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ABSTRACT: Exploration seismology provides the main source of information about the Earth’s subsurface, which in many cases can be presented as a 
simple model of horizontal or near-horizontal layers. After the seismic acquisition step, conventional seismic processing of reflection data provides an image 
of the subsurface by using information about the reflections of these layers. The traveltime from a source to different receivers is adjusted using a hyperbolic 
function. This expression is used in the case involving an isotropic medium, which is a simplification of nature, whereas geologically complex media are 
generally anisotropic. A subsurface model that more closely resembles reality is the vertical transverse isotropy, which defines two parameters that are required 
to correct the traveltimes: the NMO velocity and the anellipticity parameter. In this paper, we reviewed the literature and methodology for velocity analysis 
of seismic data acquired from anisotropic media. A model with horizontal layers and anisotropic behavior was developed and evaluated. The anisotropic 
velocity was compared to the isotropic velocity, and the results were analyzed. Finally, the methodology was applied to real seismic data, i.e. an experimental 
landline from Tenerife Field, Colombia. The results show the importance of the anellipticity parameter in models with anisotropic layers.
KEYWORDS: non-hyperbolic velocity analysis; anisotropy; anellipticity parameter; experimental seismic line.
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INTRODUCTION

The main objective of exploration seismology is to obtain 
subsurface images that may indicate possible hydrocarbon 
reservoirs after proper interpretation. In the seismic inter-
pretation step, the images obtained from seismic reflec-
tion data should be faithful to subsurface characteristics. 
However, the seismic interpretation of geologically-com-
plex media images is usually complicated. One factor that 
contributes to this difficulty is the type of processing per-
formed on data. In many situations, the geological medium 
is not isotropic but anisotropic, that is, a given physical 
property varies with the direction. Accurate modeling of 
anisotropy features is frequently ignored in seismic data 
processing, especially since geologically-complex media 
in the quasi-static regime behave similarly to anisotropic 
media (Helbig 1994).

Several research studies demonstrated that the pres-
ence of a simple seismic anisotropy in a model, such as 
the vertical transverse isotropy (VTI) model, produces sig-
nificant distortions in conventional seismic data analysis. 
For instance, the normal moveout (NMO) velocity is not 
equal to the root mean square (RMS) velocity, both for 
small and large offsets.

This type of medium produces a non-hyperbolic trav-
eltime curve, which is manifested by significantly large off-
sets for PP-waves, i.e. a P-wave reflected as a P-wave. As to 
the PS-wave, i.e. a P-wave that converts to an S-wave in the 
reflection, this behavior is observed in both small and large 
offsets (Alkhalifah 1997). A possible solution would be to 
remove overcorrected traces and to stack all the others. Herein, 
the images could not provide the complete information.

In an anisotropic medium, the mathematical repre-
sentation of the source-reflector-receiver traveltime can be 
expressed by a shifted hyperbola (Castle 1994). Such hyperbola 
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may be used to do the NMO correction with knowledge 
of three parameters:

 ■ the zero offset source-reflector-receiver traveltime t0;
 ■ the NMO velocity Vnmo;
 ■ time-weighted moment of the velocity distribution (µ).

Alkhalifah and Tsvankin (1995) showed that three 
parameters are necessary for VTI media to perform the 
time processing:

 ■ the zero offset source-reflector-receiver traveltime t0;
 ■ the NMO velocity Vnmo;
 ■ the anisotropy parameter 
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. 

Fomel (2004) and Aleixo and Schleicher (2010) extended 
this parameterization by determining an approximation that 
was closer to exact data.

The objective of this paper was not to show the accuracy 
of the traveltime approximations found in literature, but 
to compare the NMO correction in synthetic and real data 
by using two techniques: one that depends on the NMO 
velocity estimate in addition to the anelasticity parameter 
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, and another that uses only the NMO velocity. The two 
techniques are based on the classical equations of Alkhalifah 
and Tsvankin (1995), and of Castle (1994) for the NMO 
correction 
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. Castle (1994) equation has the character-
istic of using a displacement factor S, which may or may not 
depend on the anisotropy parameter 
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. When this parame-
ter depends on 
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, the equation of Ursin and Stovas (2006) 
was implemented. The efficiency of these approaches was 
tested in a synthetic experiment with a five-layer model.

