neto M.C., Kozuch M. 1995. O evento Carirís Velhos na Província Borborema: intergração de dados, implicações e perspectivas. Revista Brasileira de Geociências, 25(4):279-296.
  • Bruguier O., Dada S.S., Lancelot J.R. 1994. Early Archaean component (> 3.5 Ga) within a 3.05 Ga orthogneiss from northern Nigeria: U-Pb zircon evidence. Earth and Planetary Science Letters, 125(1-4):89-103. https://doi.org/10.1016/0012-821X(94)90208-9
    » https://doi.org/https://doi.org/10.1016/0012-821X(94)90208-9
  • Bueno J.F., Oliveira E.P., McNaughton N., Laux J.H. 2009. U-Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 15(1):86-97. https://doi.org/10.1016/j.gr.2008.06.003
    » https://doi.org/https://doi.org/10.1016/j.gr.2008.06.003
  • Caby R. 1987. The Pan-African belt of West Africa from the Sahara desert to the Gulf of Benin. In: Schaer J.-P., Rodgers J. (Eds.). Anatomy of Mountain Ranges Princeton: Princeton University Press, p. 129-170.
  • Caby R. 1989. Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. In: Dallmeyer R.D. (Ed.). Terranes in the Circum-Atlantic Paleozoic Orogens Special Paper Geological Society of America, 230, p. 145-158. https://doi.org/10.1130/SPE230-p145
    » https://doi.org/https://doi.org/10.1130/SPE230-p145
  • Caby R. 1994. Precambrian coesite from northern Mali: first record and implications for plate tectonics in the Trans-Saharan segment of the Pan-African belt. European Journal of Mineralogy, 6(2):235-244.
  • Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, 37(3):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2003.05.003
  • Caby R., Andreopoulos-Renaud U. 1983. Age à 1800 Ma du magmatisme sub-alcalin associé aux metasediments monocycliques dans la chaîne pan-Africaine du Sahara central. Journal of African Earth Sciences, 1(3-4):193-197. https://doi.org/10.1016/S0731-7247(83)80003-2
    » https://doi.org/https://doi.org/10.1016/S0731-7247(83)80003-2
  • Caby R., Andreopoulos-Renaud U. 1987. Le Hoggar oriental, bloc cratonisé à 730 Ma dans la chaîne pan-africaine du Nord du continent africain. Precambrian Research, 36(3-4):335-44.
  • Caby R., Andreopoulos-Renaud U., Gravelle M. 1982. Cadre géologique et géochronologie U/Pb sur zircon des batholites précoces dans le segment pan-africain du Hoggar central (Algérie). Bulletin de la Société Géologique de France, 24:677-684.
  • Caby R., Andreopoulos-Renaud U., Pin C. 1989. Late Proterozoic arc-continent and continent-continent collision in the Pan-African trans-Saharan belt of Mali. Canadian Journal of Earth Sciences, 26(6):1136-1146. https://doi.org/10.1139/e89-097
    » https://doi.org/https://doi.org/10.1139/e89-097
  • Caby R., Arthaud M.H. 1986. Major Precambrian nappes of the Brazilian Belt, Ceará, Northeast Brazil. Geology, 14(10):871-874. https://doi.org/10.1130/0091-7613(1986)14%3C871:MPNOTB%3E2.0.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1986)14%3C871:MPNOTB%3E2.0.CO;2
  • Carvalho M.J. 2005. Tectonic Evolution of the Marancó-Poço Redondo Domain: Records of the Cariris Velhos and Brasiliano Orogenesis in the Sergipano Belt, NE Brazil PhD Thesis, Universidade de Campinas, Campinas, 202 p.
  • Castaing C., Feybesse J.L., Thiéblemont D., Triboulet C., Chevremont P. 1994. Paleogeographical reconstructions of the Pan-African-Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambrian Research, 69:327-344.
  • Castro N.A. 2004. Evolução geológica proterozóica da região entre Madalena e Taperuaba, domínio tectônico Ceará Central (província Borborema) PhD Thesis, Universidade de São Paulo, São Paulo, 221 p.
  • Caxito F.A., Basto C.F., Santos L.C.M.L., Gonçalves Dias T., Barrote V., Hagemann S., Dantas E.L., Medeiros V.C., 2019. New U-Pb age constraints on the Ediacaran metavolcanosedimentary flysch units of the Orós Belt and Transversal Zone, Borborema Province, NE Brazil: Conciliating the syn-collisional and accretionary models. In: Simpósio Brasileiro de Estudos Tectônicos, 17., 2019. Bento Gonçalves: Sociedade Brasileira de Geologia. Annals
  • Caxito F.A., Dantas E.L., Stevenson R., Uhlein A. 2014a. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins to collisional orogens: the case of the Rio Preto fold belt on the northwest SãoFrancisco Craton margin, NE Brazil. Gondwana Research, 26(2):741-754. http://dx.doi.org/10.1016/j.gr.2013.07.007
    » https://doi.org/http://dx.doi.org/10.1016/j.gr.2013.07.007
  • Caxito F.A., Halverson G.P., Uhlein A., Stevenson R., Gonçalves-Dias T., Uhlein G.J. 2012b. Marinoan glaciation in east-central Brazil. Precambrian Research, 200-203:38-58. http://dx.doi.org/10.1016/j.precamres.2012.01.005
    » https://doi.org/http://dx.doi.org/10.1016/j.precamres.2012.01.005
  • Caxito F.A., Santos L.M.C.L., Uhlein A., Dantas E.L., Alkmim A.R., Lana C.C. 2020. New U-Pb (SHRIMP) and first Hf isotope constraints on the Tonian (1000-920 Ma) Cariris Velhos event, Borborema Province, NE Brazil. Brazilian Journal of Geology, in press.
  • Caxito F.A., Uhlein A., Dantas E.L. 2014b. The Afeição augen-gneiss Suite and the record of the Cariris Velhos Orogeny (1000-960 Ma) within the Riacho do Pontal fold belt, NE Brazil. Journal of South American Earth Sciences, 51:12-27. http://dx.doi.org/10.1016/j.jsames.2013.12.012
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2013.12.012
  • Caxito F.A., Uhlein A., Dantas E., Stevenson R., Egydio-Silva M., Salgado S.S. 2017. The Rio Preto and Riacho do Pontal Belts. In: Heilbron M., Cordani U., Alkmim F. (Eds.). São Francisco Craton, Eastern Brazil Regional Geology Reviews. Berlin: Springer, p. 221-239.
  • Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Pedrosa-Soares A.C. 2015. Orosirian (ca. 1.96 Ga) mafic crust of the northwestern São Francisco Craton margin: Petrography, geochemistry and geochronology of amphibolites from the Rio Preto fold belt basement, NE Brazil. Journal of South American Earth Sciences, 59:95-111. https://doi.org/10.1016/j.jsames.2015.02.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.02.003
  • Caxito F.A., Uhlein A., Dantas E.L., Stevenson R., Salgado S.S., Dussin I.A., Sial A.N. 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil: implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Research, 282:97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    » https://doi.org/https://doi.org/10.1016/j.precamres.2016.07.001
  • Caxito F.A., Uhlein A., Morales L.F.G., Egydio-Silva M., Sanglard J.C.D., Gonçalves-Dias T., Mendes M.C.O., 2014c. Structural analysis of the Rio Preto fold belt (northwestern Bahia/southern Piauí), a doubly vergent asymmetric fan developed during the Brasiliano Orogeny. Anais da Academia Brasileira de Ciências, 86(3):1101-1113. http://dx.doi.org/10.1590/0001-3765201420130173
    » https://doi.org/http://dx.doi.org/10.1590/0001-3765201420130173
  • Caxito F.A., Uhlein A., Sanglard J.C.D., Gonçalves-Dias T., Mendes M.C.O. 2012a. Depositional systems and stratigraphic review proposal of the Rio Preto Fold Belt, northwestern Bahia-southern Piauí. Revista Brasileira de Geociências, 42(3):523-538. http://dx.doi.org/10.5327/Z0375-75362012000300007
    » https://doi.org/http://dx.doi.org/10.5327/Z0375-75362012000300007
  • Caxito F.A., Uhlein A., Stevenson R., Uhlein G.J. 2014d. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology, 42(5):387-390. http://dx.doi.org/10.1130/G35479.1
    » https://doi.org/http://dx.doi.org/10.1130/G35479.1
  • Coney P.J., Jones D.L., Monger J.W.H. 1980. Cordilleran suspect terranes. Nature, 288:329-333. https://doi.org/10.1038/288329a0
    » https://doi.org/https://doi.org/10.1038/288329a0
  • Cordani U.G., Brito Neves B.B., D’agrella Filho M. 2003. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2):275-283. https://doi.org/10.1016/S1342-937X(05)70976-X
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70976-X
  • Cordani U.G., Pimentel M.M., Araújo C.E.G., Basei M.A.S., Fuck R.A., Girardi V.A.V. 2013a. Was there an Ediacaran Clymene Ocean in Central South America? American Journal of Science, 313(6):517-539. https://doi.org/10.2475/06.2013.01
    » https://doi.org/https://doi.org/10.2475/06.2013.01
  • Cordani U.G., Pimentel M.M., Araújo C.E.G., Fuck R.A. 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43(3):583-597. https://doi.org/10.5327/Z2317-48892013000300012
    » https://doi.org/https://doi.org/10.5327/Z2317-48892013000300012
  • Corsini M., Vauchez A., Archanjo C.J., Jardim de Sá E.F. 1991. Strain transfer at continental scale from a transcurrent shear zone to a transpressional fold belt: the Patos-Seridó system, Northeastern Brazil. Geology, 19(6):586-589. https://doi.org/10.1130/0091-7613(1991)019%3C0586:STACSF%3E2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1991)019%3C0586:STACSF%3E2.3.CO;2
  • Costa F.G., Palheta E.S.M., Rodrigues J.B., Gomes I.P., Vasconcelos A.M. 2015. Geochemistry and U-Pb zircon ages of plutonic rocks from the Algodões granite-greenstone terrane, Troia Massif, northern Borborema Province, Brazil: Implications for Paleoproterozoic subduction-accretion processes. Journal of South American Earth Sciences, 59:45-68. https://doi.org/10.1016/j.jsames.2015.01.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.01.007
  • Cruz R.F., Pimentel M.M., Accioly A.C.A. 2014a. Provenance of metasedimentary rocks of the Western Pernambuco-Alagoas Domain: Contribution to understand the crustal evolution of southern Borborema Province. Journal of South American Earth Sciences, 56:54-67. https://doi.org/10.1016/j.jsames.2014.06.011
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.06.011
  • Cruz R.F., Pimentel M.M., Accioly A.C.A., Rodrigues J.B. 2014b. Geological and isotopic characteristics of granites from the Western Pernambuco-Alagoas Domain: implications for the crustal evolution of the Neoproterozoic Borborema Province. Brazilian Journal of Geology, 44(4):627-652. https://doi.org/10.5327/Z23174889201400040008
    » https://doi.org/https://doi.org/10.5327/Z23174889201400040008
  • Dada S.S. 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Research, 87(1-2):65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
    » https://doi.org/https://doi.org/10.1016/S0301-9268(97)00054-5
  • Dada S.S. 2008. Proterozoic evolution of the Nigeria-Boborema province. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications, 294:122-136.
  • Dantas E.L., Souza Z.S., Wernick E., Hackspacher P.C., Martin H., Xiaodong D., Li J.W. 2013. Crustal growth in the 3.4-2.7 Ga São José de Campestre Massif, Borborema Province, NE Brazil. Precambrian Research, 227:120-156. https://doi.org/10.1016/j.precamres.2012.08.006
    » https://doi.org/https://doi.org/10.1016/j.precamres.2012.08.006
  • Dantas E.L., Van Schmus W.R., Hackspacher P.C., Fetter A.H., Brito Neves B.B., Cordani U., Nutman A.P., Williams I.S. 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4):113-137. https://orcid.org/0000-0003-2125-3050
    » https://doi.org/https://orcid.org/0000-0003-2125-3050
  • Dickin A.P., Halliday A.N., Bowden P. 1991. A Pb, Sr and Nd isotope study of the basement and Mesozoic ring complexes of the Jos Plateau, Nigeria. Chemical Geology, 94(1):23-32. https://doi.org/10.1016/S0009-2541(10)80014-2
    » https://doi.org/https://doi.org/10.1016/S0009-2541(10)80014-2
  • Doukkari S.A., Gaston G., Ouzegane K., Arab A., Bendaoud A. 2019. Petrography, Mineralogy and Thermodynamic Modeling of Eclogites from the Serkout Area, Central Hoggar, Algeria. In: Doronzo D., Schingaro E., Armstrong-Altrin J., Zoheir B. (Eds.). Petrogenesis and Exploration of the Earth’s Interior Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Cham: Springer.
  • Doukkari S.A., Ouzegane K., Arab A., Kienast J.R., Godard G., Drareni A., Zetoutou S., Liégeois J.P. 2014. Phase relationships and P-T path in NCFMASHTO system of the eclogite from the Tighsi area (Egere terrane, Central Hoggar, Algeria). Journal of African Earth Sciences, 99(Part 2):276-286. https://doi.org/10.1016/j.jafrearsci.2014.02.016
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2014.02.016
  • Doukkari S.A., Ouzegane K., Godard G., Diener J.F.A., Kienast J.R., Liégeois J.P., Arab A., Drareni A. 2015. Prograde and retrograde evolution of eclogite from Adrar Izzilatène (Egéré-Aleksod terrane, Hoggar, Algeria) determined from chemical zoning and pseudosections, with geodynamic implications. Lithos, 226:217-232. https://doi.org/10.1016/j.lithos.2014.12.007
    » https://doi.org/https://doi.org/10.1016/j.lithos.2014.12.007
  • Ebert H. 1964. Tectônica e metamorfismo regional do Escudo Brasileiro Recife: SUDENE, Divisão de Geologia, 39 p.
  • Ebert H. 1970. The Precambrian geology of the “Borborema”-Belt (States of Paraíba and Rio Grande do Norte; northeastern Brazil) and the origin of its mineral provinces. Geologische Rundschau, 59(3):1292-1326.
  • Egydio-Silva M., Karmann I., Trompette R. 1989. Litoestratigrafia do Supergrupo Espinhaço e Grupo Bambuí no noroeste do estado da Bahia. Revista Brasileira de Geociências, 19(2):141-152.
  • Fairhead J.D., Maus S. 2003. CHAMP satellite and terrestrial magnetic data help define the tectonic model for South America and resolve the lingering problem of the pre-break-up fit of the South Atlantic Ocean. The Leading Edge, 22(8):779-783. http://dx.doi.org/10.1190/1.1605081
    » https://doi.org/http://dx.doi.org/10.1190/1.1605081
  • Ferré E.C., Caby R., Peucat J.J., Capdevila R., Monié P. 1998. Pan-African, post-collisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, 45(1-4):255-279. https://doi.org/10.1016/S0024-4937(98)00035-8
    » https://doi.org/https://doi.org/10.1016/S0024-4937(98)00035-8
  • Ferré E., Déléris J., Bouchez J.L., Lar A.U., Peucat J.-J. 1996. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 153(5):719-728. https://doi.org/10.1144/gsjgs.153.5.0719
    » https://doi.org/https://doi.org/10.1144/gsjgs.153.5.0719
  • Ferré E., Gleizes G., Caby R. 2002. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 114(3-4):199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
    » https://doi.org/https://doi.org/10.1016/S0301-9268(01)00226-1
  • Ferreira V.P., Sial A.N., Jardim de Sá E.F. 1998. Geochemical and isotopic signatures of the Proterozoic granitoids in terranes of the Borborema Province, northeastern Brazil. Journal of South American Earth Sciences, 11(5):439-455. https://doi.org/10.1016/S0895-9811(98)00027-3
    » https://doi.org/https://doi.org/10.1016/S0895-9811(98)00027-3
  • Ferreira V.P., Sial A.N., Pimentel M.M., Moura C.A.V. 2004. Intermediate to acidic magmatism and crustal evolution in the Transversal Zone, Northeastern Brazil. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds). Geologia do Continente Sul-americano: Evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 189-201.
  • Fetter A.H., Santos T.J.S., Van Schumus W.R., Hackspacher P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E. 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 6(2):265-273. https://doi.org/10.1016/S1342-937X(05)70975-8
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70975-8
  • Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.
  • Fezaa N., Liégeois J.P., Abdallah N., Bruguier O., De Waele B., Ouabadi A. 2019. The 600 Ma-old Pan-African magmatism in the In Ouzzal terrane (Tuareg Shield, Algeria): witness of the metacratonisation of a rigid block. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (eds.). The geology of the Arab world: an overview. Berlin: Springer , p. 109-148.
