
Abstract
The Vila Jussara Suite (VJS) is formed by Neoarchean (~ 2.75 Ga) granites that are located in the Sapucaia Domain of the Carajás Province 
(CP), Amazonian Craton. Four petrographic varieties were identified in the VJS: biotite-hornblende monzogranite (BHMzG); biotite-horn-
blende tonalite (BHTnl); biotite monzogranite (BMzG); and hornblende-biotite granodiorite (HBGd). In terms of magnetic signature, 
BHMzG has two subgroups: the first subgroup has low magnetic susceptibility (MS) values (0.16 × 10-3 to 0.81 × 10-3) and more commonly 
contains ilmenite with titanite rims; the second subgroup shows moderate to high MS (1.91 × 10-3 to 6.02 × 10-3) and magnetite dominant 
over ilmenite. BHTnl has moderate MS (0.85 × 10-3 to 1.36 × 10-3) and dominance of pyrite followed by magnetite. BMzG and HBGd have 
comparatively high MS (3.35 × 10-3 to 19.3 × 10-3 and 2.14 × 10-3 to 25.0 × 10-3, respectively), with magnetite dominant over pyrite. The gran-
ite varieties of the VJS were formed under different oxygen fugacity (fO2) conditions, varying from reducing (< fayalite-magnetite-quartz 
(FMQ)) to oxidizing conditions (nickel-nickel oxide (NNO) to NNO+1). In addition, biotite-hornblende syenogranite occurs subordinate-
ly and shows high MS values and extremely high FeOt/(FeOt + MgO) ratios, both in whole-rock and amphibole and biotite. The granites of 
the VJS are similar to other Neoarchean granites of the Carajás province. The reduced VJS granites are akin to the ferroan granites of Planalto 
suite, Estrela Complex and Vila União area and the magnesian granites of VJS approach the magnesian granites of Vila União area.
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INTRODUCTION
The Archean terranes worldwide primarily consist of 

greenstone belt assemblages, associated with granitoids such 
as tonalite-trondhjemite-granodiorite (TTG), sanukitoids, 
leucogranodiorites, and leucogranites, with high Ba and Sr, 
and granites sensu stricto (Martin et al. 2005, Jayananda 
et al. 2006, Oliveira et al. 2011, Feio and Dall’Agnol 2012, 
Almeida et al. 2011, 2013, Dall’Agnol et al. 2017, Silva et al. 
2018, Oliveira et al. 2018, Topno et al. 2018, Moyen and 
Laurent 2018, Rahaman et al. 2019, Chakraborti et al. 2019, 
Marangoanha et al. 2019).

The VJS, which is the focus of this research, outcrops in 
the central and northern sections of the Sapucaia Domain of 
the CP and is part of the Neoarchean subalkaline magmatism 
(~2.75-2.73 Ga) of this province. Geochemically, it is com-
posed of metaluminous to peraluminous granitoids with vari-
able ferroan to magnesian character, as defined by Frost et al. 
(2001). These rocks show significant textural, mineralogical, 
and compositional heterogeneity and marked variations in 
oxygen fugacity (Dall’Agnol et al. 2017), which are reflected 
in their magnetic susceptibility (MS) values.

Magnetic petrology combines MS data with conventional 
petrology to establish relationships between the magnetic 
behavior of rocks and the characteristics of Fe-Ti oxide min-
erals (nature, composition, abundance, microstructure, and 
paragenesis) as well as the petrological parameters (Clark 
1999). Various authors have applied magnetic petrology as an 
important tool for discussing magmatic processes, particularly 
the oxygen fugacity conditions under which granitic bodies 
formed and evolved, as well as the metallogenic specialization 
of granitoids (Czamanske and Mihalik 1972, Ishihara 1977, 
1981, Frost 1991; Magalhães et al. 1994, Dall’Agnol et al. 1997, 
Geuna et al. 2008, Cunha et al. 2016, Oliveira et al. 2018, Salazar-
Naranjo and Vlach 2018). In this study, magnetic petrology 
data on the granitoids of the VJS are presented and discussed 
to better understand the role of the degree of magma oxida-
tion in the magmatic evolution of this suite and establish rela-
tionships between the magnetic behavior and the mineralogi-
cal, petrographic, and geochemical variations observed in this 
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suite. Lastly, this suite is compared with similar Neoarchean 
granitoids of the Amazonian Craton and of other cratons. 

GEOLOGICAL CONTEXT
The CP is located in the southeastern section of the 

Amazonian Craton (Fig. 1A) and is considered the main 
Archean domain of the Central Amazonian Province (Tassinari 
and Macambira 2004) or an independent Archean province 
(Santos et al. 2006). Following the terms proposed by Santos 
et al. (2006), Vasquez et al. (2008) adopted the subdivision of 
the province into the Rio Maria and Carajás domains (CD), 
which are located, respectively, in southern and northern CP. 
More recently, Dall’Agnol et al. (2013) retained the Rio Maria 
Domain (RMD) and recognized three different domains in 
the north central portion of the CP, as follows (from south to 
north): Sapucaia Domain (SD), Canaã do Carajás Domain 
(CCD), and Carajás Basin (Fig. 1B). 

The RMD was formed during the Mesoarchean (3.0 to 2.86 
Ga; Macambira and Lancelot 1996, Althoff et al. 2000, Dall’Agnol 
et al. 2006, Oliveira et al. 2009, 2011, Almeida et al. 2011, 2013, 
Silva et al. 2018) and essentially consists of greenstone belts of 
the Andorinhas Supergroup (3.0 to 2.9 Ga) and different types 
of granitoids, including TGG rocks (2.98 to 2.93 Ga), sanukit-
oids, leucogranodiorites-granites with high Ba-Sr, and potassic 
leucogranites (2.87-2.86 Ga). Subsequently, these rocks were 
covered by sediments of the Rio Fresco Group (Docegeo 1988).

The SD (~2.95 to 2.73 Ga) is located in the central sec-
tion of the CP and shows lithological similarities to the RMD, 
although it was affected by intense deformation during the 
Neoarchean and also includes rocks of the Neoarchean age. 
The main Mesoarchean units of the SD are as follows: green-
stone belt of the Sapucaia Group formed by mafic-ultramafic 
metavolcanic rocks (Oliveira and Leonardos 1990, Souza 
et al. 2001); TTG suites of Caracol and Mariazinha tonalites 
(~2.93-2.91 Ga; Almeida et al. 2011) and Colorado trondh-
jemite (~2.93-2.85 Ga); São Carlos tonalite (~2.93 Ga), which 
is contrasted with the classic TTG suites (Silva et al. 2014); 
granitoids with high Mg of sanukitoid affinity (~2.87 Ga; 
Gabriel 2014); and leucogranodiorites enriched in Ba and Sr 
(~2.87 Ga, Nova Canadá leucogranodiorite, Leite-Santos and 
Oliveira 2016; and Pantanal leucogranodiorite, Teixeira et al. 
2013). In the east central section of the SD, the Mesoarchean 
rocks are intersected by Neoarchean granitoid stocks of the VJS 
(2.75-2.73 Ga; D.C. Oliveira et al. 2010, P. A. Santos et al. 2013, 
Silva et al. 2010, 2014, 2020, Dall’Agnol et al. 2017; Fig. 1C). 

The CCD is dominated by granites sensu stricto and char-
nockitic assemblages, which were intensely deformed during 
the Neoarchean. The Mesoarchean granitoids display varied 
geochemical signatures and ages (Moreto et al. 2011, Feio 
and Dall’Agnol 2012, Feio et al. 2013, Rodrigues et al. 2014). 
During the Neoarchean, the granites of the Planalto Suite and 
the granitoids of Vila União were formed along with the sodic 
granitoids of the Pedra Branca Suite, Pium diopside-norite, and 
charnockitic rocks (Huhn et al. 1999, Dall’Agnol et al. 2006, Feio 
et al. 2013, R. D. Santos et al. 2013, Cunha et al. 2016, Dall’Agnol 
et al. 2017, Oliveira et al. 2018, Marangoanha et al. 2019). 

The Carajás Basin is located in the north section of the 
CP, and it predominantly consists of a sequence of metavolca-
no-sedimentary rocks of the Itacaiúnas Supergroup (Docegeo 
1988, Machado et al. 1991, Vasquez et al. 2008, Martins et al. 
2017). In addition, Neoarchean subalkaline granites occur 
frequently (Igarapé Gelado Granite, Barbosa 2004, Estrela 
Granite Complex, Barros et al. 2009, Serra do Rabo Granite, 
Sardinha et al. 2006).

In the Paleoproterozoic (~1.88-1.86 Ga), the Archean ter-
ranes of the CP were intersected by anorogenic granitic plu-
tons and batholiths, and by associated mafic and felsic dike 
( Javier Rios et al. 1995, Mesquita et al. 2018, Dall’Agnol et al. 
2005, Oliveira et al. 2008, Silva et al. 2016, Teixeira et al. 2017, 
2018, 2019, Fig. 1C).

Geology of the Vila Jussara Suite
The VJS outcrops in the north and central sections of the 

SD and encompasses different granitic stocks (Fig. 2), which 
are intrusive in the São Carlos tonalite, Colorado trondhjemite, 
and Pantanal leucogranodiorite (Silva et al. 2014, Teixeira et al. 
2013). The VJS bodies define a gently hilly terrain (Fig. 3A), 
have elongated shapes in the E-W direction, and are commonly 
associated with shear zones in the same direction. This suite 
consists of a set of heterogeneously deformed rocks showing 
penetrative foliations and commonly mylonitic textures, with 
kinematic markers suggesting sinistral transcurrent movements 
(Silva et al. 2020). The outcrops are usually shaped as meter-
sized blocks (Fig. 3B).

The granitoids of the VJS are divided into four major petro-
graphic groups: biotite-hornblende monzogranite (BHMzG), 
biotite monzogranite (BMzG), hornblende-biotite granodio-
rite (HBGd), and biotite-hornblende tonalite (BHTnl). The 
contact relationships between these varieties are transitional 
and usually imperceptible in the field. However, in some out-
crops, porphyroclastic rocks of the HBGd group interspersed 
with BHTnl and BMzG are observed (Fig. 3C). Microgranular 
or mafic enclaves with elliptical shapes and centimetric to met-
ric dimensions encompassed and partly digested by BHMzG 
are commonly found (Figs. 3D and 3E). Enclaves of tonalitic 
rocks are often hosted in the same BHMzG. Strong evidence 
of interactions between the magmas that form the BHTnl and 
BMzG varieties is observed, suggesting significant mingling 
processes (Dall’Agnol et al. 2017). These processes were stud-
ied by. Silva et al. (2020) and are outside the scope of the pres-
ent study. In general, contacts between the VJS granitoids and 
host rocks are abrupt.

The spatial distribution of these petrographic facies is quite 
variable (Fig. 2). Zonal distribution and structuring are more 
evident in bodies of the central-west section (Fig. 2), whose 
structures, emplacement, and zoning were discussed in depth 
by Silva et al. (2020). One of those bodies, the northernmost 
of the three stocks in contact, shows central zones marked 
by the predominance of BHMzG and marginal zones that 
essentially consist of BMzG granites. In the pluton located to 
the southeast of this body, the available samples indicate the 
striking presence of the BMzG, HBGd, and BHTnl varieties, 
which show complex relationships and mingling features (Silva 
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et al. 2020). Lastly, the third southernmost body is dominated 
by BHMzG. In two other stocks, the first located in contact 
with the Pantanal leucogranodiorite and the second farther 

to the east near the border between the Amazonian Craton 
and the Araguaia Belt (Fig. 2), only ferroan granite varieties 
of BHMzG were described. Lastly, in the stock located in the 

Figure 1. (A) Amazonian craton provinces (Santos et al. 2006); (B) tectonic domains of the Carajás Province (Dall’Agnol et al. 2013); (C) 
geological map of the central and northern sections of the Carajás Province (Vasquez et al. 2008, Almeida et al. 2011, Oliveira D.C. et al. 2010, 
Feio et al. 2013, Teixeira et al. 2013, 2017, Santos P.A. et al. 2013, Silva et al. 2014, Gabriel 2014, Rodrigues et al. 2014, Leite-Santos and 
Oliveira 2016, Marangoanha et al. 2019, modified).