This article is organized as follows. First, the description of 
the two methods developed by Alkalifah and Tsvankin (1995) 
and Castle (1994), which corrects traveltime curves in aniso-
tropic media, is reviewed. Then, these two methodologies are 
applied to synthetic data and real data acquired in the Tenerife 
Field, Magdalena Valley, Colombia. The experimental 2D seismic 
line is 9 km in length and presents large offsets of up to 5 km.

The methodologies (Alkalifah and Tsvankin 1995, Castle 
1994) were validated by applying each method to synthetic 
and real data. The results show that the use of conventional 
seismic processing techniques for isotropic media may result 
in inconsistent results.

TRAVELTIME CALCULATION 
BY ALKHALIFAH AND 
TSVANKIN’S METHOD

The conventional velocity analyses methods typically used 
for seismic data processing assume an ideal reflector, i.e. a homo-
geneous reflector with flat interfaces and constant thickness. 

The medium is ideal, without energy loss and is also considered 
non-dispersive. The mathematical representation of the trav-
eltime from the source to the receiver in a single-layer model 
is given by Equation 1:
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 (1)

Where:
x is the offset;
t0 is the traveltime for zero offset;
tx is the traveltime at the offset x; and
Vnmo is the NMO velocity. In conventional velocity analysis, 
the NMO velocity is denoted as the RMS velocity.

In a model with N flat layers, composed of an isotro-
pic medium, the RMS velocity is calculated as Equation 2:

[ ]

2
2 2

0 2

2

2 1

1
2 4

2 2
0 2 2 2 2 2

0

2

2 2 1

1

4

1

4

1

2η

δ

ε γ

η(1 2 )

1
1
ε δ

δ

δ

η
1 2

1 2

1 81η

τ τ

τ

τ τ

ν

η

η

1
8

x
nmo

N

i i
i

rms N

i
i

x
nmo nmo nmo

n

nmo i
i

rms nmo n

i
i

nmo i i

n

nmo i i
i

e� n

nmo i
i

x
t = t +

V

v t
V =

t

x x
t t

V V t V x

v t
V V

t

v v

v t

V t

=

=

=

=

=

=

= + ‒
+ +⎡⎣ ⎤⎦

<<
<<

‒
=

+

=

=

=

+

+
= ‒

⎧

⎩

⎪

⎪
⎨

⎫

⎭

⎪

⎪
⎬

∑

∑

∑

∑

∑

∑

( )

2
2
0 2

0
0

0

2 2

4 4
2 4
2

2 2

2

2 22

2 2 2

0

0

1

µ

1 8

ω
1

ω
ωω

ω 2 η

100

s

s

rms

rms
j

k k
j

k

e�

x
z

nmo x
z

nmo nmo x

obs app

obs

nmo

nmo app

x
t = + +

t
=

S
= S

ν = SV
µ

S =
µ V

∆τ
∆τ

Vµ =

S

v k
k

v

V k
k

v V V k

t t
Error

t
tf

f t
t t t

‒

=

= +

= ‒

= ‒
‒

‒
= ×

ΔΔ
=

Δ = ‒

∑
∑

 (2)

Where:
vi is the interval velocity of the i-th layer and
ti is the vertical traveltime of the i-th layer. The RMS veloc-
ity by Equation 2 refers to a set of N layers from the top of 
the first layer (i = 1) to the bottom of the last one (i = N).

A more realistic representation of the traveltime equa-
tion implies knowledge of the anisotropic medium. For 
better results, with the appropriate resolution in the differ-
ent events, it is important to take the medium’s anisotropy 
into account.

For a medium with VTI anisotropy, the conventional 
method has several limitations, including the fact that the 
NMO velocity is not equal to the RMS velocity, whether 
in small or large offsets. An anisotropic medium produces 
a non-hyperbolic traveltime curve, which is more signifi-
cantly manifested in large offsets in the case of PP waves. 
Regarding PS waves, this behavior is observed in all offsets, 
whether they are small or large (Alkalifah 1997).