  • Fezaa N., Liégeois J.P., Abdallah N., Cherfouh E.H., De Waele B., Bruguier O., Ouabadi A. 2010. Late Ediacaran geological evolution (575-555 Ma) of the Djanet Terrane, Eastern Hoggar, Algeria, evidence for a Murzukian intracontinental episode. Precambrian Research, 180(3-4):299-327. https://doi.org/10.1016/j.precamres.2010.05.011
    » https://doi.org/https://doi.org/10.1016/j.precamres.2010.05.011
  • Fuck R.A., Pimentel M.M., Alvarenga C.J., Dantas E.L. 2017. The northern Brasília belt. In: Heilbron M., Cordani U.G., Alkmim F.F. (Eds.). São Francisco Craton, Eastern Brazil Cham: Springer , p. 205-220.
  • Ganade de Araújo C.E., Basei M., Grandjean F.C., Armstrong R., Brito R.S. 2017. Contrasting Archaean (2.85-2.68 Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition. Precambrian Research, 297:1-18. https://doi.org/10.1016/j.precamres.2017.05.007
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.05.007
  • Ganade de Araújo C.E., Cordani U.G., Basei M.A.S., Castro N.A., Sato K., Sproesser W.M. 2012a. U-Pb detrital zircon provenance of metasedimentary rocks from the Ceará Central and Médio Coreaú Domains, Borborema Province, NE-Brazil: Tectonic implications for a long-lived Neoproterozoic active continental margin. Precambrian Research, 206-207:36-51. https://doi.org/10.1016/j.precamres.2012.02.021
    » https://doi.org/https://doi.org/10.1016/j.precamres.2012.02.021
  • Ganade de Araújo C.E., Cordani U.G., Weinberg R.F., Basei M.A.S., Armstrong R., Sato K. 2014a. Tracing Neoproterozoic subduction in the Borborema Province (NE Brazil): clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos, 202-203:167-189. https://doi.org/10.1016/j.lithos.2014.05.015
    » https://doi.org/https://doi.org/10.1016/j.lithos.2014.05.015
  • Ganade de Araújo C.E., Costa F.G., Pinéo T.R.G., Cavalcante J.C., Moura C.A.V. 2012b. Geochemistry and 207Pb/206Pb zircon ages of granitoids from the southern portion of the Tamboril-Santa Quitéria granitic-migmatitic complex, Ceará Central Domain, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 33(1):21-33. https://doi.org/10.1016/j.jsames.2011.07.009
    » https://doi.org/https://doi.org/10.1016/j.jsames.2011.07.009
  • Ganade de Araújo C.E., Pinéo T.R.G., Caby R., Costa F.G., Cavalcante J.C., Vasconcelos A.M., Rodrigues J.B. 2010. Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): A dismembered segment of a magma-poor passive margin or a restricted rift-related basin? Gondwana Research, 18(2-3):497-513. https://doi.org/10.1016/j.gr.2010.02.001
    » https://doi.org/https://doi.org/10.1016/j.gr.2010.02.001
  • Ganade de Araújo C.E., Rubatto D., Hermann J., Cordani U.G., Caby R., Basei M.A.S. 2014b. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Communications, 5. https://doi.org/10.1038/ncomms6198
    » https://doi.org/https://doi.org/10.1038/ncomms6198
  • Ganade C.E., Cordani U.G., Agbossoumounde Y., Caby R., Basei M.A., Weinberg R.F., Sato K. 2016. Tightening-up NE Brazil and NW Africa connections: New U-Pb/Lu-Hf zircon data of a complete plate tectonic cycle in the Dahomey belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276:24-42.
  • Ganade de Araújo C.E., Weinberg R.F., Cordani U.G. 2014c. Extruding the Borborema Province (NE-Brazil): a two-stage Neoproterozoic collision process. Terra Nova, 26(2):157-168. https://doi.org/10.1111/ter.12084
    » https://doi.org/https://doi.org/10.1111/ter.12084
  • Ganwa A.A., Klötzli U.S., Hauzenberger C. 2016. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS U-Pb ages. Journal of African Earth Sciences, 120:12-22. https://doi.org/10.1016/j.jafrearsci.2016.04.013
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2016.04.013
  • Garcia M.G.M., Santos T.J.S., Amaral W.S. 2014. Provenance and tectonic setting of Neoproterozoic supracrustal rocks from the Ceará Central Domain, Borborema Province (NE Brazil): constraints from geochemistry and detrital zircon ages. International Geology Review, 56(4):481-500. https://doi.org/10.1080/00206814.2013.875489
    » https://doi.org/https://doi.org/10.1080/00206814.2013.875489
  • Guadagnin F., Chemale Jr. F. 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. Journal of South American Earth Sciences, 60:104-116. https://doi.org/10.1016/j.jsames.2015.02.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.02.007
  • Guillot S., Agbossoumondé Y., Bascou J., Berger J., Duclaux G., Hilairet N., Ménot R.P., Schwartz S. 2019. Transition from subduction to collision recorded in the Pan-African arc complexes (Mali to Ghana). Precambrian Research, 320:261-280. https://doi.org/10.1016/j.precamres.2018.11.007
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.11.007
  • Guimarães I.P., Silva Filho A.F., Almeida C.N., Van Schmus W.R., Araújo J.M.M., Melo S.C., Melo E.B. 2004. Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research, 135(1-2):23-53. https://doi.org/10.1016/j.precamres.2004.07.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.07.004
  • Guimarães I.P., Van Schmus W.R., Brito Neves B.B., Bittar S.M.B., Silva Filho A.F., Armstrong R. 2012. U-Pb zircon ages of orthogneisses and supracrustal rocks of the Cariris Velhos belt: Onset of Neoproterozoic rifting in the Borborema Province, NE Brazil. Precambrian Research, 192-195:52-77. https://doi.org/10.1016/j.precamres.2011.10.008
    » https://doi.org/https://doi.org/10.1016/j.precamres.2011.10.008
  • Guiraud R., Bosworth W., Thierry J., Delplanque A. 2005. Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences, 43(1-3):83-143. https://doi.org/10.1016/j.jafrearsci.2005.07.017
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.07.017
  • Hefferan K.P., Admou H., Hilal R., Karson J.A., Saquaque A., Juteau T., Bohn M.M., Samson S.D., Kornprobst J.M. 2002. Proterozoic blueschist-bearing mélange in the Anti-Atlas Mountains, Morocco. Precambrian Research, 118(3-4):179-194. https://doi.org/10.1016/S0301-9268(02)00109-2
    » https://doi.org/https://doi.org/10.1016/S0301-9268(02)00109-2
  • Henry B., Liégeois J.P., Nouar O., Derder M.E.M., Bayou B., Bruguier O., Ouabadi A., Belhai D., Amenna M., Hemmi A., Ayache M. 2009. Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: an AMS and U-Pb zircon age study. Tectonophysics, 474(3-4):417-434. https://doi.org/10.1016/j.tecto.2009.04.022
    » https://doi.org/https://doi.org/10.1016/j.tecto.2009.04.022
  • Hodel F., Trindade R.I.F., Macouin M., Meira V.T., Dantas E.L., Paixão M.A.P., Rospabé M., Castro M.P., Queiroga G.N., Alkmim A.R., Lana C.C. 2019. A Neoproterozoic hyper-extended margin associated with Rodinia’s demise and Gondwana’s build-up: The Araguaia Belt, central Brazil. Gondwana Research, 66:43-62. https://doi.org/10.1016/j.gr.2018.08.010
    » https://doi.org/https://doi.org/10.1016/j.gr.2018.08.010
  • Hollanda M.H.B.M., Archanjo C.J., Bautista J.M.R., Souza L.C. 2015. Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance. Precambrian Research, 258:186-207. https://doi.org/10.1016/j.precamres.2014.12.009
    » https://doi.org/https://doi.org/10.1016/j.precamres.2014.12.009
  • Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Armstrong R., Vasconcelos P.M. 2010. Cambrian mafic to felsic magmatism and its connections with transcurrent shear zones of the Borborema Province (NE Brazil): Implications for the late assembly of the West Gondwana. Precambrian Research, 178(1-4):1-14. https://doi.org/10.1016/j.precamres.2009.12.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2009.12.004
  • Hollanda M.H.B.M., Archanjo C.J., Souza L.C., Liu D., Armstrong R.A. 2011. Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. Journal of South American Earth Sciences, 32(4):287-300. https://doi.org/10.1016/j.jsames.2011.02.008
    » https://doi.org/https://doi.org/10.1016/j.jsames.2011.02.008
  • Hurley P.M., Rand J.R., Pinson Jr. W.H., Fairbairn H.W., Almeida F.F., Melcher G.C., Cordani U.G., Kawashita K., Vandoros P. 1967. Test of continental drift by comparison of radiometric ages: A pre-drift reconstruction shows matching geologic age provinces in West Africa and Northern Brazil. Science, 157(3788):495-500. https://doi.org/10.1126/science.157.3788.495
    » https://doi.org/https://doi.org/10.1126/science.157.3788.495
  • Jahn B., Caby R., Monié P. 2001. The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178(1-4):143-158. https://doi.org/10.1016/S0009-2541(01)00264-9
    » https://doi.org/https://doi.org/10.1016/S0009-2541(01)00264-9
  • Jardim de Sá E.F., Macedo M.H.F., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480.