A

B
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north section of the SD, four varieties were described, indi-
cating increased lithological diversity.

Geochronological dating by Pb evaporation in zircon and 
occasionally via sensitive high-resolution ion microprobe 

(SHRIMP) zircon U-Pb dating (Oliveira D.C. et al. 2010, 
Dall’Agnol et al. 2017) generally provide ages ranging from 2750 
to 2730 Ma, although a slightly older age (2769 ± 10 Ma) was 
obtained in a tonalite sample from the northern body of the SD.

Figure 2. Simplified geological map (based on Silva et al. 2020 and Dall’Agnol et al. 2017, modified) highlighting the different granite bodies 
of the VJS and the location of the samples studied in detail in the present study.

Figure 3. Field aspects of the VJS: (A) geomorphological aspect of the study granitoids, which define soft hills relative to the flattened 
morphological pattern of the host rocks; (B) main mode of occurrence in the form of metric blocks; (C) HBGd interspersed with rocks of 
tonalitic composition; (D) microgranular enclave partly digested by the host rock (BHMzG); (E) mafic microgranular enclave hosted in BHMzG.

A

C D E

B
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MATERIALS AND METHODS

Sampling and fieldwork
Sample locations in the granitoids from the VJS are 

shown in Fig. 2. All samples collected during the field-
work weighed more than 5 kg each. Furthermore, sam-
ples collected on earlier occasions by institutional col-
leagues were also included in this study. Each sample 
is considered typical for the lithology of interest at the 
respective location. An overview of all samples assessed 
here is given in Tab. 1.

Petrography
Around 80 polished thin sections were studied and min-

eral modal contents in volume percent (vol%) were deter-
mined by counting a minimum of two thousand points per 
section in an orthogonal isometric grid, covering the entire 
specimen area in the thin section. Modal contents are col-
lated in Tab. 2.

Optical petrography in transmitted light was used to iden-
tify locations suitable for in‑situ assessment of mineral chemi-
cal composition (see below), with immaculate surface polish, 
free from inclusions, and with perpendicular mineral grain 

Table 1. Sampling location, petrographic classification and magnetic susceptibility (MS) data of granitoids of the Vila Jussara Suite.

Sample Petrographic varieties
MS 

average 
(×10−3SI)

Log 
MS 

MS 
population 

MS 
subpopulation

Longitude 
(UTM E)

Latitude
(UTM N)

PFR-16A Biotite-hornblende monzogranite 0.16 -3.80 A 661791 9253858
LIF-21A* Biotite-hornblende monzogranite 0.18 -3.74 A 620906 9259083
AMP-23 Biotite-hornblende monzogranite 0.23 -3.64 A 620220 9260732
LIF-27A* Biotite-hornblende monzogranite 0.31 -3.52 A 620017 9259925
MYF-77 Biotite-hornblende monzogranite 0.32 -3.49 B B1 643178 9246812
PFA-64 Biotite-hornblende monzogranite 0.58 -3.24 B B1 634424 9269740
MAR.16 Biotite-hornblende monzogranite 0.61 -3.21 B B1 617081 9259994
MDP-57A Biotite-hornblende monzogranite 0.77 -3.11 B B1 612067 9261037
PFA-77 Biotite-hornblende monzogranite 0.81 -3.09 B B1 636276 9262678
AMP-47A Biotite-hornblende monzogranite 1.91 -2.72 B B3 620137 9249906
LIF-26A* Biotite-hornblende monzogranite 2.38 -2.62 B B3 618163 9251275
LIF-25A* Biotite-hornblende monzogranite 3.16 -2.50 B B3 621456 9251047
MYF 78 Biotite-hornblende monzogranite 3.45 -2.46 B B3 642932 9246810
LIF-09* Biotite-hornblende monzogranite 3.62 -2.44 B B3 647038 9260808
LIF-26B* Biotite-hornblende monzogranite 3.70 -2.43 B B3 618163 9251275
LIF-19* Biotite-hornblende monzogranite 3.73 -2.43 B B3 623648 9258116
MDP-44A Biotite-hornblende monzogranite 4.29 -2.37 B B3 611597 9250197
MDP-42A Biotite-hornblende monzogranite 4.71 -2.33 B B3 617106 9250595
PFA-80 Biotite-hornblende monzogranite 5.16 -2.29 B B3 634312 9269358
MYF 64 Biotite-hornblende monzogranite 5.22 -2.29 B B3 644065 9260038
AMP-27 Biotite-hornblende monzogranite 5.84 -2.23 C C1 617346 9253574
PFA-78 Biotite-hornblende monzogranite 5.97 -2.22 C C1 635839 9262776
PFA - 39 Biotite-hornblende monzogranite 6.02 -2.22 C C1 651992 9261088
MAR.23 Biotite-hornblende monzogranite 6.02 -2.22 C C1 614466 9260772
MAR.12 Biotite-hornblende monzogranite 6.20 -2.21 C C1 611004 9263272
LIF-21B* Biotite-hornblende monzogranite 7.29 -2.14 C C1 620906 9259083
LIF-14C* Biotite-hornblende monzogranite 8.27 -2.09 C C1 624896 9258965
LIF-22* Biotite-hornblende monzogranite 11.70 -1.93 C C2 622864 9255398
LIF-23* Biotite-hornblende monzogranite 18.00 -1.74 C C2 622940 9254949
LIF-15* Biotite-hornblende monzogranite 12.20 -1.91 C C2 624495 9257993
LIF-17B* Biotite-hornblende tonalite 0.85 -3.07 B B2 626707 9258192
MDP-02E Biotite-hornblende tonalite 0.86 -3.07 B B2 626704 9258200
LIF-17E* Biotite-hornblende tonalite 1.03 -2.99 B B2 626707 9258192
PFA - 62 Biotite-hornblende tonalite 1.46 -2.92 B B2 633710 9268486
MDP-02C Biotite-hornblende tonalite 1.49 -2.91 B B2 626704 9258200
PFA-63B Biotite-hornblende tonalite 1.50 -2.88 B B2 634077 9269740
AFD-11B Biotite-hornblende tonalite 1.67 -2.87 B B2 626622 9258168
LIF-17D* Biotite-hornblende tonalite 1.88 -2.86 B B2 626707 9258192
MYF-40 Biotite-hornblende tonalite 16.60 -1.78 C C2 647586 9262500

Continue...
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Sample Petrographic varieties
MS 

average 
(×10−3)

Log 
MS 
(SI)

MS of 
population

MS of 
subpopulation

Longitude 
(UTM E)

Latitude
(UTM N)

MDP-02B Biotite monzogranite 3.37 -2.47 B B3 626704 9258200

MDP-11A Biotite monzogranite 4.22 -2.37 B B3 619910 9259992

MDP-02A Biotite monzogranite 5.00 -2.30 B B3 626704 9258200

MD-01 Biotite monzogranite 5.75 -2.24 C C1 614050 9262358

LIF-17A* Biotite monzogranite 5.84 -2.23 C C1 626707 9258192

LIF-24* Biotite monzogranite 6.01 -2.22 C C1 622986 9254124

LIF-18B* Biotite monzogranite 6.32 -2.20 C C1 626852 9258709

MDP-55 Biotite monzogranite 6.36 -2.20 C C1 613843 9261885

LIF-30A* Biotite monzogranite 7.46 -2.13 C C1 616520 9260177

MAR.30 Biotite monzogranite 7.98 -2.10 C C1 612555 9262904

LIF-13C* Biotite monzogranite 8.50 -2.07 C C1 625006 9259394

LIF-31* Biotite monzogranite 8.76 -2.06 C C1 614059 9262368

LIF-30B* Biotite monzogranite 9.16 -2.04 C C1 616520 9260177

MDP-12C Biotite monzogranite 9.20 -2.04 C C1 621613 9260243

LIF-04A* Biotite monzogranite 10.40 -1.99 C C2 645022 9265091

MDP-03A Biotite monzogranite 10.50 -1.98 C C2 626361 9257007

MDP-03B Biotite monzogranite 12.60 -1.90 C C2 626361 9257007

LIF-16A* Biotite monzogranite 16.20 -1.80 C C2 626361 9257010

MDP-14C Biotite-hornblende granodiorite 2.14 -2.67 B B3 621269 9259428

MDP-14E Biotite-hornblende granodiorite 2.50 -2.60 B B3 621269 9259428

PFA-63A Biotite-hornblende granodiorite 2.53 -2.58 B B3 634077 9269740

MDP-06A Biotite-hornblende granodiorite 2.87 -2.54 B B3 623648 9258136

MDP-14B Biotite-hornblende granodiorite 3.45 -2.46 B B3 621269 9259428

AFD-11A Biotite-hornblende granodiorite 4.11 -2.39 B B3 626622 9258168

MDP-36 Biotite-hornblende granodiorite 5.98 -2.22 C C1 620941 9251856

LIF-29* Biotite-hornblende granodiorite 7.22 -2.14 C C1 620425 9260435

LIF-14A* Biotite-hornblende granodiorite 7.53 -2.12 C C1 624896 9258965

AFD-16A Biotite-hornblende granodiorite 7.76 -2.11 C C1 624791 9258906

LIF-17C* Biotite-hornblende granodiorite 8.45 -2.07 C C1 626707 9258192

MDP-12B Biotite-hornblende granodiorite 8.71 -2.06 C C1 621613 9260243

LIF-21D* Biotite-hornblende granodiorite 8.88 -2.05 C C1 620906 9259083

MDP-12A Biotite-hornblende granodiorite 9.33 -2.03 C C1 621613 9260243

LIF-16C* Biotite-hornblende granodiorite 9.33 -2.03 C C1 626361 9257010

LIF-13B* Biotite-hornblende granodiorite 9.40 -2.03 C C1 625006 9259394

MDP-42C Biotite-hornblende granodiorite 9.85 -2.01 C C2 617106 9250595

LIF-14B* Biotite-hornblende granodiorite 10.50 -1.98 C C2 624896 9258965

MDP-42B Biotite-hornblende granodiorite 11.80 -1.93 C C2 617106 9250595

MDP-02D Biotite-hornblende granodiorite 12.30 -1.91 C C2 626704 9258200

MDP-10 Biotite-hornblende granodiorite 13.10 -1.89 C C2 621092 9257227

LIF-27D* Biotite-hornblende granodiorite 13.80 -1.86 C C2 620017 9259925

LIF-21C* Biotite-hornblende granodiorite 14.10 -1.85 C C2 620906 9259083

AFD-08 Biotite-hornblende granodiorite 14.20 -1.85 C C2 626319 9256956

MDP-14A Biotite-hornblende granodiorite 21.90 -1.66 C C2 621269 9259428

MDP-11B Biotite-hornblende granodiorite 25.00 -1.60 C C2 619910 9259992

PFR-14 Biotite-hornblende syenogranite 9.56 -2.02 C C1 662361 9253932

MAR.119 Biotite-hornblende syenogranite 30.10 -1.52 C C2 610036 9263340

*Samples selected for the study recently collected; the remaining samples were borrowed from the institutional collection.

Table 1. Continuation.
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boundaries. Mineral names in tables, micrographs, and figure 
legends are abbreviated according to Whitney and Evans (2010). 

Scanning electron microscopy 
Before SEM assessment, the surface of polished sections 

was made electrically conductive with ~20 nm carbon in a 
Quorum Q150T-ES sputtering device to minimize charging 
in SEM or electron probe micro-analysis (EPMA). Fe-Ti 
oxide minerals and local assemblages were identified in a Zeiss 
Sigma VP SEM instrument equipped with an IXRF Sedona 
SD energy-dispersive (X‑ray) spectrometer (EDS), operated 
at < 10-5 Torr, constant 8.5 mm working distance, accelerating 
voltage 20 kV, beam current of 500 pA (measured on Faraday 
cup), with beam diameter set to 1 μm, and counting time 30 
s with EDS detector dead time < 20%. Observations by SEM 
and semi-quantitative analyses by EDS were used to prepare 
for mineral chemistry. 