To classify an offset by its size, we must consider the asso-
ciation between the offset x and the depth z. If x/z>1.5, the 
offset is considered large related to a non-hyperbolic travel-
time curve. If this ratio is lower than 1.5, the offset will be 
small (Alkalifah 1997).

The standard NMO equation used by the industry only 
considers the first two terms of Taylor’s series expansion, 
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which results in Equation 1. This treatment is suitable only 
for small offsets. For a VTI medium, we need to use more 
terms of the series to achieve an appropriate correction 
(Alkhalifah & Tsvankin 1995).

The Equation 3 adds a third term in Taylor’s series 
expansion:
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Equation 3 includes three unknowns: the zero offset 
traveltime t0, the velocity Vnmo, and the new parameter 
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. 
Note that if 
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=0, Equation 3 is reduced to Equation 1. 
The parameter 
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 can be related to the well-known 
Thomsen’s anisotropic parameters 
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 (Thomsen 
1986). Parameters 
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in which both terms zero in an isotropic medium. The value 
of 
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 will be considered zero in this paper, because we are 
assuming a two-dimensional wave propagation in the zx 
plane. A fourth parameter, 
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, is defined as in Equation 4,
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 (4)

and represents the anisotropic approximation of anellipticity 
introduced by Alkhalifah and Tsvankin (1995). This param-
eter is called anellipticity, and it is usually positive because 
it is very often 
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 in seismic data.
We can define three types of wavefronts with these 

parameters:
 ■ isotropic medium with a circular wavefront, in which 
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=0;
 ■ medium with elliptical anisotropy, in which 
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; and
 ■ medium with non-elliptical anisotropy.

Equation 3 can be generalized for a case with multiple 
layers, with the condition that Vnmo is equivalent to RMS 
velocity (Equation 5):
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 (5)

Where, as in Equation 6:
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 (6)

where: 
vi is the interval velocity; and
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 is the i-th layer Thomsen’s parameter. In a multi-layer with 
VTI anisotropy, the value of 
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 in Equation 3 is denoted by 
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eff and expressed as Equation 7 (Alkhalifah 1997):
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 (7)

We made a simulation example that explores the behav-
ior of traveltime when anisotropy is present. Figure 1 shows 
the traveltime computed by Equation 3 as a function of the 
offset from a horizontal reflector at a depth of 1.582 km 
with Vnmo=3.893 (km/s) and 
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=0.026. The reflection before 
the NMO correction is shown in light blue circles. The trav-
eltime curve, after NMO correction, is in blue using the 
correct value of 
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above because there is only one layer.
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Figure 1. Reflection time as a function of the offset 
from a horizontal reflector at a depth of 1.582 km 
with Vnmo=3.893 km/s and 
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=0.026. The reflection prior 
to the NMO correction is shown in light blue circles. 
The reflection time curve after the NMO correction is 
presented in blue using the correct value of 
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The curve in black represents the wrong value of 
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Assuming a constant value of 
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in the range from -0.2 to 0.2 in Equation 4, the values 
will fall within the range from 0.5 to 0. The value 
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=0 
corresponds to the conventional or isotropic NMO cor-
rection. This NMO correction is accurate only for the 
condition x/z≤1.5 as shown in Figure 1. These data are 
from Thomsen (1986) and are specific to the Mesaverde 
sandstone.

TRAVELTIME CALCULATION 
THROUGH CASTLE’S METHOD

Castle (1994) proposed an approach that requires three 
parameters:

 ■ zero-offset source-reflector-receiver traveltime t0;
 ■ NMO velocity (Vnmo)
 ■ weighted moment (µ).

Equation 1 describes a symmetric hyperbola with respect 
to the time axis, whose asymptotes intersect at the coordinate 
system origin(x=0, t=0). Figure 2 illustrates this geometry, 
in which the solid curve represents the actual time curve of 
a reflector and the dashed curve represents the time com-
puted using Equation 3. Asymptotes of the Dix or NMO 
equations are represented by dashed straight curves.