  • Kalsbeek F., Affaton P., Ekwueme B., Freid R., Thranea K. 2012. Geochronologyof granitoid and metasedimentary rocks from Togo and Benin, West Africa: comparisons with NE Brazil. Precambrian Research, 196-197:218-233. https://doi.org/10.1016/j.precamres.2011.12.006
    » https://doi.org/https://doi.org/10.1016/j.precamres.2011.12.006
  • Kalsbeek F., Ekwueme B.N., Penaye J., de Souza Z.S., Thrane K. 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research, 226:105-115. https://doi.org/10.1016/j.precamres.2012.12.006
    » https://doi.org/https://doi.org/10.1016/j.precamres.2012.12.006
  • Kozuch M. 2003. Isotopic and trace element geochemistry of early Neoproterozoic gneissic and metavolcanic rocks in the Cariris Velhos orogen of the Borborema Province, Brazil, and their bearing on tectonic setting PhD Thesis, University of Kansas, Lawrence, 199 p.
  • Kröner A., Ekwueme B.N., Pidgeon R.T. 2001. The oldest rocks in West Africa: SHRIMP zircon age for Early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. The Journal of Geology, 109(3):399-406. https://doi.org/10.1086/319979
    » https://doi.org/https://doi.org/10.1086/319979
  • Lages G.A., Dantas E.L. 2016. Floresta and Bodocó Mafic-Ultramafic Complexes, western Borborema Province, Brazil: Geochemical and isotope constraints for evolution of a Neoproterozoic arc environment and retro-eclogitic hosted Ti-mineralization. Precambrian Research, 280:95-119. https://doi.org/10.1016/j.precamres.2016.04.017
    » https://doi.org/https://doi.org/10.1016/j.precamres.2016.04.017
  • Lages G.A., Dantas E.L., Oliveira R.G., Santos L.C.M.L. 2017. A sequência ofiolítica de Gurjão: Caracterização geoquímica e isotópica, Província Borborema. In: Simpósio de Geologia do Nordeste, 27., 2017. Annals.. Brazil: SBG.
  • Lages G.A., Santos L.C.M.L., Brasilino R.G., Rodrigues J.B., Dantas E.L. 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 91:116-130. https://doi.org/10.1016/j.jsames.2019.02.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.02.003
  • Laux J.H., Pimentel M.M., Dantas E.L., Armstrong R.A., Junges S.L. 2005. Two Neoproterozoic crustal accretion events in the Brasília belt, central Brazil. Journal of South American Earth Sciences, 18(2):183-198. https://doi.org/10.1016/j.jsames.2004.09.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2004.09.003
  • Lerouge C., Cocherie A., Toteu S.F., Penaye J., Milési J.P., Tchameni R., Nsifa E.N., Fanning C.M., Deloule E. 2006. Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 44(4-5):413-427. https://doi.org/10.1016/j.jafrearsci.2005.11.010
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.11.010
  • Lesquer A., Beltrão J.F., Abreu F.A.M. 1984. Proterozoic links between northeastern Brazil and West Africa: a plate tectonic model based on gravity data. Tectonophysics, 110(1-2):9-26. https://doi.org/10.1016/0040-1951(84)90055-6
    » https://doi.org/https://doi.org/10.1016/0040-1951(84)90055-6
  • Li X.H., Chen Y., Tchouankoue J.P., Liu C.Z., Li J., Ling X.X., Tang G.Q., Liu Y. 2017. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Research, 294:307-321. https://doi.org/10.1016/j.precamres.2017.04.006
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.04.006
  • Liégeois J.P. 2019. A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. In: Bendaoud A., Hamimi Z., Hamoudi M., Djemai S., Zoheir B. (Eds.). The Geology of the Arab World - An Overview Berlin: Springer Geology, p. 83-107.
  • Liégeois J.P., Abdelsalam M.G., Ennih N., Ouabadi A. 2013. Metacraton: nature, genesis and behavior. Gondwana Research, 23(1):220-237. https://doi.org/10.1016/j.gr.2012.02.016
    » https://doi.org/https://doi.org/10.1016/j.gr.2012.02.016
  • Liégeois J.P., Black R., Navez J., Latouche L. 1994. Early and late Pan-African orogenies in the Aïr assembly of terranes (Tuareg shield, Niger). Precambrian Research, 67(1-2):59-88. https://doi.org/10.1016/0301-9268(94)90005-1
    » https://doi.org/https://doi.org/10.1016/0301-9268(94)90005-1
  • Liégeois J.P., Latouche L., Boughrara M., Navez J., Guiraud M. 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37(3-4):161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2003.05.004
  • Lima H.M., 2018. Evolução tectônica da porção nordeste da faixa sergipana, Província Borborema, estado de Alagoas, NE do Brasil PhD Thesis, Universidade de Brasília, Brasília, 161 p.
  • Lima H.M., Pimentel M.M., Fuck R.A., de Lira Santos L.C.M., Dantas E.L. 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt: Implications for the evolution of the Borborema Province, NE Brazil. Journal of South American Earth Sciences, 86:176-192.
  • Lima M.V.A.G., Berrocal J., Soares J.E.P., Fuck R.A. 2015. Deep seismic refraction experiment in northeast Brazil: New constraints for Borborema province evolution. Journal of South American Earth Sciences, 58:335-349. https://doi.org/10.1016/j.jsames.2014.10.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.10.007
  • Lisboa V.A.C., Conceição H., Rosa M.L.S., Fernandes D.M. 2019. The onset of post-collisional magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. Journal of South American Earth Sciences, 89:173-188. https://doi.org/10.1016/j.jsames.2018.11.005
    » https://doi.org/https://doi.org/10.1016/j.jsames.2018.11.005
  • Loose D., Schenk V. 2018. 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Research, 304:1-11. https://doi.org/10.1016/j.precamres.2017.10.018
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.10.018
  • Martins G., Oliveira E.P., Lafon J.-M. 2009. The Algodões amphibolite-tonalite gneiss sequence, Borborema Province, NE Brazil: Geochemical and geochronological evidence for Palaeoproterozoic accretion of oceanic plateau/back-arc basalts and adakitic plutons. Gondwana Research, 15(1):71-85. https://doi.org/10.1016/j.gr.2008.06.002
    » https://doi.org/https://doi.org/10.1016/j.gr.2008.06.002
  • Marulanda C.O. 2013. Estudo de proveniência em sequências supracrustais neoproterozóicas da Zona Transversal, Província Borborema Master Dissertation, Instituto de Geociências, Universidade de São Paulo, São Paulo.
  • McGee B., Collins A.S., Trindade R.I.F. 2012. G’Day Gondwana the final accretion of a supercontinent: U-Pb ages from the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21(2-3):316-322. http://dx.doi.org/10.1016/j.gr.2011.04.011
    » https://doi.org/http://dx.doi.org/10.1016/j.gr.2011.04.011
  • Medeiros V.C. 2004. Evolução geodinâmica e condicionamento estrutural dos terrenos Piancó-Alto Brígida e Alto Pajeú, Domínio da Zona Transversal, NE do Brasil PhD Thesis, Universidade Federal do Rio Grande do Norte, Natal, 200 p.
  • Medeiros V.C., Jardim de Sá E.F. 2009. O Grupo Cachoeirinha (Zona Transversal, NE do Brasil) redefinição e proposta de formalização. Revista de Geologia, 22:124-136.