Mineral chemistry by electron probe 
micro-analysis 

For quantitative chemical analysis of amphibole and biotite 
compositions, carbon-coated polished thin sections were analyzed 
in a JEOL JXA8230 EPMA instrument located at Universidade 
Federal do Pará Institute of Geosciences (IG-UFPA), equipped 
with five wavelength-dispersive spectrometers (WDS) and one 
EDS. The instrument was operated in high vacuum (<5x106 Torr), 
at 15kV accelerating voltage, 20 nA beam current (on Faraday 
cup), beam diameter set to 1 μm for non-silicates, defocused 
to 10 μm for hydrous silicates to minimize element (Na, K, 
Al, Si) migration (see Morgan and London 2005). Na and F 
were allocated to be measured on WDS first in each analytical 
run, and all elements were measured on their respective Kα 
lines, 30 s on peak and 10 s each on low and high backgrounds. 
The EPMA instrument was internally calibrated against natural 
and synthetic mineral standards: andradite (Si, Ca), microcline 
(Al, K), hematite (Fe), olivine (Mg), albite (Na), pyrophanite 
(Ti, Mn), vanadinite (V, Cl), and topaz (F). Raw element data 
were corrected using the CITZAF algorithm of Armstrong 
(1995), as implemented in the JEOL proprietary instrument 
software, and corrected element contents were converted to 
oxides assuming stoichiometry. Net lower limits of detection 
(LLD) are listed per element, together with the data.

Element oxide contents in weight percent (wt%) were 
recast into mineral composition formulae in atoms per for-
mula unit (apfu) using guidelines from Papike (1987, 1988), 
and the appendices in Deer et al. (2013). Amphibole compo-
sitions were classified according to Hawthorne et al. (2012) 
and mica compositions according to Rieder et al. (1998). 
The Fe+3/Fe+2 ratios in amphibole were estimated based on 
charge balancing (Schumacher 1997). Selected results are 
collated in Tabs. 4 and 5. Processed composition data were 
plotted using the GDCkit freeware of Janoušek et al. (2006).

Magnetic susceptibility 
Magnetic susceptibilities of whole-rock samples (Tab. 1) 

were determined using a ZH Instruments SM-30 shirt-pocket 
susceptibility meter, located at the Laboratory of Magnetic 

Petrology (IG-UFPA), capable of measuring susceptibilities 
as low as 1x10‑7 (in SI units). Each rock sample was measured 
on three flat faces. The arithmetic mean values for each sample 
were statistically assessed with Minitab 17 freeware. Data are 
plotted on a logarithmic scale.

RESULTS

Petrography of the Vila Jussara Suite

Modal composition and petrographic 
classification

The modal composition data presented here were sup-
plied with literature data from Silva (2012), Teixeira (2013), 
Santos (2013), and Silva et al. (2020), plus some additional 
data obtained by the authors (Tab. 2).

The granitoids of the VJS are rose to whitish gray, medium 
to coarse grained, anisotropic, leucocratic rocks (M1 vary-
ing between 5.4 to 34.2 vol %, except for one tonalite sam-
ple; Tab. 2). The rocks of this suite have variable proportions 
of alkali feldspar and plagioclase. The main mafic phases are 
amphibole and biotite, which usually occur associated in vari-
able proportions, except for the BMzG which contains little 
or no amphibole. Accessory minerals include titanite, epi-
dote, allanite, zircon, apatite, ilmenite, magnetite, and pyrite. 

Their modal compositions were plotted in Q-A-P and 
Q-(A+P)-M’ diagrams (Le Maitre et al. 2002; Fig. 4, Tab. 2). 
Four main rock varieties were distinguished: 
•	 biotite-hornblende monzogranite with subordinate gran-

odiorite (BHMzG); 
•	 biotite-hornblende tonalite with rare occurrences of equi-

granular granodiorite (BHTnl); 
•	 biotite monzogranite with rare occurrences of granodio-

rite (BMzG); 
•	 hornblende-biotite granodiorite with rare occurrences of 

monzogranite (HBGd). 

In addition to these, a biotite-hornblende syenogranite to 
monzogranite (BHSnG) shows specific characteristics that 
prevent its inclusion in the previous groups. A synthesis of 
the main petrographic and magnetic petrology data of these 
four varieties is shown in Tab. 3.

The BHMzG was subdivided into two subgroups: the first 
subgroup corresponds to the reduced ferroan BHMzG and the 
second subgroup is composed of the oxidized ferroan BHMzG. 
The mafic and opaque modal contents are usually higher in 
the oxidized ferroan BHMzG compared to the reduced fer-
roan BHMzG (Tab. 3, Fig. 4). Ilmenite is the dominant opaque 
mineral in subgroup 1, whereas magnetite with subordinate 
pyrite and ilmenite is the main opaque phase in subgroup 2. 
The lowest magnetic values of the VJS are registered in the 
reduced BHMzG and increase substantially in the oxidized 
BHMzG (Tab. 3).

The HBGd variety has, in general, higher modal contents of 
mafic minerals compared to the BMzG samples (Tab. 3, Fig. 4). 
These varieties show moderate to high values of MS, and their 
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main phase among Fe-Ti oxide minerals is magnetite. The 
BHTnl variety has the highest content of mafic minerals of the 
whole suite (Tab. 3, Fig. 4). These rocks have relatively mod-
erate values of MS, and the main opaque phase corresponds 
to pyrite, except for sample MYF-40, which has a high MS 
value and magnetite as the dominant opaque mineral phase. 
Lastly, the BHSnG samples display variable modal contents 
of mafic minerals, high magnetite content, and also high MS 
values (Tab. 3).

Microstructure and texture/fabric
The rocks studied show penetrative foliation marked by 

the preferential orientation of ferromagnesian minerals and 
deformed feldspars and quartz. The BHMzG variety has an 
inequigranular texture, medium to coarse grain size. Some 
rocks still preserve features of hypidiomorphic granular 
texture; however, protomylonites and mylonites are found 
(Fig. 5A). In general, the BMzG and HBGd are porphyro-
clastic rocks with medium to coarse phenocrysts (Figs. 5D 
and 5G). In the BMzG, porphyroclasts are mostly alkaline 
feldspar (Figs. 5D and 5E), and in the HBGd, plagioclase 
porphyroclasts are more common (Figs. 5G and 5H). In 
both varieties, the matrix essentially consists of quartz-feld-
spar aggregates derived from recrystallization. The mafic 
minerals form aggregates and show fine to medium grain 
size (Figs. 5F and 5I). In addition, the HBGd has a higher 
matrix-to-porphyroclast ratio (Figs. 5G and 5H). Biotite-
hornblende tonalites usually have medium grain size and 
hypidiomorphic granular texture and are less recrystallized 
than the rocks from the previous groups (Figs. 5J and 5L). 

The microstructural aspects of the VJS were discussed in 
more detail by Silva et al. (2020).

Quartz: some fine to medium grain size (0.2-3 mm) sub-
hedral to anhedral crystals preserve partly igneous textures. 
In addition, the most deformed grains occur in three mor-
phological types: 
•	 in ribbons with fine grain size (< 1 mm) and moderate 

undulose extinction; 
•	 in polycrystalline aggregates composing the matrix or 

forming fine grain size (< 1 mm) anhedral subgrains 
of recrystallized crystals, which show moderate undu-
lose extinction and polygonal contacts with each other 
(Figs. 5B, 5E and 5H); 

•	 in fine anhedral grains included in potassium feldspar 
crystals. 

Alkaline feldspar crystals occur in two petrographic types: 
in porphyroclasts with albite-pericline twinning and in new 
grains and subgrains forming the matrix. Although the phe-
nocrysts were originally subhedral with coarse grain size (> 
5 mm), their original shape was usually obliterated, with the 
crystals displaying oval shape and xenomorphic contours. 
The crystals of the recrystallized matrix form fine- to very-
fine-grained polycrystalline aggregates and are associated 
with quartz, with which they present lobed contacts (Fig. 5E).

Plagioclase occurs in two petrographic types: subhedral 
phenocrysts or porphyroclasts with medium to coarse grain 
size (Fig. 5L), and albite and albite-Carlsbad polysynthetic 
twinning, which show irregular contacts with each other and 
with other minerals and usually display alteration to white 

Figure 4. Q-A-P and Q-(A+P)-M’ modal diagrams for granitoids of the VJS (fields according to Le Maitre et al. 2002). Modal data were 
obtained by the authors or compiled from previous studies by the GPPG (cf. Tab. 2).
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mica in their nuclei; fine grains that form the recrystallized 
matrix of the rock. 

Amphibole occurs as subhedral to euhedral crystals of 
medium to fine grain size (0.3-3 mm) that are commonly 
oriented (Fig. 5C) and assembled with biotite, titanite, epi-
dote, and Fe-Ti oxide minerals, thus forming mafic clusters. 
Contours and contacts with biotite are sometimes straight and, 
with other minerals, irregular (Fig. 5I). According to EPMA 
data, the amphibole composition ranges from hastingite to its 
transition to magnesio-hastingsite.

Biotite crystals are sub- to anhedral with sizes ranging 
from 0.2 to 2.5 mm, and they show serrated terminations and 

pleochroism ranging from pale yellow to dark brown. The con-
tacts are irregular or sometimes rectilinear to each other and to 
plagioclase, quartz, epidote, and amphibole crystals (Fig. 5F). 
In general, these crystals are oriented and surround the alka-
line feldspar phenocrysts. Biotite has a ferroan composition 
that approaches an annite composition in the most iron-rich 
terms (EPMA data).

Titanite predominantly occurs as sub- to anhedral crystals 
that are locally euhedral, of fine grain size, and usually associ-
ated with mafic aggregates (Fig. 5L). It also occurs associated 
with Fe-Ti oxide minerals, typically forming rims involving 
ilmenite crystals, which it partly replaces. 

Figure 5. (A) Macroscopic aspect of BHMzG; (B) quartz subgrains forming the matrix in BHMzG; (C) amphibole crystals partly replaced 
by biotite in BHMzG; (D) macroscopic aspect of BMzG with porphyroclastic texture; (E) macroscopic aspect of BMzG showing fine 
quartz crystals with grain boundary migration; (F) allanite euhedral crystal bordered by an epidote rim associated with biotite in BMzG; 
(G) macroscopic aspect of HBGd; (H) plagioclase porphyroclast in quartz-feldspar matrix derived from recrystallization in HBGd; (I) 
amphibole and biotite crystals associated with euhedral magmatic epidote, forming a mafic aggregate; ( J) macroscopic aspect of equigranular 
BHTnl; (K) hypidiomorphic granular texture in BHTnl; (L) subhedral titanite crystals exhibiting irregular contacts with opaque minerals 
in BHTnl. (B, C, E, F, H, K, and L) photomicrographs in polarized light from an optical microscope, with flat polarized light in panel i and 
cross-polarized light in all others.
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Epidote occurs as euhedral to subhedral crystals of fine 
grain size, and it is usually associated with mafic aggregates and 
shows rectilinear contacts with biotite (Fig. 5I) and irregular 
contacts with the other minerals. Epidote commonly forms 
rims around metamict allanite cores (Fig. 5F). Epidote was 
interpreted as being of magmatic origin by Dall’Agnol et al. 
(2017) and Cunha et al. (2021) based on textural and com-
positional criteria.

Apatite occurs as fine-grained prismatic crystals that are 
generally included in alkaline feldspar crystals or associated 
with mafic aggregates. Zircon occurs as euhedral to subhedral 
crystals of fine grain size.