A more exact mathematical expression for the NMO 
correction was provided by Malovichko (1978) and used 
by Castle (1994), as in Equation 8:
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where
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 is expressed as Equation 9:
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and 
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 is the intersection time of the Dix equation hyperbola 
asymptotes with the time axis (Equation 10):
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In Equation 10, t0 is the zero-offset double vertical time 
and v is an auxiliary variable expressed as Equation 11:
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where the S factor is expressed as Equation 12:
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The value of µj, which is already called time-weighted 
moment of the velocity distribution, is expressed by Equation 13:
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where:
Vk is the interval velocity of the k-th layer; and
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 is the vertical time of the k-th layer.

Ursin and Stovas (2006) observed that the η factor 
introduced by Alkhalifah and Tsvankin (1995) and the S 
factor of the shifted hyperbola approximation are related 
by Equation 14:
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 (14)

According to this relation, the displaced hyper-
bola approach can be used to describe the traveltime 
in VTI media.

Figure 3 illustrates the geometry of Equation 8, which 
describes shifted symmetric hyperbola (dashed curve) regard-
ing the time axis, whose asymptotes intersect at point (x=0, 
t=
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). Figure 3 also shows the time curve of an actual reflec-
tor (solid curve) and the asymptotes of the shifted hyper-
bola equation (dashed straight curves). Comparing Figures 
2 and 3, we observe that the NMO equation with a shifted 
offset hyperbola is a better approximation to data than the 
conventional Dix equation.

Figure 2. Geometry related to the Dix equation, in 
which the solid curve represents the real reflection 
time of a reflector, the dashed curve represents the 
time from the Dix equation (Dix 1955), and the dashed 
lines are asymptotes to the Dix equation (modified 
from Castle 1994).
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SIMULATIONS 
WITH SYNTHETIC DATA

We used a five-layer model, shown in Figure 4, which 
has VTI-based anisotropy in the second, third, and fourth 
layers. Table 1 shows the elastic and anisotropic parameters. 
The offset depth ratio was greater than 1.5, with maximum 
offset of 9 km and maximum depth of 5 km. The parame-
ters were chosen to be like the real data used in this work.

Figure 5 shows a Common Midpoint (CMP) with max-
imum fold, where four PP-wave reflections are easily identi-
fied and each reflection represents an interface. We also added 
noise in such a way that S/N =10. The ray tracing modeling was 
made with the seismic processing package SU – Seismic Unix 
(Stockwell Jr. 1997, Cohen & Stockwell 2010). Figure 6 shows 
the velocity analysis using the hyperbolic approximation for the 
CMP displayed in Figure 5, as well as the NMO-corrected CMP.

For large offsets in a VTI medium, we can use Equation 3 
that has three unknown parameters: t0, Vnmo, and 
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eff. The search 
for these parameters can be separated into two steps. In the 

Figure 3. Geometry related to the shifted hyperbola 
equation, in which the solid curve represents the 
real reflection time of a reflector, the dashed curve 
represents the time from the Malovichko equation 
(1978), and the dashed lines are asymptotes to the 
shifted hyperbola equation. Notice that in relation 
to Figure 2, the two reflection times curves are much 
closer. Modified from Castle (1994).

A B

Figure 4. Layered model used to generate the synthetic seismogram: (A) P-wave vertical velocity; (B) anisotropic 
parameter. The first and last layers are isotropic, whereas the three intermediate layers are anisotropic. 
The parameters of each layer are shown in Table 1.

Table 1. Elastic and anisotropic parameters of the synthetic model.