  • Medeiros V.C., Nascimento M.A.L., Galindo A.C., Dantas E.L. 2012. Augen gnaisses riacianos no Domínio Rio Piranhas-Seridó - Província Borborema, Nordeste do Brasil. Geologia USP, Série Científica, 12(2):3-14. https://doi.org/10.5327/Z1519-874X2012000200001
    » https://doi.org/https://doi.org/10.5327/Z1519-874X2012000200001
  • Monié P., Caby R., Arthaud M.H. 1997. The Neoproterozoic Brasiliano Orogeny in Northeast Brazil: 40Ar/39Ar and petrostructural data from Ceará. Precambrian Research, 81(3-4):241-264. https://doi.org/10.1016/S0301-9268(96)00037-X
    » https://doi.org/https://doi.org/10.1016/S0301-9268(96)00037-X
  • Montes-Lauar C.R., Trompette R., Melfi A.J., Bellieni G., De Min A., Béa A., Peccerillo E.M., Affaton P., Pacca I.G. 1997. Pan-African Rb-Sr isochron of magmatic rocks from northern Cameroon. Preliminary results. In: South American Symposium on Isotope Geology, Brazil. Annals.. p. 204-205.
  • Mota-e-Silva J. 2014. O depósito sulfetado Ni-Cu-(pge) de Limoeiro: metalogênese, magmatismo máfico e metamorfismo no leste da Província Borborema PhD Thesis, Universidade de Brasília, Brasília, 278 p.
  • Mota-e-Silva J., Ferreira Filho C.F., Della Giustina M.E. 2013. The Limoeiro Deposit: Ni-Cu-PGE Sulfide Mineralization Hosted Within na Ultramafic Tubular Magma Conduit in the Borborema Province, Northeastern Brazil. Economic Geology, 108:1753-1771. https://doi.org/10.2113/econgeo.108.7.1753
    » https://doi.org/https://doi.org/10.2113/econgeo.108.7.1753
  • Moussine-Pouchkine A., Bertrand-Sarfati J., Ball E., Caby R. 1988. Les séries sedimentaires et volcaniques anorogeniques proterozoïques impliquées dans la chaıne pan africaine: la region de l’Adrar Ahnet (NW Hoggar, Algerie). Journal of African Earth Sciences, 7(1):57-75. https://doi.org/10.1016/0899-5362(88)90053-X
    » https://doi.org/https://doi.org/10.1016/0899-5362(88)90053-X
  • Murphy J.B., Nance R.D. 2003. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence. Geology, 31(10):873-876. https://doi.org/10.1130/G19668.1
    » https://doi.org/https://doi.org/10.1130/G19668.1
  • Nascimento R.S.C., Sial A.N., Pimentel M.M. 2004. Chemostratigraphy of medium-grade marbles of the Late Neoproterozoic Seridó Group, Seridó Fold Belt, Northeastern Brazil. Gondwana Research, 7(3):731-744. https://doi.org/10.1016/S1342-937X(05)71059-5
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)71059-5
  • Nascimento R.S.C., Sial A.N., Pimentel M.M. 2007. C- and Sr-isotope systematics applied to Neoproterozoic marbles of the Seridó belt, northeastern Brazil. Chemical Geology, 237(1-2):1209-228. http://dx.doi.org/10.1016/j.chemgeo.2006.06.017
    » https://doi.org/http://dx.doi.org/10.1016/j.chemgeo.2006.06.017
  • Neves S.P. 2003. Proterozoic history of the Borborema province (NE Brazil): Correlations with neighboring cratons and Pan-African belts and implications for the evolution of western Gondwana. Tectonics, 22(4):1031. http://dx.doi.org/10.1029/2001TC001352
    » https://doi.org/http://dx.doi.org/10.1029/2001TC001352
  • Neves S.P. 2018. Comment on “A preserved early Ediacaran magmatic arc at the northernmost part of the transversal zone - central domain of the Borborema Province, Northeast of South America”, by B. B. de Brito Neves et al. (2016). Brazilian Journal of Geology, 48(3):623-630. https://doi.org/10.1590/2317-4889201820180049
    » https://doi.org/https://doi.org/10.1590/2317-4889201820180049
  • Neves S.P., Bruguier O., Silva J.M.R., Bosch D., Alcantara V.C., Lima C.M. 2009. The age distributions of detrital zircons in metasedimentary sequences in eastern Borborema Province (NE Brazil): evidence for intracontinental sedimentation and orogenesis? Precambrian Research, 175(1-4):187-205. https://doi.org/10.1016/j.precamres.2009.09.009
    » https://doi.org/https://doi.org/10.1016/j.precamres.2009.09.009
  • Neves S.P., Bruguier O., Silva J.M.R., Mariano G., Silva Filho A.F., Teixeira C.M.L. 2015. From extension to shortening: Dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). Journal of South American Earth Sciences, 58:238-256. https://doi.org/10.1016/j.jsames.2014.06.004
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.06.004
  • Neves S.P., Bruguier O., Vauchez A., Bosch D., Silva J.M.R., Mariano G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research, 149(3-4):197-216. https://doi.org/10.1016/j.precamres.2006.06.005
    » https://doi.org/https://doi.org/10.1016/j.precamres.2006.06.005
  • Neves S.P., Mariano G. 1999. Assessing the tectonic significance of a large-scale transcurrent shear zone system: the Pernambuco lineament, northeastern Brazil. Journal of Structural Geology, 21(10):1369-1383. https://doi.org/10.1016/S0191-8141(99)00097-8
    » https://doi.org/https://doi.org/10.1016/S0191-8141(99)00097-8
  • Neves S.P., Silva J.M.R., Bruguier O. 2016. The transition zone between the Pernambuco-Alagoas Domain and the Sergipano Belt (Borborema Province, NE Brazil): Geochronological constraints on the ages of deposition, tectonic setting and metamorphism of metasedimentary rocks. Journal of South American Earth Sciences, 72:266-278. https://doi.org/10.1016/j.jsames.2016.09.010
    » https://doi.org/https://doi.org/10.1016/j.jsames.2016.09.010
  • Neves S.P., Vauchez A., Archanjo C.J. 1996. Shear-zone controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from Northeast Brazil. Tectonophysics, 262(1-4):349-365. https://doi.org/10.1016/0040-1951(96)00007-8
    » https://doi.org/https://doi.org/10.1016/0040-1951(96)00007-8
  • Ngako V., Affaton P., Njonfang E. 2008. Pan-African tectonics in northwestern Cameroon: implications for the history of western Gondwana. Gondwana Research, 14(3):509-522. https://doi.org/10.1016/j.gr.2008.02.002
    » https://doi.org/https://doi.org/10.1016/j.gr.2008.02.002
  • Nkoumbou C., Goune C.Y., Villiéras F., Nkpwouo D., Yvon J., Ekodeck G.E., Tchoua F. 2006. Découverte des roches à affinité ophiolitique dans la chaîne panafricaine au Cameroun: les talcschistes de Ngoung, Lamal Pougue et Bibodi Lamal. Comptes Rendus Geoscience, 338(16):1167-1175. https://doi.org/10.1016/j.crte.2006.07.008
    » https://doi.org/https://doi.org/10.1016/j.crte.2006.07.008
  • Nzenti J.P., Barbey P., Macaudière J., Soba D. 1988. Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Research, 38(2):91-109. https://doi.org/10.1016/0301-9268(88)90086-1
    » https://doi.org/https://doi.org/10.1016/0301-9268(88)90086-1
  • Oliveira E.P., Bueno J.F., McNaughton N.K., SilvaFilho A.F., Nascimento R.S., Donatti-Filho J.P. 2015a. Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 58:257-280. https://doi.org/10.1016/j.jsames.2014.08.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2014.08.003
  • Oliveira E.P., McNaughton N.J., Windley B.F., Carvalho M.J., Nascimento R.S. 2015b. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins. Tectonophysics, 662:183-194. https://doi.org/10.1016/j.tecto.2015.02.017
    » https://doi.org/https://doi.org/10.1016/j.tecto.2015.02.017
  • Oliveira R.G., Medeiros W.E. 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Research, 315:45-65. https://doi.org/10.1016/j.precamres.2018.07.004
    » https://doi.org/https://doi.org/10.1016/j.precamres.2018.07.004
  • Oliveira E.P., Toteu S.F., Araújo M.N.C., Carvalho M.J., Nascimento R.S., Bueno J.F., McNaughton N., Basilici G. 2006. Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé schist belt (Cameroon, Africa). Journal of African Earth Sciences, 44:470-478. https://doi.org/10.1016/j.jafrearsci.2005.11.014
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.11.014