Opaque minerals form sub- to anhedral or locally euhe-
dral crystals of fine grain size and are usually associated with 
mafic minerals. These minerals will be described in detail in 
the next section.

Magnetic susceptibility and opaque 
mineral assemblages

Magnetic susceptibility
MS data on the VJS were recorded in samples from differ-

ent bodies and collected from different areas; therefore, they 
do not represent the evolution of a single magma. The MS val-
ues measured in samples from the VJS are listed in Table 1 and 
summarized in Tab. 3. They ranged from 0.16x10-3 to 30.13x10-3 
with a median of 5.48x10-3 (SI) and are distributed from -3.80 
to -1.52 (log SI) (Fig. 6, Tab. 1). The normal probability plot 
of the rocks studied distinguished three magnetic populations 
termed populations A, B, and C (Fig. 6A). In these populations, 
the MS values ranged, respectively, from 0.16x10-3 to 0.32x10-3 

(log -3.80 to -3.52. SI), from 0.32x10-3 to 6.01x10-3 SI (log -3.49 
to -2.25) and from 6.02x10-3 to 30.13x10-3 SI (-2.24 to -1.52). 
Populations A, B, and C account for 11vol%, 50.6vol%, and 
38.4vol% of all study samples, respectively (Tab. 1). The fre-
quency histogram revealed a bimodal pattern of MS measure-
ments in the rocks of the suite (Fig. 6B).

The four main rock varieties of the suite were distributed 
in one or more MS populations, thus defining different MS 
subgroups. All subgroups are shown in an integrated proba-
bility plot and histograms specific to each rock variety of the 
suite (Fig. 7).

Petrographic texture/fabric associated 
with magnetic susceptibility

Biotite-hornblende monzogranite
This variety shows a wide variation in MS and is distrib-

uted in the three populations (Figs. 7A, 7B and 7C). It was 
subdivided into two subgroups, with the first formed by sam-
ples with low MS of population A and subpopulation B1 and 
the second formed by samples with higher MS values of sub-
populations B3 and C1 (Tabs. 1 and 3, Fig. 7C).

Subgroup 1 encompasses all samples from population A 
and is characterized by the occurrence of ilmenite with titanite 
rims (Figs. 8A and 8B), the absence of magnetite, and low 
modal content of opaque minerals (usually 0.10vol%; Tab. 3). 

In addition, subgroup 1 consists of samples from subpopulation 
B1 that present ilmenite with titanite rims as the most abun-
dant opaque mineral as well as crystals of magnetite and, occa-
sionally, pyrite partially replaced by goethite (Fig. 8C, Tab. 3). 

In subgroup 2, magnetite is the most abundant opaque 
mineral (Fig. 8D, Tab. 3), followed by pyrite (± chalcopy-
rite), which is partly or totally transformed into goethite, and 
by ilmenite crystals with fine hematite exsolution lamellae 
associated with titanite. The magnetite generally reveals mild 
to moderate alteration to martite.

In samples of subgroup 1, ilmenite crystals show similar 
textural aspects in populations A and B1 and are found as fine, 
individual crystals (Ilm I; see e.g. Haggerty 1991, Dall’Agnol 
et al. 1997) that are usually surrounded by titanite rims (Figs. 8A 
and 8B) and commonly associated and included in biotite 
and amphibole crystals. In the samples of subpopulation B1, 
ilmenite is also dominant and magnetite occurs as fine subhe-
dral crystals associated with pyrite (± chalcopyrite) (Fig. 8C). 
Conversely, in samples from subgroup 2, magnetite is dom-
inant and forms subhedral crystals (Fig. 8D). Pyrite crystals 
had a fine grain size and euhedral to subhedral character and 
mostly showed intense alteration to goethite.

Biotite-hornblende tonalite
This variety has moderate modal contents of opaque 

minerals and is concentrated in population B (subpopula-
tion B2; Figs. 7A, 7B and 7D), except for sample MYF-40 of 

Figure 6. (A) Probability plot of study rocks indicating the 
existence of three magnetic populations; (B) MS histogram of the 
set of samples from VJS showing a bimodal distribution.

A

B
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subpopulation C2 (Tab. 3). In this variety, sulfides (pyrite ± 
chalcopyrite) generally dominate over magnetite and ilmenite 
is scarce (Tab. 3). Ilmenite crystals are similar to those observed 
in subgroup 1 of BHMzG, despite usually showing hematite 

exsolution lamellae, as well as zones where hematite dominates 
and includes ilmenite lamellae (Fig. 9A). Sulfides are more 
abundant in this group than in subgroup 2 of BHMzG (Tab. 3). 
Pyrite always widely dominates over chalcopyrite and occurs 

Figure 7. (A) Integrated probability plot of all VJS samples showing the distribution of established varieties and subgroups; (B) integrated MS 
frequency histogram of study rocks highlighting the main petrographic groups and the distribution of their samples in different populations 
as defined in the probability plot; frequency histograms of: (C) the biotite-hornblende monzogranite (BHMzG) variety; (D) the biotite-
hornblende tonalite (BHTnl) variety; (E) the biotite monzogranite (BMzG) variety; (F) the hornblende-biotite granodiorite (HBGd) 
variety, including samples of BHSnG granites (red).
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as euhedral to subhedral crystals partly or entirely altered to 
goethite, generating goethite pseudomorphs. Magnetite forms 
subhedral crystals, which sometimes show rectilinear contacts 
with primary pyrite crystals now replaced by goethite (Figs. 9B, 
9C and 9D). The magnetite crystals exhibit mild alteration to 
martite, which occurs irregularly or along crystallographic planes 
of magnetite. In the tonalite of subpopulation C2, internal (int 
C Ilm; Fig. 9E) and external (ext C Ilm; Fig. 9F) composite 
ilmenite textures were observed (Buddington and Lindsley 
1964, Haggerty 1991, Dall’Agnol et al. 1997).

Biotite monzogranite
All study samples of the BMzG group have relatively high 

MS (Tab. 3, Fig. 7E) and are distributed in populations B (sub-
population B3) and C (subpopulations C1 and C2). The average 
modal content of opaque minerals of samples from subpopu-
lation C2 is higher than that of samples from subpopulations 
B3 and C1 (Tab. 2). In the BMzG samples, the most abundant 
opaque mineral is always magnetite followed by pyrite (± chal-
copyrite) transformed into goethite. Only two samples from 
subpopulation C2 contained ilmenite with hematite exsolu-
tions and associated titanite (Tab. 3). 

Magnetite is euhedral to subhedral and occurs included 
or associated with biotite lamellae, with which magnetite has 

rectilinear contacts (Fig. 10A). In addition, magnetite crystals 
are commonly associated with pyrite crystals partly or fully 
replaced by goethite, and magnetite exhibits rectilinear or 
slightly irregular contacts with goethite (Figs. 10B and 10E). 
Magnetite was affected by the martitization process, whose 
intensity ranges from mild to moderate. Ilmenite crystals 
with titanite rims occur in only two samples from subpopu-
lation C2. Associated ilmenite and magnetite also occur in a 
sample from subpopulation C2, and they show a titanite rim 
(Fig. 10F). The aspect of pyrite (Figs. 10C, 10D and 10E) is 
similar to that described in the BHTnl groups. 

Hornblende-biotite granodiorite 
The HBGd group also shows relatively high MS that mostly 

overlaps with the MS of BMzG (Tab. 3, Figs. 7E and 7F). As in 
the BMzG group, the average modal content of opaque min-
erals is clearly higher in subpopulation C2 (Tabs. 2 and 3). 
With extremely rare exceptions, in this group, the most abun-
dant opaque mineral is magnetite, which occurs as subhedral 
to euhedral crystals associated with or included in amphibole 
and biotite, which present rectilinear contacts with magnetite 
(Figs. 11A and 11B). Magnetite is slightly or moderately altered 
to martite. The pyrite-goethite association is the second-most 
abundant in this variety and both retain the textural characteristics 

Figure 8. Textural aspects of representative samples of Fe and Ti oxide minerals of biotite-hornblende monzogranite: (A and B) ilmenite with 
titanite rim associated with biotite; sample from subgroup 1, population A; (C) originally euhedral pyrite crystal partly altered to goethite, which 
is associated with subhedral magnetite; subgroup 1, subpopulation B1; (D) subhedral magnetite crystal; sample from subgroup 2, subpopulation 
C1. A: flat polarized light photomicrograph; B, C, D: backscattered electron images acquired under SEM. b: same section shown in A.
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and its relationships with magnetite as described in the preced-
ing subgroups (Figs. 11C and 11D). Ilmenite is present partic-
ularly in the samples of subpopulation B3, although it is always 
scarce, and its crystals are surrounded by titanite rims and 
exhibit thin hematite exsolution lamellae (Figs. 11E and 11F).

Magnetite-rich syenogranites
In addition to the four varieties described above, the VJS 

contains PFR-14 (HBMzG) and MAR-119 (BHSnG) samples 

that present very particular characteristics and differ signifi-
cantly from the groups discussed earlier. Despite containing 
monzogranite, these samples will be described as magne-
tite-rich syenogranites (SnG) to distinguish them from the 
other groups. These samples have very high values of MS, 
belong to subpopulation C2 (Tabs. 1 and 3, Fig. 7F), and sam-
ple MAR-119 shows the maximum MS value of the entire 
suite. The high MS values recorded in these two samples are 
consistent with their modal contents of opaque minerals and 

Figure 9. Textural aspects of dominant opaque minerals in representative samples of BHTnl: (A) ilmenite crystal surrounded by titanite rim, 
exhibiting hematite exsolution lamellae and hematite dominance zones with ilmenite lamellae; (B) subhedral magnetite crystal; (C and D) 
pyrite crystals almost entirely or entirely replaced by goethite and displaying rectilinear contact with subhedral magnetite crystals; (E and F) 
images of subhedral magnetite crystals locally with internal and external composite ilmenite, respectively. A, B, D, E, F: backscattered electron 
images acquired under SEM; C: flat polarized light photomicrograph of the same section observed in D. MDP-02C and AFD-11B = BHTnl 
from subpopulation B2; MYF-40 = BHTnl from subpopulation C2.
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with the occurrence of slightly martitized magnetite as the only 
opaque mineral (Tab. 3, Suppl. Tab. A4). These rocks will be 
discussed separately from the other varieties.

Whole-rock FeOt/(FeOt + MgO) ratios and 
mineral chemistry of amphibole and biotite

The new data on whole-rock chemical composition and new 
amphibole and biotite analyses performed in this study were 
integrated with the geochemical and mineral chemistry data 

published in previous studies (Dall’Agnol et al. 2017). Of the 
whole rock geochemistry data, only the FeOt/(FeOt + MgO) 
ratios will be discussed in the present paper. These ratios and Fe/
(Fe + Mg) data in amphibole and biotite are summarized in Tab. 
3. Selected chemical compositions of amphibole and biotite are 
presented in Tabs. 4 and 5, respectively. In addition to the elec-
tron microprobe analysis, analyses of amphibole and biotite via 
EDS under an SEM were performed in this study (Suppl. Tabs. 
A1, A2, A3, and A4). EDS analyses are indicative only. 

Figure 10. Textural aspects of dominant opaque minerals in samples representative of the BMzG group: (A) primary, subhedral magnetite 
crystal showing rectilinear contact with biotite; (B) pyrite crystal pseudomorphized in goethite, showing fine grains of magnetite on its 
boundaries (C) and (D) pyrite partly replaced by goethite; (E) primary magnetite crystals in regular contact with pyrite crystals fully replaced 
by goethite; (F) ilmenite crystal with very thin sparse hematite lamellae and magnetite crystal, both of which are surrounded by a titanite rim. 
A, C: Photomicrographs in flat polarized light showing the same section in C as in D; B, D, E, F: backscattered electron images acquired under 
SEM. MDP-02A = BMzG and MDP-02B = BGd from subpopulation B3 and MDP-03A = BMzG from subpopulation C2. 
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In terms of the whole-rock FeOt/(FeOt+MgO) ratio 
(Tab. 3), samples from subgroup 1 (population A and subpop-
ulation B1) of the biotite-hornblende monzogranite (BHMzG) 
group tend to show values ≥ 0.90, whereas those of subgroup 2 
(subpopulations B3 and C1) ranged from 0.84 to 0.89. The Fe/
(Fe + Mg) ratios in amphibole and biotite also decrease mark-
edly from the samples of population A of subgroup 1 to those 
of subpopulation B1 of the same group, attaining the lowest 
values in the samples of subgroup 2 (Tab. 3). 