Layer ρ(g/cm3) ε δ η Vp(m/s) Vs(m/s)

1 2.16 0 0 0 2000 1400

2 2.23 0.081 -0.178 0.402 2409 1324

3 2.29 0.218 0.028 0.182 2757 1509

4 2.38 0.512 0.242 0.180 3308 2260

5 2.57 0 0 0 4450 2300
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Figure 5. CMP gather for the model in Figure 4. The 
traveltimes were obtained using Seismic Unix (SU) 
ray tracing for a homogeneous anisotropic model.

first step, we need to obtain the t0 and a velocity file from a 
conventional velocity analysis, which is still effective for rel-
atively small offsets. In the second step, the velocities of the 
first step are used and they are kept constant. Subsequently, 
the value of 
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eff is estimated by a coherence analysis, as shown 
in Figure 7A. We use the parameters obtained in the previous 
steps to apply the NMO correction through Equation 3, which 
provides an approximation for the traveltimes. This correc-
tion results in the horizontal curves observed in Figure 7B.

In the sequence, we applied Castle’s (1994) method for 
NMO correction, which uses Malovichko’s (1978) approach 
given by Equation 8. The velocity analysis (Figure 6A) pro-
vides the RMS velocity that is used in the Dix formula to 
obtain the interval velocity. Then, the interval velocity is used 
in Equation 13 for calculating the µ, which in its turn is used 
in Equation 12 to determine the value of parameter S. Finally, 
with the value of S, we obtain the seismic section of Figure 8A, 
in which we observe that for offsets above 2,000 m there is a 
significant difference between this result and the conventional 
NMO correction seen in Figure 6B. We also applied the NMO 
correction using Ursin and Stovas (2006) traveltime approxi-
mation, where two input data are necessary: the estimation of 
the RMS velocity, like the standard Castle’s method, and the 
parameter 
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eff, which is obtained from the coherence analysis 
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Figure 6. (A) Velocity spectra using SU in the CMP gather displayed in Figure 5. (B) same gather as in Figure 5 
after the isotropic moveout correction.
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A B

Figure 7. (A) Anisotropic parameter analysis using Focus of the CMP gather in Figure 5. (B) NMO-corrected CMP 
of the CMP gather in Figure 5 using the Alkhalifah and Tsvankin (1995) traveltime approximation.

(Figure 7A). The result using Ursin and Stovas (2006) equa-
tion is the seismic section shown in Figure 8B. Comparing 
Figures 8A and 8B, the Castle’s method was slightly better. 
This is true mainly for the second interface.

We also applied migration to these synthetic data. 
The NMO correction, either by the estimation of 
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the calculation of S, reduces the NMO stretching for large 
offsets. This process is performed in the time domain, but 

Figure 8. (A) NMO-corrected CMP of the CMP gather in Figure 5 using Castle (1994) traveltime approximation. (B) 
Same gather after moveout correction using the Ursin and Stovas (2006) traveltime approximation.
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Figure 9. (A) Isotropic phase shift depth migration of the CMP stack using the P-wave vertical velocities from 
Figure 4A. (B) Anisotropic phase shift depth migration using the same true vertical velocities and the anisotropy 
parameter from Figure 4B.

A B

in an analogue way. In the depth domain, the phase-shift 
migration with anisotropic parameters implies in the col-
lapse of diffractions associated with large offsets, even for a 
flat-layered model. The diffractions of the seismic section in 
Figure 9A, obtained after an isotropic pre-stack migration 
with 10 shots spaced 500 m apart using the model in Figure 
4A, could be avoided in two ways:

 ■ decreasing the distance between shots in the isotropic 
migration; or 

 ■ using an anisotropic migration, as shown in Figure 9B, 
in which we can see that the diffractions were collapsed.

In such case, the anisotropic migration was implemented 
for the same 10 shots spaced apart by 500 m. We used the 
depth-domain phase-shift migration with interpolation for 
both examples (Gazdag 1978, Gazdag & Squazzero 1984). 
For the isotropic case, the wavenumber in the depth direc-
tion is as seen in Equation 15:

[ ]

2
2 2

0 2

2

2 1

1
2 4

2 2
0 2 2 2 2 2

0

2

2 2 1

1

4

1

4

1

2η

δ

ε γ

η(1 2 )