  • Oliveira E.P., Windley B.F., Araújo M.N.C. 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. Precambrian Research, 181(1-4):64-84. https://doi.org/10.1016/j.precamres.2010.05.014
    » https://doi.org/https://doi.org/10.1016/j.precamres.2010.05.014
  • Ouzegane K., Kienast J.R., Bendaoud A., Drareni A. 2003. A review of Archaean and Paleoproterozoic evolution of the In Ouzzal granulitic terrane (Western Hoggar, Algeria). Journal of African Earth Sciences, 37(3-4):207-227. https://doi.org/10.1016/j.jafrearsci.2003.05.002
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2003.05.002
  • Owona S., Schulz B., Ratschbacher L., Mvondo Ondoa J., Ekodeck G.E., Tchoua F.M., Affaton P. 2011. Pan-African metamorphic evolution in the southern Yaoundé Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 59:125-139. https://doi.org/10.1016/j.jafrearsci.2010.09.003
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2010.09.003
  • Padilha A.L., Vitorello I., Pádua M.B., Bologna M.S. 2014. Electromagnetic constraints for subduction zones beneath the northwest Borborema province: evidence for Neoproterozoic island arc-continent collision in northeast Brazil. Geology, 42(1):91-94. https://doi.org/10.1130/G34747.1
    » https://doi.org/https://doi.org/10.1130/G34747.1
  • Padilha A.L., Vitorello I., Pádua M.B., Fuck R.A. 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Research, 275:70-83. https://doi.org/10.1016/j.precamres.2015.12.012
    » https://doi.org/https://doi.org/10.1016/j.precamres.2015.12.012
  • Paixão M.A.P., Nilson A.A., Dantas E.L. 2008. The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central-northern Brazil, compared with correlatives in NW Africa. In: Pankhurst R.J., Trouw R.A.J., de Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. London: Geological Society, Special Publications , 294(1):297-318. http://dx.doi.org/10.1144/SP294.16
    » https://doi.org/http://dx.doi.org/10.1144/SP294.16
  • Penaye J., Kröner A., Toteu S.F., Van Schmus W.R., Doumnang J.C. 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Sciences, 44(4-5):530-542. https://doi.org/10.1016/j.jafrearsci.2005.11.018
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.11.018
  • Penaye J., Toteu S.F., Tchameni R., Van Schmus R.W., Tchakounté J., Ganwa A.A., Minyem D., Nsifa N.E. 2004. The 2.1 Ga West Central African belt in Cameroon: extension and evolution. Journal of African Earth Sciences, 39(3-5):159-164. https://doi.org/10.1016/j.jafrearsci.2004.07.053
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2004.07.053
  • Penaye J., Toteu S.F., Van Schmus W.R., Nzenti J.P. 1993. U-Pb and Sm-Nd preliminary geochronologic data on the Yaoundé series, Cameroon: reinterpretation of the granulitic rocks as the suture of a collision in the ‘‘Centrafrican belt”. Comptes Rendus de l’Académie des Sciences de Paris, 317(6):789-794.
  • Perpétuo M.P. 2017. Petrografia, geoquímica e geologia isotópica (U-Pb, Sm-Nd e Sr-Sr) dos granitoides ediacaranos da porção norte do orógeno Riacho do Pontal Masters Dissertation, Universidade Estadual de Campinas, Campinas, 114 p.
  • Peucat J.J., Drareni A., Latouche L., Deloule E., Vidal P. 2003. U-Pb zircon (TIMS & SIMS) and Sm-Nd whole rock geochronology of the Gour Oumelalen granulitic basement, Hoggar Massif, Tuareg Shield, Algeria. Journal of African Earth Sciences, 37(3-4):229-239. https://doi.org/10.1016/j.jafrearsci.2003.03.001
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2003.03.001
  • Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
  • Pin C., Poidevin J.L. 1987. U-Pb zircon evidence for a Pan-African granulite facies metamorphism in the Central African Republic. A new interpretation of the High-Grade series of the northern border of the Congo Craton. Precambrian Research, 36(3-4):303-312. https://doi.org/10.1016/0301-9268(87)90027-1
    » https://doi.org/https://doi.org/10.1016/0301-9268(87)90027-1
  • Pitarello M.Z., dos Santos T.J., Ancelmi M.F. 2019. Syn-to post-depositional processes related to high grade metamorphic BIFs: Geochemical and geochronological evidences from a Paleo to Neoarchean (3.5-2.6 Ga) terrane in NE Brazil. Journal of South American Earth Sciences, 96:102312. https://doi.org/10.1016/j.jsames.2019.102312
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.102312
  • Pitombeira J.P.A., Amaral W.S., Uchôa Filho E.C., Fuck R.A., Dantas E.L., Parente C.V., Costa F.C., Veríssimo C.U.V. 2017. Vestiges of a continental margin ophiolite type in the Novo Oriente region, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 73:78-99. https://doi.org/10.1016/j.jsames.2016.11.007
    » https://doi.org/https://doi.org/10.1016/j.jsames.2016.11.007
  • Poidevin J.L. 1991. Les ceintures de roches vertes de la République Centrafricaine. Contribution à la connaissance du précambrien du nord du craton du Congo PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France.
  • Rogers J.J.W. 1996. A history of continents in the past three billion years. Journal of Geology, 104(1):91-107.
  • Sá J.M., Bertrand J.M., Leterrier J., Macedo M.H.F. 2002. Geochemistry and geochronology of pre-Brasiliano rocks from the Transversal Zone, Borborema Province, Brazil. Journal of South American Earth Sciences, 14(8):851-866. https://doi.org/10.1016/S0895-9811(01)00081-5
    » https://doi.org/https://doi.org/10.1016/S0895-9811(01)00081-5
  • Sá J.M., McReath I., Leterrier J. 1995. Petrology, geochemistry and geodynamic setting of Proterozoic igneous suites of the Orós fold belt (Borborema Province, Northeast Brazil). Journal of South American Earth Sciences, 8(3-4):299-314. https://doi.org/10.1016/0895-9811(95)00015-8
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00015-8
  • Sá J.M., Sousa L.C., Legrand J.M., Galindo A.C., Maia H.N., Fillippi R.R. 2014. U-Pb and Sm-Nd data of the Rhyacian and Statherian Orthogneisses from Rio Piranhas-Seridó and Jaguaribeano Terranes, Borborema Province, Northeast of Brazil. Geologia USP, Série Científica, 14(3):97-110. https://doi.org/10.5327/Z1519-874X201400030007
    » https://doi.org/https://doi.org/10.5327/Z1519-874X201400030007
  • Salgado S.S., Ferreira Filho C.F., Caxito F.A., Uhlein A., Dantas E.L., Stevenson R. 2016. The Ni-Cu-PGE mineralized Brejo Seco mafic-ultramafic layered intrusion, RPO: onset of Tonian (ca. 900 Ma) continental rifting in Northeast Brazil. Journal of South American Earth Sciences, 70:324-339. https://doi.org/10.1016/j.jsames.2016.06.001
    » https://doi.org/https://doi.org/10.1016/j.jsames.2016.06.001
  • Samson S.D., Inglis J.D., D’lemos R.S., Admou H., Blichert-Toft J., Hefferan K. 2004. Geochronological, geochemical, and Nd-Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research, 135(1-2):133-147. https://doi.org/10.1016/j.precamres.2004.08.003
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.08.003
  • Santos A.C., Padilha A.L., Fuck R.A., Pires A.C., Vitorello I., Pádua M.B. 2014. Deep structure of a stretched lithosphere: Magnetotelluric imaging of the southeastern Borborema province, NE Brazil. Tectonophysics, 610:39-50. https://doi.org/10.1016/j.tecto.2013.10.008
    » https://doi.org/https://doi.org/10.1016/j.tecto.2013.10.008
  • Santos E.J. 1996. Ensaio preliminar sobre terrenos e tectônica acrescionária na Província Borborema. In: Congresso Brasileiro de Geologia 39 , Salvador. Annals.. 6:47-50.
  • Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M., Hasui Y. (Eds). O Pré-Cambriano do Brasil São Paulo: Edgard Blucher, p. 123-186.
  • Santos E.J., Brito Neves B.B., Van Schmus W.R., Oliveira R.G., Medeiros V.C. 2000. An overall view on the displaced terrane arrangement of the Borborema Province, NE-Brazil. In: International Geological Congress, 31., 2000, Rio de Janeiro. Annals… CD-ROM.