The rocks from the biotite-hornblende tonalite (BHTnl) group 
display FeOt/(FeOt + Mg) ratios ranging from 0.75 to 0.76 with an 

anomalous value of 0.85 (Tab. 3). Amphibole and biotite showed 
moderate Fe/(Fe + Mg) ratios and display significant variations 
in the samples of subpopulations B2 and C2 (Tabs. 3, 4, and 5). 

The whole-rock FeOt/(FeOt+MgO) ratios found in sam-
ples from biotite monzogranite (BMzG) ranged from 0.78 to 
0.81 and show little variation in the different subpopulations 
(Tab. 3). The Fe/(Fe + Mg) ratios in amphibole and biotite 
display moderate values and are similar in the different ana-
lyzed subpopulations (Tabs. 3, 4, and 5). 

The whole-rock FeOt/(FeOt + MgO) ratios of samples 
from the hornblende-biotite granodiorite (HBGd) group 

Figure 11. Textural aspects of dominant opaque minerals in samples representative of the HBGd group: (A and B) magnetite crystal 
exhibiting rectilinear contact with amphibole; (C) pyrite crystal with a fine goethite boundary; (D) magnetite crystal exhibiting rectilinear 
contact with pyrite partly replaced by goethite; (E and F) ilmenite crystal exhibiting hematite lamellae and surrounded by a titanite rim. 
A: flat polarized light photomicrograph; B, C, D, E, F: backscattered electron images acquired under SEM.
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Table 4. Selected electron microprobe analyses and structural formulae for amphibole of the granitoids of the Vila Jussara Suite.

Petrographic 
varieties Biotite-hornblende monzogranite (BHMzG) Biotite-hornblende tonalite (BHTnl)

Biotite-
hornblende 

Syenogranite 
(HSnG)

Magnetic 
population

Population 
A

Subpopulation 
B1

Subpopulation 
C1

Subpopulation 
B2

Subpopulation 
C2

Subpopulation 
C2

Sample PFR-16A* MDP-57A** PFA-39** PFA-62* MDP-02C** MYF-40* MAR-119*

Analysis

C1 C1 C1 C2 C1 C2 C3 C3 C1 C3 C1 C3 C3 C4

Amph

1- 2

Amph

4-4

Amph

1-4

Amph

1-1

Amph

1-2

Amph

1-5

Amph 

1-6

Amph

2-6

Amph

1-2

Amph

1-1

Amph

2-5

Amph

2-2

Amph

2-6

Amph

1-2

SiO2 (Wt%) 37.37 37.34 37.48 37.30 37.74 38.89 39.39 40.20 40.64 38.99 41.89 42.27 36.27 36.21

TiO2 0.47 0.59 0.77 0.67 0.70 0.79 1.23 1.58 1.43 0.60 1.45 1.59 0.49 0.58

Al2O3 12.52 12.66 12.21 12.30 12.24 11.58 11.30 10.40 10.59 12.17 10.32 10.11 12.66 12.62

Fe2O3 5.70 4.79 8.42 8.71 7.33 6.35 5.59 5.12 5.71 8.13 5.18 5.23 7.42 8.07

FeO 24.70 25.32 20.79 20.86 20.57 20.68 20.03 20.71 16.35 15.78 15.46 15.81 24.15 23.77

MnO 0.59 0.55 0.48 0.45 0.57 0.61 0.42 0.43 0.42 0.49 0.54 0.53 0.86 0.79

MgO 1.48 1.39 2.59 2.40 3.80 4.24 5.05 5.34 7.45 6.42 8.54 8.53 0.84 0.93

CaO 10.80 10.94 9.88 9.97 10.70 10.89 10.83 10.94 10.88 10.80 11.18 11.22 10.39 10.38

Na2O 1.31 1.24 1.57 1.43 1.56 1.52 1.59 1.73 1.65 1.49 1.59 1.62 1.38 1.31

K2O 2.43 2.49 2.10 2.09 2.39 1.98 1.92 1.75 1.53 1.91 1.52 1.48 2.61 2.61

F 0.15 0.24 0.13 0.18 0.00 0.01 0.00 0.00 0.15 0.23 0.29 0.32 0.10 0.08

Cl 1.21 1.27 1.48 1.54 0.02 0.09 1.34 1.25 0.53 0.71 0.21 0.21 1.94 1.93

H2O* 1.47 1.41 1.42 1.38 1.87 1.86 1.56 1.60 1.72 1.63 1.77 1.77 1.29 1.30

Subtotal 100.21 100.21 99.31 99.28 99.48 99.49 100.25 101.05 99.05 99.35 99.93 100.68 100.39 100.58

O=F,Cl 0.34 0.39 0.39 0.42 0.01 0.03 0.30 0.28 0.18 0.26 0.17 0.18 0.48 0.47

Total 99.88 99.82 98.93 98.86 99.48 99.46 99.95 100.77 98.86 99.09 99.76 100.50 99.91 100.11

Number of cations per formulae unit based on twenty three oxygen atoms

Si 6.06 6.07 6.06 6.04 6.02 6.16 6.21 6.29 6.32 6.10 6.39 6.41 5.94 5.92

Al iv 1.94 1.93 1.94 1.96 1.98 1.84 1.79 1.71 1.68 1.90 1.61 1.59 2.06 2.08

Al vi 0.46 0.49 0.38 0.39 0.32 0.33 0.31 0.20 0.26 0.35 0.25 0.22 0.39 0.35

Ti 0.06 0.07 0.09 0.08 0.08 0.09 0.15 0.19 0.17 0.07 0.17 0.18 0.06 0.07

Fe3+ 0.70 0.59 1.02 1.06 0.88 0.76 0.66 0.60 0.67 0.96 0.59 0.60 0.92 0.99

Fe2+ 3.35 3.44 2.81 2.83 2.74 2.74 2.64 2.71 2.13 2.07 1.97 2.01 3.31 3.25

Mn 0.08 0.08 0.07 0.06 0.08 0.08 0.06 0.06 0.06 0.07 0.07 0.07 0.12 0.11

Mg 0.36 0.34 0.62 0.58 0.90 1.00 1.19 1.24 1.73 1.50 1.94 1.93 0.20 0.23

Ca 1.88 1.90 1.71 1.73 1.83 1.85 1.83 1.83 1.81 1.81 1.83 1.82 1.82 1.82

Na 0.41 0.39 0.49 0.45 0.48 0.47 0.48 0.52 0.50 0.45 0.47 0.48 0.44 0.41

K 0.50 0.52 0.43 0.43 0.49 0.40 0.39 0.35 0.30 0.38 0.30 0.29 0.54 0.54

Fe/(Fe+Mg) 0.903 0.911 0.818 0.830 0.752 0.733 0.690 0.685 0.552 0.580 0.504 0.510 0.942 0.935

is directly associated with the behavior of magnetite, which is 
the main ferromagnetic mineral (Clark 1999). 

In the BHMzG, the low MS values of subgroup 1 can be 
explained by the dominance of ilmenite and the differences 
in MS between samples from populations A and B1 are due to 
the presence of a small fraction of magnetite in the samples of 
subpopulation B1 (Tabs. 1 and 3). The significant occurrence 
and dominance of magnetite in subgroup 2 justifies its mag-
netic signature with relatively higher MS values than those 
in subgroup 1. 

The samples of subpopulation B2 of the BHTnl display 
moderate values of MS that reflect the dominance of sulfides 

over magnetite. The sample of subpopulation C2 has magne-
tite as the main opaque phase and shows higher MS compared 
to the rocks of subpopulation B2 (Tab. 3). 

The samples of the BMzG group display moderate to 
high MS (Tab. 3, Fig. 7E) and are distributed in popula-
tions B (subpopulation B3) and C (subpopulations C1 and 
C2). In the BMzG and HBGd, magnetite is the most abun-
dant opaque mineral followed by pyrite transformed into 
goethite. Only two samples from subpopulation C2 of the 
BMzG contained ilmenite with hematite exsolutions and 
associated titanite. In the HBGd, ilmenite is rare or even 
absent (Tab. 3). 

Continue...
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Table 4. Continuation.

Lower limit of detection (LLD in ppm): Si = 51; Ti = 98; Al = 26; Fe = 92; Mn = 70; Mg = 38; Ca = 55; Na = 28; K = 30; F = 165; Cl = 14. Data source: 
*Dall’Agnol et al. 2017; **this work.

Petrographic 
varieties Hornblende-biotite granodiorite (HBGd) Biotite monzogranite (BMzG)

Magnetic 
population

Subpopulation 
B3

Subpopulation 
C1

Subpopulation 
C2

Subpopulation 
C1

Subpopulation 
C2

Sample AFD-11A** ADE-01D** AFD-16A** AFD-08* MDP-55** LIF-04A**

Analysis
C1 C1 C1 C2 C2 C2 C1 C1 C4 C3 C2 C3

Amph
1-1

Amph
1-5

Amph
1-3

Amph
1-3

Amph-
1-3

Amph
2-4

Amph
2-1

Amph
2-8

Amph
1-3

Amph
1-1

Amph
1-1

Amph
1-3

SiO2 (Wt%) 37,80 38.31 38.81 39.07 38.95 38.49 39.91 39.52 38.42 38.29 38.17 38.42

TiO2 0.44 0.59 0.54 0.56 0.58 0.62 0.72 0.69 0.51 0.49 0.42 0.40

Al2O3 12.59 12.41 12.47 12.54 11.90 12.33 11.58 12.10 12.66 12.69 12.79 12.76

Fe2O3 7.00 6.47 6.09 6.97 7.66 7.43 6.54 6.10 7.53 7.59 7.70 7.99

FeO 19.84 19.85 19.62 19.47 17.48 18.19 18.14 18.45 17.12 17.54 16.55 16.33

MnO 0.44 0.46 0.44 0.43 0.57 0.57 0.56 0.56 0.59 0.56 0.67 0.70

MgO 4.17 4.39 4.91 4.70 5.67 5.20 6.01 5.83 5.55 5.25 5.66 5.76

CaO 10.77 10.81 10.92 10.85 10.79 10.89 11.11 11.17 10.74 10.65 10.79 10.80

Na2O 1.45 1.44 1.62 1.55 1.50 1.43 1.53 1.53 1.55 1.61 1.52 1.51

K2O 2.35 2.25 2.20 2.12 2.10 2.20 1.90 2.07 2.11 2.10 2.00 1.96

F 0.13 0.00 0.04 0.00 0.15 0.06 0.19 0.20 0.44 0.41 0.23 0.35

Cl 0.02 0.09 0.00 0.06 0.86 0.94 0.68 0.80 0.69 0.67 0.59 0.61

H2O* 1.81 1.86 1.89 1.90 1.62 1.63 1.67 1.63 1.52 1.53 1.63 1.59

Subtotal 98.82 98.92 99.55 100.22 99.83 99.97 100.53 100.64 99.44 99.38 98.72 99.15

O=F,Cl 0.06 0.02 0.02 0.01 0.26 0.24 0.23 0.27 0.34 0.32 0.23 0.28

Total 98.76 98.90 99.53 100.21 99.57 99.73 100.29 100.38 99.10 99.06 98.49 98.87

Number of cations per formulae unit based on twenty three oxygen atoms

Si 6.03 6.09 6.11 6.11 6.12 6.06 6.20 6.15 6.05 6.05 6.04 6.05

Al iv 1.97 1.91 1.89 1.89 1.88 1.94 1.80 1.85 1.95 1.95 1.96 1.95

Al vi 0.40 0.41 0.42 0.42 0.33 0.35 0.33 0.37 0.41 0.41 0.42 0.41

Ti 0.05 0.07 0.06 0.07 0.07 0.07 0.08 0.08 0.06 0.06 0.05 0.05

Fe3+ 0.84 0.77 0.72 0.82 0.91 0.88 0.76 0.72 0.89 0.90 0.92 0.95

Fe2+ 2.65 2.64 2.58 2.55 2.30 2.40 2.36 2.40 2.26 2.32 2.19 2.15

Mn 0.06 0.06 0.06 0.06 0.08 0.08 0.07 0.07 0.08 0.07 0.09 0.09

Mg 0.99 1.04 1.15 1.09 1.33 1.22 1.39 1.35 1.30 1.24 1.33 1.35

Ca 1.84 1.84 1.84 1.82 1.82 1.84 1.85 1.86 1.81 1.80 1.83 1.82

Na 0.45 0.44 0.49 0.47 0.46 0.44 0.46 0.46 0.47 0.49 0.46 0.46

K 0.48 0.46 0.44 0.42 0.42 0.44 0.38 0.41 0.42 0.42 0.40 0.39

Fe/(Fe+Mg) 0.727 0.717 0.691 0.699 0.634 0.663 0.629 0.640 0.634 0.652 0.621 0.614

range from 0.76 to 0.83 and do not vary significantly in the 
different subpopulations (Tab. 3). The mineral chemistry 
data collected in electron microprobe analyses in amphiboles 
have similar Fe/(Fe + Mg) ratios in samples of subpopula-
tions C1 and C2, whereas the same ratio shows significant 
variations in biotite and decreases from subpopulation C1 
to C2 (Tabs. 3, 4 and 5).