1
1
ε δ

δ

δ

η
1 2

1 2

1 81η

τ τ

τ

τ τ

ν

η

η

1
8

x
nmo

N

i i
i

rms N

i
i

x
nmo nmo nmo

n

nmo i
i

rms nmo n

i
i

nmo i i

n

nmo i i
i

e� n

nmo i
i

x
t = t +

V

v t
V =

t

x x
t t

V V t V x

v t
V V

t

v v

v t

V t

=

=

=

=

=

=

= + ‒
+ +⎡⎣ ⎤⎦

<<
<<

‒
=

+

=

=

=

+

+
= ‒

⎧

⎩

⎪

⎪
⎨

⎫

⎭

⎪

⎪
⎬

∑

∑

∑

∑

∑

∑

( )

2
2
0 2

0
0

0

2 2

4 4
2 4
2

2 2

2

2 22

2 2 2

0

0

1

µ

1 8

ω
1

ω
ωω

ω 2 η

100

s

s

rms

rms
j

k k
j

k

e�

x
z

nmo x
z

nmo nmo x

obs app

obs

nmo

nmo app

x
t = + +

t
=

S
= S

ν = SV
µ

S =
µ V

∆τ
∆τ

Vµ =

S

v k
k

v

V k
k

v V V k

t t
Error

t
tf

f t
t t t

‒

=

= +

= ‒

= ‒
‒

‒
= ×

ΔΔ
=

Δ = ‒

∑
∑

 (15)

and for the anisotropic case as in Equation 16 (Alkhalifah 
2000): 
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where 
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 is the angular frequency, v is the vertical velocity 
of the medium, and kx is the wavenumber in the x direc-
tion. For the migration experiments, the SU – Seismic Unix 
package was used.

The anisotropic migration was more effective than the 
isotropic. We can also observe the influence of large anisot-
ropy parameters on the migration. For instance, in Figure 9A, 
the amount of noise in the second interface is a result of the 
large anisotropy parameters from the second layer.

To check the efficiency of the two methods used in 
this paper, we calculated the percentage error between the 
observed traveltimes and the times calculated by the approx-
imation, using the estimator in Equation 17:
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 (17)

where tobs is the observed traveltime and tapp is the traveltime 
computed by Equations 1, 3, and 8.
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Figure 10. Relative error (%) of VTI traveltimes for the model displayed in Figure 4A comparing the approximations 
of Dix (1955), Alkhalifah and Tsvankin (1995) and Castle (1994) by using S=1+8
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eff and Castle (1994) using S=µ4/V4
rms: 

(A) first interface; (B) second interface; (C) third interface; (D) fourth interface.

For the multilayer model shown in Figure 4, a com-
parison between the presented approximations and the 
exact traveltimes from the interfaces is in Figure 10. 
We also computed the error given by Equation 17 for each 
interface. For the first interface, all approximations have 
the same behavior, that is, the errors were the same (see 
Figure 10A), because the first layer is isotropic. Alkhalifah 
and Tsvankin’s (1995) approximation presents a smaller 
error than Castle’s (1994) for the second and third inter-
faces, as seen in Figures 10B and 10C, respectively. The 
opposite occurs for the fourth interface, in which Castle’s 
result is better.

The frequency distortion or NMO stretching observed 
for large offsets in Figure 6B can be expressed by Equations 
18 and 19 (Yilmaz 1987):
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where:
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 is the frequency variation, 
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 is the predominant 
frequency, and t0 is the zero-offset traveltime. In conventional 
processing, the stretching effect is removed by muting a por-
tion of the affected part.
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Figure 11. On the left, map showing the location of VMMB (Valle Médio del Magdalena Basin) in red, and on the 
right, the Tenerife Field (source: Google Maps and Ecopetrol).

Figure 12. Satellite image showing the area of Tenerife 
Field and the location of the experimental seismic line 
(source: Ecopetrol).

The use of traveltime approximation equation, with 
more terms in the velocity analysis, improves the distortion 
problem, because the value of 
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 decreases in Equation 
18. This observation can be seen in Figures 7B, 8A and 8B; 
and no muting was applied in these figures.