  • Santos E.J., Medeiros V.C. 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the Transverse Zone, Borborema Province, Northeast Brazil. Revista Brasileira de Geociências, 29:73-84.
  • Santos E.J., Van Schmus W.R., Kozuch M., Brito Neves B.B. 2010. The Cariris Velhos tectonic event in northeast Brazil. Journal of South American Earth Sciences, 29(1):61-76. https://doi.org/10.1016/j.jsames.2009.07.003
    » https://doi.org/https://doi.org/10.1016/j.jsames.2009.07.003
  • Santos F.G., Cavalcanti Neto M.T.O., Ferreira V.P., Bertotti A. 2020. Eo to Paleoarchean metamafic-ultramafic rocks from the central portion of the Rio Grande do Norte Domain, Borborema Province, northeast Brazil: The oldest South American platform rock. Journal of South American Earth Sciences, 97:102410. https://doi.org/10.1016/j.jsames.2019.102410
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.102410
  • Santos F.H., Amaral W.S., Uchôa Filho E., Martins D.T. 2017. Detrital zircon U-Pb ages and whole-rock geochemistry of the Neoproterozoic Paulistana and Santa Filomena complexes, Borborema Province, northeastern Brazil: implications for source area composition, provenance, and tectonic setting. International Geology Review, 59(15):1861-1884. https://doi.org/10.1080/00206814.2017.1300074
    » https://doi.org/https://doi.org/10.1080/00206814.2017.1300074
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J. 2018. Accretion tectonics in Western Gondwana deduced from Sm-Nd isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics, 37(8):2727-2743. https://doi.org/10.1029/2018TC005130
    » https://doi.org/https://doi.org/10.1029/2018TC005130
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G., Lima H.M., Santos E.J., Caxito F.A. 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil: Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. Journal of South American Earth Sciences, 96:102384. https://doi.org/10.1016/j.jsames.2019.102384
    » https://doi.org/https://doi.org/10.1016/j.jsames.2019.102384
  • Santos L.C.M.L., Dantas E.L., Cawood P.A., Santos E.J., Fuck R.A. 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil: Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. Journal of South American Earth Sciences, 79:342-363. https://doi.org/10.1016/j.jsames.2017.08.013
    » https://doi.org/https://doi.org/10.1016/j.jsames.2017.08.013
  • Santos L.C.M.L., Dantas E.L., Vidotti R.M., Cawood P.A., Santos E.J., Fuck R.A., Lima H.M. 2017b. Two-stage terrane assembly in Western Gondwana: Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. Journal of Structural Geology, 103:167-184. https://doi.org/10.1016/j.jsg.2017.09.012
    » https://doi.org/https://doi.org/10.1016/j.jsg.2017.09.012
  • Santos T.J.S., Amaral W.S., Ancelmi M.F., Pitarello M.Z., Fuck R.A., Dantas E.L. 2015. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil: Implications for western Gondwana assembly. Gondwana Research, 28(3):1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
    » https://doi.org/https://doi.org/10.1016/j.gr.2014.09.013
  • Santos T.J.S., Fetter A.H., Hackspacher P.C., Van Schmus W.R., Nogueira Neto J.A. 2008a. Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana. Journal of South American Earth Sciences, 25(3):271-284. https://doi.org/10.1016/j.jsames.2007.05.006
    » https://doi.org/https://doi.org/10.1016/j.jsames.2007.05.006
  • Santos T.J.S., Fetter A.H., Nogueira Neto J.A. 2008b. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications, 294:101-119.
  • Santos T.J.S., Garcia M.G.M., Amaral W.S., Caby R., Wernick E., Arthaud M.H., Dantas E.L., Santosh M. 2009. Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. Gondwana Research, 15(3-4):454-470. http://dx.doi.org/10.1016/j.gr.2009.01.003
    » https://doi.org/http://dx.doi.org/10.1016/j.gr.2009.01.003
  • Saquaque A. 1992. Un exemple de suture-arc: Le Precambrien de l’Anti-Atlas centre oriental (Maroc) PhD Dissertation, Université Cadi Ayyad, Marrakech, 366 p.
  • Saquaque A., Admou H., Karson J., Hefferan K., Reuber I. 1989. Precambrian accretionary tectonics in the Bou-Azzer-El-Graara region, Anti-Atlas, Morocco. Geology, 17(12):1107-1110. https://doi.org/10.1130/0091-7613(1989)017%3C1107:PATITB%3E2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1989)017%3C1107:PATITB%3E2.3.CO;2
  • Sautter V. 1986. Les eclogites de lAleksod (sud algérien): des témoins in situ d’une collision intracontinentale. Journal of African Earth Sciences, 5:345-357.
  • Schmitt R.S., Trouw R.A.J., van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1-2):29-61. https://doi.org/10.1016/j.precamres.2004.03.010
    » https://doi.org/https://doi.org/10.1016/j.precamres.2004.03.010
  • Schobbenhaus C. (Ed.). 1975. Carta Geológica do Brasil ao Milionésimo - Folha Goiás (SD 22) (texto explicativo) Brasília: DNPM, 114 p.
  • Shellnutt J.G., Pham N.H.T., Denyszyn S.W., Yeh M.W., Lee T.Y. 2017. Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad. Precambrian Research, 301:113-123. https://doi.org/10.1016/j.precamres.2017.08.021
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.08.021
  • Sial A.N. 1986. Granite-types in northeast Brazil: current knowledge. Revista Brasileira de Geociências, 16(1):54-72.
  • Sial A.N., Campos M.S., Gaucher C., Frei R., Ferreira V.P., Nascimento R.C., Pimentel M.M., Pereira N.S., Rodler A. 2015. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence. Journal of South American Earth Sciences, 61:33-52. http://dx.doi.org/10.1016/j.jsames.2015.04.001
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2015.04.001
  • Sial A.N., Ferreira V.P. 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil: forty years of studies. Journal of South American Earth Sciences, 68:113-133. http://dx.doi.org/10.1016/j.jsames.2015.10.005
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2015.10.005
  • Sial A.N., Gaucher C., Silva-Filho M.A., Ferreira V.P., Pimentel M.M., Lacerda L.D., Silva-Filho E.V., Cezario W. 2010. C-, Sr isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil. Precambrian Research, 182(4):351-372. https://doi.org/10.1016/j.precamres.2010.05.008
    » https://doi.org/https://doi.org/10.1016/j.precamres.2010.05.008
  • Silva L.C., McNaughton N.J., Vasconcelos A.M., Gomes J.R.C., Fletcher I.R. 1997. U-Pb SHRIMP ages in southern State of Ceará, Borborema Province, NE Brazil: TTG accretion and Proterozoic crustal reworking. In: International Symposium on Granites and Associated Mineralizations, Abstracts… p. 280-281.
  • Silva T.R., Ferreira V.P., Lima M.M.C., Sial A.N., Silva M.R. 2015. Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64(Part 1):1-13. https://doi.org/10.1016/j.jsames.2015.09.002
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.09.002
  • Silva Filho A.F., Guimarães I.P., Santos L., Armstrong R., Van Schmus W.R. 2016. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 68:134-154.
  • Silva Filho A.F., Guimarães I.P., Van Schmus W.R. 2002. Crustal evolution of the Pernambuco-Alagoas complex, Borborema Province, NE Brazil; Nd isotopic data from Neoproterozoic granitoids. Gondwana Research, 5(2):409-422. https://doi.org/10.1016/S1342-937X(05)70732-2
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70732-2
  • Silva Filho A.F., Guimarães I.P., Van Schmus W.R., Armstrong R.A., Rangel da Silva J.M., Osako L.S., Cocentino L. 2014. SHRIMP U-Pb zircon geochronology and Nd signatures of supracrustal sequences and orthogneisses constrain the Neoproterozoic evolution of the Pernambuco-Alagoas domain, southern part of Borborema Province, NE Brazil. International Journal of Earth Sciences, 103(8):2155-2190. https://doi.org/10.1007/s00531-014-1035-4
    » https://doi.org/https://doi.org/10.1007/s00531-014-1035-4
  • Soba D., Michard A., Toteu S.F., Norman D.I., Penaye J., Ngako V., Nzenti J.P., Dautel D. 1991. Données géochronologiques nouvelles (Rb-Sr, U-Pb et Sm-Nd) sur la zone mobile panafricaine de l’Est Cameroun: âge Protérozoïque supérieur de la série de Lom. Comptes Rendus de l’Académie des Sciences, 312:1453-1458.