The MAR-119 sample of the BHSnG group has the highest 
whole-rock FeOt/(FeOt + MgO) ratio of the entire study set 
(0.99; Tab. 3), and the PFR-14 sample shows similar behav-
ior. The electron microprobe analysis of amphibole in sample 
MAR-119 revealed Fe/Fe + Mg ratios ranging from 0.93 to 

0.95, which is compatible with the extreme values obtained for 
the whole-rock FeOt/(FeOt + MgO) ratio (Tab. 3). 

DISCUSSION

Iron-titanium oxide minerals and 
magnetic susceptibility

The MS of rocks essentially depends on the modal con-
tent, nature, and occurrence mode of its ferromagnetic min-
erals. In granitoids composed of quartz, feldspars, ferromag-
nesian silicates, and accessory minerals, the variation in MS 

20/30

Braz. J. Geol. (2022), 52(3): e20201071



Finally, the BHSnG shows very high values of MS and 
belongs to subpopulation C2 (Tabs. 1 and 3, Fig. 7F). This is 
a consequence of the total dominance and high modal con-
tents of magnetite in these rocks.

In some samples of different varieties, magnetite was par-
tially replaced for martite and this alteration contributed to a 
reduction in MS values. However, this alteration process was 
not intense and certainly should not significantly affect the 
MS values of the rocks studied. 

The MS data associated with the behavior of Fe-Ti oxide 
minerals provided a logical overview of the variations in MS 
observed in the different granite varieties and helped gain 
a better understanding of the complex magnetic behavior 
of the VJS. The presence of BHMzG of subgroup 2 in the 

subpopulation B3, together with the BMzG and HBGd sam-
ples, can be explained by the relatively high modal content 
of magnetite in all these rocks. In the same way, the presence 
of the BHSnG in the subpopulation C2, side by side with the 
BMzG and HBGd samples, is due to the extremely high mag-
netite modal content of the former. 

Classification of the Vila Jussara 
granitoids based on whole rock FeOt/
(FeOt + MgO)

The geochemical behavior of the Vila Jussara granitoids was 
discussed in detail by Dall’Agnol et al. (2017). In this study, 
we only intend to put in evidence some peculiar characteris-
tics of the granitoids studied. For that, the whole rock FeOt/

Table 5. Selected electron microprobe analyses and structural formulae for biotite of the granitoids of the Vila Jussara Suite. 

Petrographic 
varieties Biotite-hornblende monzogranite (BHMzG) Biotite-hornblende tonalite (BHTnl)

Magnetic 
population

Population 
A

Subpopulation 
B1

Subpopulation 
C1 Subpopulation B2 Subpopulation 

C2

Sample PFR-16A* MDP-57A** PFA-39** PFA-62* MDP-02C** MYF-40*

Analysis
C1 C1 C2 C3 C1 C2 C1 C2 C2 C3 C2 C4

Biot
1-5

Biot
1-10

Biot
1-1

Biot
1-4

Biot
1-2

Biot
1-2

Biot
1-5

Biot
3-3

Biot
1-4

Biot
1-5

Biot
2-1

Biot
1-1

SiO2 (wt %) 34.47 34.64 34.07 34.13 35.43 35.51 35.14 34.94 36.16 36.15 36.69 36.13

TiO2 2.21 2.22 3.09 2.86 2.74 2.46 4.15 4.25 2.17 2.27 3.81 3.77

Al2O3 14.33 14.61 14.44 14.69 14.61 14.62 13.65 13.56 14.67 14.66 14.03 13.89

FeO 30.78 31.24 29.40 28.83 25.54 25.43 26.55 26.72 21.32 21.27 21.81 20.99

MnO 0.42 0.37 0.34 0.36 0.34 0.36 0.22 0.14 0.28 0.29 0.32 0.29

MgO 2.74 2.85 4.19 4.60 7.28 7.44 6.75 7.01 10.31 10.22 10.18 10.46

CaO 0.05 0.03 0.01 0.02 0.02 0.03 0.03 0.16 0.04 0.01 0.03 0.00

Na2O 0.09 0.09 0.05 0.09 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06

K2O 9.03 9.15 8.80 8.86 9.32 9.29 9.21 8.88 9.12 9.23 9.66 9.62

F 0.00 0.03 0.23 0.18 0.32 0.47 0.00 0.04 0.56 0.67 0.52 0.52

Cl 0.81 0.81 0.95 0.89 0.85 0.82 0.84 0.75 0.39 0.38 0.19 0.19

H2O 3.44 3.46 3.34 3.39 3.44 3.37 3.59 3.59 3.48 3.43 3.63 3.58

Subtotal 98.77 99.83 99.55 99.57 100.49 100.56 101.09 101.07 98.96 98.90 101.26 99.91

O=F,Cl 0.18 0.20 0.31 0.28 0.33 0.38 0.19 0.18 0.32 0.37 0.26 0.26

Total 98.59 99.63 99.24 99.29 100.16 100.17 100.90 100.89 98.63 98.53 101.00 99.65

Number of cations per formulae unit based on twenty two oxygen atoms

Si 5.665 5.635 5.536 5.527 5.584 5.596 5.543 5.512 5.640 5.641 5.606 5.587

Al iv 2.335 2.365 2.464 2.473 2.416 2.404 2.457 2.488 2.360 2.359 2.394 2.413

Al vi 0.440 0.437 0.302 0.330 0.297 0.313 0.082 0.033 0.337 0.338 0.132 0.118

Ti 0.273 0.271 0.378 0.349 0.325 0.291 0.492 0.504 0.254 0.267 0.438 0.439

Fe 4.231 4.251 3.995 3.905 3.366 3.352 3.503 3.525 2.781 2.776 2.787 2.715

Mn 0.059 0.051 0.047 0.050 0.046 0.048 0.029 0.019 0.036 0.038 0.041 0.039

Mg 0.672 0.690 1.016 1.109 1.710 1.748 1.587 1.648 2.397 2.377 2.319 2.412

Ca 0.009 0.005 0.002 0.003 0.004 0.004 0.005 0.027 0.007 0.002 0.005 0.000

Na 0.030 0.028 0.017 0.028 0.021 0.019 0.023 0.022 0.022 0.019 0.016 0.019

K 1.894 1.899 1.825 1.830 1.873 1.867 1.853 1.786 1.815 1.837 1.883 1.896

Al total 2.775 2.802 2.766 2.803 2.713 2.716 2.538 2.522 2.696 2.696 2.526 2.531

Fe/Fe+Mg 0.863 0.860 0.797 0.779 0.663 0.657 0.688 0.681 0.537 0.539 0.546 0.530

Continue...
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Table 5. Continuation.

Total Fe reported as FeO. Lower limit of detection (LLD in ppm): Si = 51; Ti = 98; Al = 26; Fe = 92; Mn = 70; Mg = 38; Ca = 55; Na = 28; K = 30; F = 165; 
Cl = 14. Data source: *Dall’Agnol et al. 2017; **this work.

Petrographic 
varieties Biotite monzogranite (BMzG) Hornblende-biotite granodiorite (HBGd)

Magnetic 
population

Subpopulation 
C1

Subpopulation 
B3

Subpopulation 
C1

Subpopulation 
C2

Sample MDP-55** LIF-04A** AFD-11A** ADE-01D** AFD-16A** AFD-08*

Analysis
C4 C3 C1 C3 C1 C1 C1 C1 C1 C3 C1 C2

Biot
1-3

Biot
1-4

Biot
1-4

Biot
1-2

Biot
1-1

Biot
1-5

Biot
1-1

Biot
1-3

Biot
1-12

Biot
2-2

Biot
1-1

Biot
1-4

SiO2 (wt %) 36.15 36.59 36.03 36.21 35.92 36.02 36.42 36.22 36.19 36.32 36.38 36.31

TiO2 2.27 2.06 1.79 1.96 1.93 2.14 1.65 1.58 1.63 2.10 1.90 2.07

Al2O3 14.74 14.91 14.64 14.88 14.83 14.65 14.70 14.62 14.74 14.65 14.76 14.64

FeO 21.80 21.68 21.48 21.53 25.19 24.94 23.04 23.10 23.49 23.13 22.63 22.77

MnO 0.38 0.38 0.46 0.54 0.31 0.33 0.31 0.32 0.43 0.43 0.36 0.36

MgO 9.65 9.78 10.34 10.22 7.70 7.86 9.16 9.12 8.91 8.95 9.54 9.49

CaO 0.01 0.00 0.02 0.03 0.02 0.01 0.10 0.08 0.01 0.02 0.06 0.05

Na2O 0.04 0.04 0.06 0.06 0.10 0.07 0.07 0.08 0.02 0.06 0.11 0.05

K2O 9.13 9.17 9.11 9.21 9.36 9.42 9.48 9.43 9.58 9.43 9.67 9.47

F 1.12 1.07 0.73 0.83 0.48 0.50 0.61 0.62 0.45 0.55 0.53 0.56

Cl 0.32 0.32 0.38 0.36 0.61 0.59 0.39 0.39 0.52 0.44 0.44 0.42

H2O 3.22 3.28 3.38 3.37 3.43 3.44 3.45 3.42 3.48 3.47 3.50 3.48

Subtotal 99.02 99.57 98.64 99.55 99.98 100.21 99.58 99.03 99.65 99.94 99.97 99.91