In conclusion for this application, the compensation of 
anisotropy effects allows visualizing the reflector in all data, 
including large offsets. It is important to notice that in the 
conventional seismic data processing, sometimes the reflec-
tors are edited and silenced, to not show the stretching effect.

APPLICATION TO REAL DATA

The proposed methodology was also used on real data 
to detect anisotropy. We used a 2D experimental land seis-
mic line with maximum offset of 9,000 m, acquired in the 
Tenerife Field, Colombia. This field is in the Valle Médio del 
Magdalena Basin (VMMB), around 260 km distant from 
Bogota (Fig. 11). The basin is bordered to the North by the 
Bucaramanga Fault, inclined towards the East, with a homo-
clinal trend. It has an area of   approximately 28,300 km2, 
and the sediments can reach an 8,500 m thickness.

The Tenerife Field is represented by a polygon in Figure 12 
and is structurally limited by a system of reverse faults. The seis-
mic line, indicated by the green line in the same figure, was 
acquired in an area made up of 70% of mountainous terrain 

and 30% of plane ground. The elevation along the seismic 
line varied from 78 to 153 m. Three wells were drilled in the 
field (Tenerife 1, 2 and 3) reaching rocks from Tertiary and 
Cretaceous ages. There is oil production in the first two wells.

The real data (a 2D multi-component land seismic line) 
were from an exploration campaign conducted by Ecopetrol 
in 2010. Data were collected through continuous/sequential 
survey, using the Common Depth Point (CDP) technique 
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Figure 13. Seismic section using hyperbolic NMO correction with Dix (1955) equation.

Figure 14. Seismic section using Castle (1994) NMO correction.

and an asymmetrical array. The total length of the line was 
9 km and there were 900 channels (accelerometers) per shot.

The same processing flow used for the synthetic data 
was applied to the Tenerife line. The results are in Figures 
13, 14 and 15. Data were sorted in CDP families with 
maximum coverage, and the NMO correction was applied 
with zero stretch. 

Figure 13 shows the result of conventional NMO cor-
rection using the Dix equation. One should pay atten-
tion to the stretching effects for offsets above 300 m from 
receivers 1 to 47. Figure 14 shows the result of NMO cor-
rection with Castle’s method, and Figure 15 presents the 
result of NMO correction using Alkhalifah and Tsvankin’s 
method with a constant 
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Figure 15. Seismic section using Alkhalifah and Tsvankin (1995) NMO correction with a constant value for
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.

CONCLUSIONS

NMO correction produces distortions in frequency 
for shallow events as well as for large offsets. However, 
a portion of these distortions is removed in the conven-
tional hyperbolic processing, thus deleting information 
from large offsets. 

An anisotropic medium produces a non-hyperbolic 
reflection from a given interface, which is manifested 
more significantly for large offsets. Castle’s method is 
a non-hyperbolic approach for NMO correction that 
does not depend on any anisotropy parameter but just 
a parameter S, which in turn depends on the inter-
val time 
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 and interval velocity Vk of the k-th layer. 
A second non-hyperbolic approach was presented by 
Alkhalifah and Tsvankin, which makes use of an anisot-
ropy parameter 
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In this paper we applied the methods of Castle and 

Alkhalifah and Tsvankin for NMO correction, both in 
synthetic and real data. The real data were from an exper-
imental seismic line from the Tenerife Field, Colombia. 
For the synthetic example, the simulations indicated that 
the relative traveltime error (between the observed travel-
time and the traveltime provided by the approximation) 

was smaller for weak anisotropy, that is, for the third and 
fourth interfaces, when using Alkhalifah and Tsvankin’s 
method. In addition, the error was also smaller for stron-
ger anisotropy, i.e. for the second interface, when using 
Castle’s method. The results indicate that NMO correction 
was successful, and in the case of real data, the images pro-
vided by Castle’s method had a better quality for shallow 
events. On the other hand, the results using Alkhalifah and 
Tsvankin’s equation on real data were consistent, despite the 
fact of keeping a constant value for 
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eff. This suggests that a 
variable value for 
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