  • Souza Z.S., Kalsbeek F., Deng X.-D., Frei R., Kokfelt T.F., Dantas E.L., Li J.-W., Pimentel M.M., Galindo A.C. 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences, 68:68-96. https://doi.org/10.1016/j.jsames.2015.10.006
    » https://doi.org/https://doi.org/10.1016/j.jsames.2015.10.006
  • Souza Z.S., Martin H., Peucat J.-J., Jardim de Sá E.F., Macedo M.H.F. 2007. Calc-alkaline magmatism at the Archean-Proterozoic transition: the Caicó Complex basement (NE Brazil). Journal of Petrology, 48(11):55-84. https://doi.org/10.1093/petrology/egm055
    » https://doi.org/https://doi.org/10.1093/petrology/egm055
  • Stern R.J. 1994. Arc assembly and continental collision in the Neoproterozoic East-African Orogen - implications for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Sciences, 22:319-351. https://doi.org/10.1146/annurev.ea.22.050194.001535
    » https://doi.org/https://doi.org/10.1146/annurev.ea.22.050194.001535
  • Tchakounté J., Eglinger A., Toteu S.F., Zeh A., Nkoumbou C., Mvondo-Ondoa J., Penaye J., de Wit M., Barbey P. 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research, 299:210-229. https://doi.org/10.1016/j.precamres.2017.07.001
    » https://doi.org/https://doi.org/10.1016/j.precamres.2017.07.001
  • Tchameni R., Pouclet A., Penaye J., Ganwa A.A., Toteu S.F. 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences, 44(4-5):511-529. https://doi.org/10.1016/j.jafrearsci.2005.11.017
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.11.017
  • Tohver E., Cawood P.A., Rossello E.A., Jourdan F. 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21(2-3):394-405. http://dx.doi.org/10.1016/j.gr.2011.04.001
    » https://doi.org/http://dx.doi.org/10.1016/j.gr.2011.04.001
  • Tohver E., D’agrella-Filho M., Trindade R.I.F. 2006. Paleomagnetic record of Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research, 147(3-4):193-222. https://doi.org/10.1016/j.precamres.2006.01.015
    » https://doi.org/https://doi.org/10.1016/j.precamres.2006.01.015
  • Tohver E., Trindade R.I.F., Solum J.G., Hall C.M., Riccomini C., Nogueira A.C. 2010. Closing the Clymene Ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana from SE Amazon craton. Geology, 38(3):267-270. http://dx.doi.org/10.1130/G30510.1
    » https://doi.org/http://dx.doi.org/10.1130/G30510.1
  • Toteu S.F., Penaye J., Deloule E., Van Schmus W.R., Tchameni R. 2006. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé groups (Cameroon). Journal of African Earth Sciences, 44(4-5):428-442. https://doi.org/10.1016/j.jafrearsci.2005.11.011
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2005.11.011
  • Toteu S.F., Penaye J., Poudjom Djomani Y. 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41:73-85. https://doi.org/10.1139/e03-079
    » https://doi.org/https://doi.org/10.1139/e03-079
  • Toteu S.F., Van Schmus W.R., Penaye J., Michard A. 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan-African history of central Africa. Precambrian Research, 108(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
    » https://doi.org/https://doi.org/10.1016/S0301-9268(00)00149-2
  • Toteu S.F., Van Schmus W.R., Penaye J., Nyobe J.B. 1994. U-Pb and Sm-Nd evidence for Eburnean and Pan-African high grade metamorphism in cratonic rocks of Southern Cameroon. Precambrian Research, 67:321-347.
  • Trindade R.I.F., D’Agrella-Filho M.S., Epof I., Brito Neves B.B. 2006. Paleomagnetism of the early Cambrian Itabaiana mafic dikes, NE Brazil, and implications for the final assembly of Gondwana and its proximity to Laurentia. Earth and Planetary Science Letters, 244(1-2):361-377. https://doi.org/10.1016/j.epsl.2005.12.039
    » https://doi.org/https://doi.org/10.1016/j.epsl.2005.12.039
  • Trindade R.I.F., Font E., D’Agrella-Filho M.S., Nogueira A.C.R., Riccomini C. 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton. Terra Nova, 15(6):441-446. https://doi.org/10.1046/j.1365-3121.2003.00510.x
    » https://doi.org/https://doi.org/10.1046/j.1365-3121.2003.00510.x
  • Trompette R.R. 1994. Geology of Western Gondwana (2000-500 Ma) Pan-African-Brasiliano aggregation of South America and Africa. Rotterdam: Balkema, 350 p.
  • Turner D.C. 1983. Upper Proterozoic schist belts in Nigerians Sector on the Pan-African Province of west Africa. Precambrian Research, 21(1-2):55-79. https://doi.org/10.1016/0301-9268(83)90005-0
    » https://doi.org/https://doi.org/10.1016/0301-9268(83)90005-0
  • Uhlein A., Caxito F.A., Sanglard J.C.D., Uhlein G. J., Suckau G.L. 2011. Estratigrafia e Tectônica das Faixas Neoproterozóicas da Porção Norte do Craton do São Francisco. Geonomos, 19(2):8-31. https://doi.org/10.18285/geonomos.v19i2.38
    » https://doi.org/https://doi.org/10.18285/geonomos.v19i2.38
  • Van Schmus W.R., Brito Neves B.B., Hackspacher P., Babinski M. 1995. U/Pb and Sm/Nd geochronolgic studies of eastern Borborema Province, northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8(3-4):267-288. https://doi.org/10.1016/0895-9811(95)00013-6
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00013-6
  • Van Schmus W.R., Brito Neves B.B., Williams I.S., Hackspacker P.C., Fetter A.H., Dantas E.L., Babinski M. 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research, 127(4):287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
    » https://doi.org/https://doi.org/10.1016/S0301-9268(03)00197-9
  • Van Schmus W.R., Kozuch M., Brito Neves B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31(2-3):227-252. https://doi.org/10.1016/j.jsames.2011.02.010
    » https://doi.org/https://doi.org/10.1016/j.jsames.2011.02.010
  • Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu F., Penaye J., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic correlations Across the South Atlantic Region. London: Geological Society Special Publications , 294:69-99.
  • Vauchez A., Egydio-da-Silva M. 1992. Termination of a continental-scale strike-slip fault in partially melted crust: the West Pernambuco shear zone, northeast Brazil. Geology, 20(11):1007-1010. https://doi.org/10.1130/0091-7613(1992)020%3C1007:TOACSS%3E2.3.CO;2
    » https://doi.org/https://doi.org/10.1130/0091-7613(1992)020%3C1007:TOACSS%3E2.3.CO;2
  • Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
    » https://doi.org/https://doi.org/10.1016/0895-9811(95)00012-5
  • Viegas L.G.F., Archanjo C.J., Hollanda M.H.B.M., Vauchez A. 2014. Microfabrics and zircon U-Pb (SHRIMP) chronology of mylonites from the Patos shear zone (Borborema Province, NE Brazil). Precambrian Research, 243:1-17. https://doi.org/10.1016/j.precamres.2013.12.020
    » https://doi.org/https://doi.org/10.1016/j.precamres.2013.12.020
  • Walsh G.J., Benziane J.N., Aleinikoff F., Harrison R.W., Yazidi A., Burton W.C., Quick J.E., Saadane A. 2012. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Research, 216-219:23-62. https://doi.org/10.1016/j.precamres.2012.06.010
    » https://doi.org/https://doi.org/10.1016/j.precamres.2012.06.010
  • Weinberg R., Sial A.N., Mariano G. 2004. Close spatial relationship between plutons and shear zones. Geology, 32(5):377-380. https://doi.org/10.1130/G20290.1
    » https://doi.org/https://doi.org/10.1130/G20290.1
  • Zetoutou S., Ouzegane K., Boubazine S., Kiénast J.R. 2004. Azrou N’Fad (Central Hoggar, Algeria) one of the deepest terranes of LATEA: arguments based on P-T evolution in eclogite. Journal of African Earth Sciences, 39(3-5):193-200. https://doi.org/10.1016/j.jafrearsci.2004.07.049
    » https://doi.org/https://doi.org/10.1016/j.jafrearsci.2004.07.049

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20190122.

Publication Dates

  • Publication in this collection
    22 May 2020
  • Date of issue
    2020

History

  • Received
    21 Nov 2019
  • Accepted
    09 Mar 2020
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br