O=F,Cl 0.54 0.52 0.39 0.43 0.34 0.34 0.34 0.35 0.31 0.33 0.32 0.33

Total 98.47 99.05 98.25 99.11 99.64 99.87 99.23 98.68 99.34 99.61 99.65 99.58

Number of cations per formulae unit based on twenty two oxygen atoms

Si 5.653 5.680 5.645 5.629 5.649 5.652 5.691 5.690 5.671 5.666 5.654 5.651

Al iv 2.347 2.320 2.355 2.371 2.351 2.348 2.309 2.310 2.329 2.334 2.346 2.349

Al vi 0.370 0.409 0.349 0.355 0.397 0.362 0.398 0.397 0.393 0.360 0.358 0.338

Ti 0.267 0.240 0.211 0.229 0.228 0.252 0.194 0.186 0.192 0.246 0.222 0.242

Fe 2.851 2.815 2.815 2.800 3.313 3.273 3.011 3.035 3.079 3.018 2.941 2.964

Mn 0.050 0.050 0.060 0.071 0.041 0.043 0.041 0.042 0.057 0.057 0.048 0.047

Mg 2.249 2.263 2.416 2.368 1.804 1.838 2.133 2.136 2.081 2.080 2.211 2.202

Ca 0.002 0.001 0.004 0.005 0.004 0.001 0.017 0.013 0.002 0.003 0.010 0.008

Na 0.012 0.013 0.019 0.017 0.032 0.023 0.020 0.023 0.007 0.019 0.034 0.015

K 1.820 1.816 1.821 1.826 1.877 1.885 1.889 1.889 1.914 1.877 1.917 1.881

Al total 2.717 2.729 2.704 2.727 2.748 2.710 2.707 2.708 2.722 2.694 2.704 2.686

Fe/Fe+Mg 0.559 0.554 0.538 0.542 0.647 0.640 0.585 0.587 0.597 0.592 0.571 0.574

(FeOt + MgO) ratio of selected analyzed samples of the VJS 
(data from Dall’Agnol et al. 2017, Silva et al. 2020, this work) 
were plotted in the FeO/(FeO + MgO) vs. SiO2 (Frost et al. 
2001) and FeO/(FeO + MgO) vs. Al2O3 diagrams (Figs. 12A 
and 12B). In both diagrams, there is a net distinction between 
the BHMzG and BHSnG varieties and the BHTnl, BMzG, and 
HBGd ones, with the latter plotting in the magnesian or calc-al-
kaline (Cordilleran) field and the former in the ferroan granite 
field. Besides, it is possible to verify the contrast between the 
BHMzG of population A and subpopulation B1 which have 
characteristics of reduced A-type granites, whereas those of 
subgroup 2 are classified as oxidized A-type granites (Fig. 12B).

These diagrams reveal the particular geochemical behavior 
of the VJS, which shows a trace-element geochemical signature 

akin to A-type granites but is formed by granitoids varying from 
ferroan to magnesian granites (Fig. 12A; cf. Dall’Agnol et al. 2017). 
Another relevant point is that, according to the selected diagrams, 
the BHSnG can be unequivocally classified as a reduced A-type 
(ferroan) granite (Fig. 12B), even if containing a relatively high 
modal content of magnetite and high MS value. The peculiar 
geochemical behavior of the Vila Jussara granitoids is strictly 
associated with strong variations in oxygen fugacity and magnetic 
petrology that are not commonly observed in granitoid suites.

Oxygen fugacity estimate for granitoids 
of the Vila Jussara Suite

There are no objective conditions to apply the oxybarom-
eter based on primary compositions of Fe-Ti oxide minerals 
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(Buddington and Lindsley 1964, Dall’Agnol et al. 1997) 
because these minerals were reequilibrated. However, the 
associations between Fe-Ti oxide minerals and iron-bear-
ing silicate phases as well as the Fe/(Fe + Mg) ratios of the 
latter and the [FeOt/(FeOt + MgO)] of whole-rock pro-
vide information for estimating the prevailing fO2 condi-
tions during magmatic crystallization. These data are sum-
marized in Tab. 3 and shown in more detail in Suppl. Tabs. 
A1, A2, A3, and A4.

In granite systems, the prevailing fO2 in the magma source 
and during differentiation processes has implications for mag-
matic evolution and crystallization (Wones 1981, Ishihara 
1981, Frost 1991, Haggerty 1991, Dall’Agnol et al. 1997). 
Several theoretical and experimental studies were conducted 
to estimate fO2 and understand its role both in the origin of 
magmas and throughout their differentiation (Buddington 
and Lindsley 1964, Wones and Eugster 1965, Carmichael 
1991, Frost 1991, Frost and Lindsley 1992, Anderson and 
Smith 1995, Anderson et al. 2008, Ghiorso and Evans 2008, 
Ridolfi et al. 2010, Putirka 2016, Arató and Audétat 2017; cf. 
also Loucks et al. 2018, for a critical review of fO2 evolution 
in magmatic rocks). 

The available set of petrographic,ineralogyical, and geo-
chemical data on the granitoids of the VJS was employed to 
empirically estimate the oxygen fugacity conditions of the 
formation of each group of rocks. The Fe/(Fe + Mg) ratios in 
amphibole and biotite of the granites studied (Figs. 12C and 
12D) indicate the oxygen fugacity prevalent during their crys-
tallization (cf. Czamanske and Mihalik 1972, Ishihara 1981, 
Anderson and Smith 1995, Anderson et al. 2008, Cunha et al. 
2016, Dall’Agnol et al. 2017). These data were associated with 
the nature of Fe-Ti oxide minerals and the [FeOt/(FeOt + 
MgO)] of whole rock to estimate the prevalent oxygen fugac-
ity during the crystallization of each granite variety (Fig. 12E). 
The absence of magnetite indicates formation at fO2 conditions 
below the FMQ buffer and its occurrence indicates compar-
atively higher fO2, on or above FMQ, that could attain NNO 
buffer conditions. 

In Fig. 12E, temperature intervals of crystallization for each 
variety were based on estimates by Dall’Agnol et al. (2017) and 
additional unpublished data obtained by the authors, in both 
cases using amphibole composition and applying the method of 
Ridolfi et al. (2010). We assumed that fO2 conditions evolved 
with decreasing temperature in parallel with the buffer curves. 
This is commonly the case, but Loucks et al. (2018) consider 
that several magmatic suites changed their fO2 trends relative 
to reference buffers during magmatic evolution. They con-
cluded that in suites with low-water contents, there was a ten-
dency of fO2 decrease during magmatic evolution, the opposite 
being observed in water-rich suites. Besides, fugacity estimates 
based only on the composition of mafic minerals (Anderson 
and Smith 1995) are, to some degree, an oversimplification. 
However, when they are associated with modal iron-titanium 
oxide minerals and the [FeOt/(FeOt + MgO)] of whole-rock, 
better estimates of fO2 conditions are possible.

The BHMzG of population A from subgroup 1 were formed 
outside the magnetite stability field, their whole-rock FeOt/

(FeOt + MgO) ratios are compatible with reduced type A 
granites (Figs. 12A and 12B), their amphibole compositions 
indicate formation under low fO2, and their biotite corre-
sponds to the mica of the ilmenite series (Figs. 12C and 12D; 
Suppl. Tab. A1). Based on these data, they likely evolved under 
reduced conditions (Fig. 12E), and the trajectory was slightly 
below the fayalite-magnetite-quartz buffer curve (FMQ; buf-
fer curves according to Frost 1991). On the other hand, the 
BHMzG of subpopulation B1 from subgroup 1 has also ilmenite 
but it already contains primary magnetite and the whole-rock 
FeOt/(FeOt + MgO) ratios are equivalent to those of reduced 
or oxidized A-type granites (Fig. 12B), amphibole composi-
tions indicate low or transitional (low to intermediate) fO2 

conditions, and the biotite have compositions comparable 
to those of mica minerals of the ilmenite series or of biotite 
from transitional granites between the ilmenite and magnetite 
series (Figs. 12C and 12D; Suppl. Tab. A1). This dataset sug-
gests the formation of this variety under moderately reduced 
conditions, over the FMQ buffer curve, or only slightly above 
it (Fig. 12E). In the BHMzG of subgroup 2, magnetite domi-
nates over ilmenite (Tab. 3, Suppl. Tab. A1). Their whole-rock 
FeOt/(FeOt + MgO) ratios are similar to those of oxidized 
type A granites (Fig. 12B); their amphibole composition indi-
cates formation under low fO2 (Suppl. Tab. A1) to interme-
diate fO2 (Fig. 12C); and their biotite composition is mostly 
transitional between the biotite of granites of the ilmenite and 
magnetite series (Suppl. Tab. A1). Such granites formed cer-
tainly above the FMQ buffer, but most likely below the NNO 
buffer, and their fO2 conditions were estimated as being equiv-
alent to FMQ+0.5 (Fig. 12E).

The dominant samples from the BHTnl group are char-
acterized by pyrite dominance followed by magnetite, 
with the inverse occurring only in sample MYF-40 (Tab. 3, 
Suppl. Tab. A2). Their whole-rock FeOt/(FeOt+MgO) ratios 
indicate that they are magnesian granites, except for sample 
PFA-62 (Figs. 12a and 12b; Tab. A2). Amphibole compo-
sitional data (Fig. 12C; Suppl. Tab. A2) indicate formation 
under intermediate or high fO2 conditions and biotite has 
always displayed similarity with the biotite of granites of 
the magnetite series (Fig. 12D; Suppl. Tab. A2). In conclu-
sion, this granitoid crystallized under oxidizing conditions 
is equivalent to NNO to NNO-0.5 or in the case of sample 
MYF-40 to NNO+1 (Fig. 12E). 

In the BMzG, the dominant opaque phase is magnetite 
(Tab. 3, Suppl. Tab. A3). Their whole-rock FeOt/(FeOt + 
MgO) ratios make it possible to classify them as magnesian 
granites (Fig. 12A), their amphibole composition indicates 
crystallization under intermediate or transitional between 
intermediate to high fO2 conditions (Fig. 12C), and their 
biotite composition is equivalent to the mica composition of 
granitoids of the magnetite series (Fig. 12D; Suppl. Tab. A3). 
Such granitoids crystallized under oxidizing conditions likely 
corresponding to NNO to NNO+0.5 based on empirical data 
(Fig. 12E). In turn, rocks from the HBGd group show strong 
analogies with the BMzG in terms of dominant opaque min-
erals (Tab. 3, Suppl. Tabs. A3 and A4) and whole-rock FeOt/
(FeOt + MgO) ratios (Figs. 12A and 12B). The results clearly 
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Subp: subpopulation; Pop: population; B: biotite; H: hornblende; SnG: syenogranite; Mzg: monzogranite; Gd: granodiorite; Tnl: tonalite; Q Mzn: quartz-
monzonite.
Figure 12. (A) SiO2 vs. FeOt/(FeOt + MgO) and (B) FeOt/(FeOt + MgO) vs. Al2O3 diagrams of the VJS showing, respectively, the fields 
of Frost et al. (2001) and those of reduced and oxidized A-type granites and calc-alkaline Cordilleran granitoids (Dall’Agnol and Oliveira 
2007); (C) Fe/(Fe + Mg) vs AlIV diagram in amphiboles of different varieties of the VJS showing the behavior of the rocks regarding ƒO2 
(low-, intermediate- and high-ƒO2 fields according to Anderson and Smith 1995); (D) Fe/(Fe + Mg) vs AlIV + AlVI diagram showing the 
biotite composition of different varieties from the VJS. Biotite compositional variations of granites of the magnetite and ilmenite series 
(Ishihara 1981) according to Anderson et al. (2008). (E) T versus logƒO2 diagram showing ranges of temperature and fugacity conditions 
(ƒO2) empirically estimated for different varieties of VJS granitoids; (F) Temperature versus logƒO2 diagram for the VJS granitoids, with the 
temperatures and ƒO2 calculated based on the amphibole composition according to Ridolfi et al. (2010). Fayalite-magnetite-quartz (FMQ) 
and nickel-nickel oxide (NNO) buffer curves according to Frost (1991). In Figs. 12A, 12B, 12C, and 12D, the fields of Planalto suite, Estrela 
Complex, Vila União granitoids, and Matok pluton are shown for comparison (see references in the text). 

A B

C

E F

D
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show that it crystallized under oxidizing conditions estimated 
to be close to NNO+0.5 (Fig. 12E).

Lastly, the BHSnG variety shows a contradictory behavior, 
as highlighted earlier. This variety has high opaque modal con-
tent, is enriched in magnetite, and displays maximum values 
of MS (Tab. 3, Suppl. Tab. A4). However, it shows the highest 
value of whole rock FeOt/(FeOt + MgO) ratios and should 
be classified as a reduced A-type granite (Figs. 12A and 12B).

Experimental studies demonstrated the existence of a close 
relationship between fO2 and the Mg* parameter of amphibole 
(Scaillet and Evans 1999, Ridolfi et al. 2008, 2010). To assess 
the consistency of empirical fO2 values estimated for different 
varieties of the VJS, the log fO2 values were calculated based on 
amphibole composition using Eq. 1, by Ridolfi et al. (2010):

ΔNNO = 1.644 Mg*-4.01� (1)

Where:
Mg* = Mg+Si/47–[6]Al/9–1.3[6]Ti+Fe3+/3.7+Fe2+/5.2−BCa/20−
ANa/2.8+ A[]/9.5 

This equation has an estimated precision of 0.22 units of 
log fO2 (Ridolfi et al. 2010), which is consistent with the uncer-
tainty of other experimental studies (0.2-0.3 units of log fO2; 
Scaillet and Evans 1999, Pichavant et al. 2002). Erdmann et al. 
(2014) consider the fO2 estimates of Ridolfi et al. (2010) to be 
consistent with experimental results available in the literature. 

The detected mean values for temperature and fO2 accord-
ing to Ridolfi et al. (2010) for the different samples studied are 
shown in Fig. 12F. The standard deviation of these values in 
different samples is systematically low and the values obtained 
in the different analyses are also represented to indicate the 
variability in each sample. 

The model by Ridolfi et al. (2010) indicates fO2 values for 
the granites studied (Fig. 12F) that generally approach those 
estimated by our empirical method. It is concluded that the 
values estimated by the empirical approach and the values 
determined via the amphibole composition using the method 
by Ridolfi et al. (2010) are consistent in the sense that the esti-
mated or calculated fO2 values show a similar trend in the dif-
ferent granite varieties. However, they differ by the fact that 
the fO2 deduced by the Ridolfi et al. (2010) method is one unit 
or half unit of log fO2 below those estimated by the empirical 
approach (Figs. 12E and 12F). 

We consider that the model of Ridolfi et al. (2010) is gener-
ally suitable for the estimation of fO2 (cf. Erdmann et al. 2014) 
and that our empirical estimates also provide reasonable fO2 

values. The observed differences between both methods in 
the VJS are possibly because Ridolfi et al. (2010) based their 
oxybarometer in experimental studies of magnesian calc-alka-
line rocks with Fe/(Fe + Mg) in amphibole lower than those 
observed in the VJS. 

Based on our empirical estimation, it is concluded that 
the granites studied display fO2 varying from reduced to oxi-
dized, corresponding to conditions below FMQ to NNO+1. 
The reduced and oxidized ferroan BHMzG crystallized at 
fO2 conditions corresponding to < FMQ to FMQ+0.5 and 

the magnesian BHTnl, BMzG, and HBGd at NNO-0.5 to 
NNO+1. The estimates based on Ridolfi et al. (2010) yield 
comparatively slightly lower fO2 values.

The paradoxical behavior observed in the BHSnG group 
is not easy to explain. It is known that the occurrence of mag-
netite in granites does not imply necessarily oxidizing condi-
tions (Anderson and Morrison 2005, Dall’Agnol and Oliveira 
2007) because granitic rocks crystallizing at FMQ should 
contain magnetite and are considered to be reduced rocks. 
However, the high modal content of opaque minerals and the 
total dominance of magnetite in the BHSnG require further 
investigation. A possible alternative would be to assume that 
magnetite is a phase that formed independently of the liquid 
generating this granite and has a cumulate origin or was gen-
erated at levels of fluid flow, although there is no conclusive 
evidence to support these hypotheses.

Comparisons between the Vila Jussara 
Suite and similar Archean granitoids

The data obtained in the VJS were compared with that of 
the Neoarchean granites of the Planalto Suite (Cunha et al. 
2016), Estrela Complex (Barros et al. 2001), and Vila União 
granitoids (Oliveira et al. 2018), all of the CP, and Neoarchean 
granitoids of the Matok pluton (Rapopo 2010, Laurent et al. 
2014), which is located in the Limpopo Belt, South Africa.

The reduced ferroan BHMzG of population A and sub-
population B1 are similar to the Planalto Suite and Estrela 
Complex granites and the oxidized ferroan BHMzG of sub-
populations B3 and C1 are more akin to part of the granitoids 
of the Vila União area (Figs. 12A and 12B). The BHTnl, BMzG, 
and HBGd of the VJS are all magnesian granitoids and show 
similar geochemical behavior. The BHMzG are clearly distinct 
in terms of the composition of the magnesian granitoids of the 
VJS and Vila União area, as well as of the magnesian Matok 
pluton granitoids (Figs. 12A and 12B). The Serra do Rabo 
granite (Sardinha et al. 2006) and the Igarapé Gelado granite 
(Barros et al. 2009), both of the CP, and not represented in the 
diagrams, are composed, respectively, of reduced ferroan gran-
ites and varying from reduced to oxidized ferroan granitoids.

A similar picture is given by the variation of Fe/(Fe + 
Mg) in amphibole and biotite (Figs. 12C and 12D), which 
indicates low fO2 for the reduced granites of the VJS, Planalto 
Suite, Estrela complex, and part of Vila União granites, pass-
ing to intermediate in the oxidized ferroan BHMzG of the 
VJS and Vila União. In the magnesian granitoids of the VJS, 
Vila União, and Matok, the fO2 values are higher than in the 
reduced and oxidized ferroan granites and increase gradually 
from intermediate to high (Fig. 12C). The biotite composi-
tion is similar to that of biotite of ilmenite series granites in 
the reduced granites and is comparable to that of magnetite 
series granites in the oxidized ferroan and magnesian granit-
oids (Fig. 12D), attaining minimum Fe/(Fe+Mg) values in 
the Matok pluton, suggesting that it can have a more oxidized 
character, compared with the VJS granitoids. 

It is concluded that whole rock and mineral chemistry data 
are consistent and demonstrate that the fO2 behavior observed 
in the VJS is also found in other similar Neoarchean granites 
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of the CP. The granitoids of the Matok pluton approach the 
magnesian granitoids of the CP. 

Possible causes for oxygen fugacity 
variation in the Vila Jussara Suite granitoids

Most granitic magmas tend to have a pattern and align with 
a buffer during their evolution (Dall’Agnol et al. 2005, Cunha 
et al. 2016). However, Loucks et al. (2018) showed evidence 
that several magmatic suites follow fO2 trends that are not par-
allel to the buffer curves. They argued that poor-water mag-
mas tend to show a relative decrease in fO2, whereas water-rich 
magmas, such as those of the VJS (cf. Dall’Agnol et al. 2017), 
could display increasing fO2 trends.

Among other possible explanations for variations of fO2 in 
the VJS, the following two reasons are highlighted. 
•	 Compositional variations in magma source resulted in fO2 

contrasts in the generated liquid: this hypothesis was initially 
postulated by Dall’Agnol et al. (2017), who argued that the 
reduced varieties of the VJS and other Neoarchean granites 
would be related to metamorphosed, reduced, tholeiitic 
sources in granulite facies, whereas oxidized sources would 
be related to calc-alkaline mafic to intermediate granulites. 
This hypothesis remains valid and assumes that the reduced 
or oxidized character of the magmas of Neoarchean gran-
itoids would be essentially a feature inherited from the 
magma source (cf. Carmichael 1991, Frost and Frost 1997, 
Pichavant et al. 1996, Rajesh 2008);

•	 Presence in the magmatic liquid of volatile constituents 
which may cause variations in the fO2 of magma during 
its crystallization. In this hypothesis, a mineralogical fea-
ture of the Vila Jussara granitoids stands out. The most 
markedly reduced varieties (BHMzG from population A 
and subpopulation B1) have virtually no pyrite or other 
types of sulfides and the latter starts to occur significantly 
in the moderately oxidized BHMzG of subpopulations 
B3 and C1 (Tab. 3, Suppl. Tab. A1). In the other varieties 
of the VJS, which include only oxidized magnesian gran-
itoids, the sulfides are the most abundant modal opaque 
phase in the biotite-hornblende tonalites (Tab. 3, Suppl. 
Tab. A2) and immediately follow magnetite in abun-
dance in the biotite monzogranites and hornblende-bi-
otite granodiorites groups (Tab. 3, Suppl. Tabs. A3 and 
A4). Reduced granites of the Planalto Suite (Cunha et al. 
2016) show the same type of features as those described 
in the reduced varieties of the VJS. 

Moussallam et al. (2014) discussed the possible effect of 
sulfur on variations in the degree of oxidation of magmas in 
volcanic environments. They showed evidence that the release 
of sulfur-rich volatiles by degasification affects the fO2 of resid-
ual liquids, which tend to be more reduced. By extension, we 
can assume that the presence of significant amounts of sulfides 
in the magma, as indicated by the occurrence of pyrite, may 
have caused oxidation, which would explain the contrast in 
the degree of oxidation between the oxidized pyrite-bearing 
granitoids and the reduced granitoids devoid of pyrite and, as 
a consequence, of sulfur in appreciable amounts. 

Another volatile component that could affect the fO2 in 
magma is water. Gaillard et al. (2001) experimentally assessed 
the effects of adding water to liquids in terms of variations in 
fO2, and they concluded that water can have an oxidizing effect 
(cf. Loucks et al. 2018). However, this effect is restricted to 
relatively reduced magmatic liquids, and the presence of dis-
solved water in oxidized calc-alkaline magmas should not exert 
a marked effect on fO2. These observations may help to explain 
the variation in fO2 between the granites of groups 1 and 2 of 
the Planalto Suite and, by analogy, between the BHMzG of pop-
ulation A and subpopulation B1 of the VJS. The slight contrast 
in fO2 between these rocks may reflect a comparative increase 
in the water content of rocks containing magnetite, which are 
somewhat more oxidized than those devoid of magnetite.

The hypotheses outlined here can be effective in different 
situations, either alone or combined. However, at the present 
stage, we cannot provide conclusive evidence about the causes 
of variations in fO2 in the granitoids of the VJS. 

CONCLUSIONS
The granitoids of the VJS were divided into four main 

petrographic groups with wide variation in magnetic behavior. 
The BHMzG group is formed by two subgroups: the first 

group consists of reduced ferroan granites derived from magma, 
whose fO2 evolved from lower than FMQ to equal to or slightly 
higher than FMQ. The second subgroup includes oxidized fer-
roan granites that evolved under conditions above the FMQ 
buffer but below the NNO buffer (FMQ+0.5).

The BHTnl variety includes magnesian granitoids that 
evolved under essentially oxidizing conditions, with the 
dominant set formed under conditions equivalent to NNO-
0.5 to NNO, although sample MYF-40 is near NNO+1. 
The BMzG and HBGd groups include granitoids of the 
magnetite series that are geochemically similar to magne-
sian granites and crystallized under oxidizing conditions 
(NNO to NNO-0.5).

In addition to the aforementioned groups, the BHSnG 
was formed, presumably, under strongly reduced conditions, 
although a conclusive explanation for its high magnetite con-
tent was not determined. 

The indicated fO2 values were obtained with our empiri-
cal estimations. They approach those indicated by the exper-
imental method of Ridolfi et al. (2010) showing a reasonable 
correspondence between these two methods.

Subgroup 1 of the VJS BHMzG is quite similar to the gran-
ites of the Planalto Suite, Estrela complex, and the reduced 
ferroan granitoids of Vila União, which evolved under reduc-
ing conditions (FMQ ± 0.5). The other varieties of the VJS, 
BHTnl, BMzG, and HBGd, were formed under essentially oxi-
dizing conditions and, in this regard, are similar to the oxidized 
granites of Vila União, which both crystallized under moder-
ate to high fO2 conditions (from NNO ± 0.5 to NNO + 1). 
In general, the Neoarchean granitoids of the Matok Pluton of 
Limpopo Belt, South Africa, approach, in terms of degree of 
oxidation, the magnesian granitoids of the VJS rocks, but they 
tend to exhibit a more oxidized character.
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