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Nitric oxide (NO) is a potent mediator with diverse roles in regulating cellular functions and signaling pathways.
The NO synthase (NOS) enzyme family consists of three major isoforms, which convey variety of messages
between cells, including signals for vasorelaxation, neurotransmission and cytotoxicity. This family of enzymes are
generally classified as neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS). Increased
levels of NO are induced from iNOS during infection; while eNOS and nNOS may be produced at the baseline in
normal conditions. An association of some key cytokines appears to be essential for NOS gene regulation in the
immunity of infections. Accumulating evidence indicates that parasitic diseases are commonly associated with
elevated production of NO. NO plays a role in the immunoregulation and it is implicated in the host non-specific
defence in a variety of infections. Nevertheless, the functional role of NO and NOS isoforms in the immune
responses of host against the majority of parasites is still highly controversial. In the present review, the role of
parasitic infections will be discussed in the controversy related to the NO production and iNOS gene expression in
different parasites and a variety of experimental models.
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The nitric oxide (NO) molecule consists of oxygen and
nitrogen atoms, bound by a double bond [1]. NO is a product
of L-arginine conversion to L-citrulline by nitric oxide synthase
(NOS) enzyme in the presence of nicotinamide adenine
dinucleotide phosphate (NADPH) as a co-factor (Figure 1.).
NO is a reactive free radical, and in the presence of oxygen, is
oxidised to a variety of nitrogen oxides [2]. NO is known to
react rapidly with oxyhemoglobin (Oxy-Hb) to give nitrate
and met-Hb [3]. It has recently been found to be a potent
immuno-modulator, which has alternative roles during
inflammation, infection and transplant rejection [4]. Both
oxygen and NO are vital for life processes, but too much of
either can damage cells. It is suggested the attachment of NO
to proteins enable them to activate gene(s) directly, but the
body needs to keep NO in equilibrium by turning on and off
expression of NO gene(s). NO also has an extraordinary
physiological role with an ability to diffuse freely through cell
membranes offering a new perspective on cell-cell
communication [5].

Potential effector mechanisms of immunity against
parasitic infections include antibodies, macrophages, T-cells,
cytokines and a variety of other soluble mediators. Activated
phagocytic cells generate large amounts of highly toxic
molecules, reactive nitrogen and oxygen intermediate (RNI,
ROI), H2O2, NO and many cytokines and enzymes [6-8]. NO
reacts to form biologically active oxides, which react in several
ways. In addition to numerous cytokines, the role of NO as a
mediator in clinical parasitic diseases remains controversial.

Figure 1. Nitric oxide production by three nitric oxide synthase
isoforms. NADPH, nicotinamide adenine dinucleotide
phosphate hydrogenase; NADP, nicotinamide adenine
dinucleotide phosphate.

In previous reports, NO, RNI and NOS involvement in parasitic
infections were investigated; however, variation in NO levels
and NOS activities is under debate [9-11].

Immune Cell Types in NO Involvement During Infections
NO is produced by many cell types to induce many

functions [12,13]. As part of the cytotoxic function, a variety
of cells is involved in NO production including macrophages,
neutrophils, Kupffer cells, lymphocytes and hepatocytes that
are stimulated to produce RNI and ROI by some key cytokines
such as TNF-α and IFN-γ [14,15]. NOS, NO or its stable
metabolites have been identified as major effector molecules.
An important protective role for RNI has been established in
macrophage killing of intracellular protozoa [16-19], bacteria
[20,21], fungus [22] and viruses [23]. A similar role has been
demonstrated in neutrophil killing of Candida albicans [24]
and Staphilococcus aureus [25]. In addition, there are data
showing that eosinophils are able to kill intracellular protozoan
parasites [26-28].
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NOS Isoforms
The NOS family is generally classified as constitutive,

calcium dependent as neuronal NOS (nNOS), endothelial NOS
(eNOS) and calcium independent inducible NOS (iNOS) [29].
The molecular masses for the three NOS enzymes are reported
to be 160 kDa (nNOS), 130 kDa (iNOS) and 135 kDa (eNOS)
[30] (Table 1). The nNOS is constitutive with low output and
mainly expressed in the central and peripheral nervous
systems [29]. It normally generates low levels of NO for
intracellular signalling and modulation of synaptic plasticity
in the nervous system [31]. However, the overstimulated nNOS
is implicated in ischemia, pain and several neurodegenerative
disorders [32]. The iNOS was originally described as an
enzyme that is expressed in activated macrophages, generates
NO from the amino acid L-arginine and thereby contributes to
the control of replication or killing of intracellular microbial
pathogens [33]. It is expressed in response to endotoxins and
inflammatory cytokines [32]. Inducible NOS is an inducible
immune inflammatory factor with high output originally found
in macrophages, hepatocytes, but later in glial cells [34]. Small
quantities of iNOS-derived NO are critical for signal
transduction events during infection [33]. The eNOS is also
constitutive with low output [31] and mainly found in brain,
neuronal tissue, neuroblastomas, skeletal muscle, vascular
endothelial cells and b-cells of pancreatic islets [4]. The nNOS-
derived NO, relaxes the vasculature, inhibits adhesion and
platelet aggregation and maintains normal blood pressure [32].

Molecular Biology of NOS Isoforms
The cDNA for the three human NOS isoforms have been

cloned and characterised. The human NOS genes are located
on chromosomes: 12 (nNOS), 17 (iNOS) and 7 (eNOS). In mouse
they are located in different chromosomes; 5 (nNOS), 11 (iNOS)
and 5 (eNOS). The human genome contains at least two loci for
the iNOS gene [35], however in mouse genome one locus has
been recognised for the iNOS gene [30] (Table 2).

NOS Deficiency and Infections
Experiments conducted to confirm or deny the involvement

of NO and RNI in infections, using experimental NOS knockout
animals have been contradictory or inconclusive [36-38].
However, it is possible that iNOS deficient mice develop
alternative pathways to overcome in-born deficiencies [36,39].
The role of NO as a single molecule in biological processes
may ultimately require a triple-knockout mouse for iNOS, eNOS
and nNOS to examine this question [39].

NO and Related Molecules During Infections
A role for antiparasitic effects of NO, RNI and NOS in vivo

and in vitro have been demonstrated against a number of
parasites including Plasmodium sp., Leishmania sp.,
Toxoplasma gondeii, Schistosoma sp. and Trypanosoma
brucei [15, 40, 41]. There are several experimental evidences
about NO involvement in the microbicidal activity of
macrophages against a number of intracellular parasitic

pathogens [28] including L. major [16], T. gondii [17], T. cruzi
[19], P. berghei [42], or pathogenic bacteria e.g.
Mycobacterium leprae [20], fungal infections e.g. Candida
albicans [22] and viral pathogens e.g. Herpes simplex [23].

NO and Related Molecules During Parasitic Infections
NOS, NO or its stable metabolites have been identified as

major effector molecules during the majority of parasitic
infections. It seems that NO is not only necessary, but is also
sufficient to account for the entire antiparasitic activity [43].
There is evidence that the activated macrophages are able to
kill intracellular L. major, T. gondeii and extracellular
Schistosoma sp. parasites by the release of NO and RNI
[41,42]. The formation of NO, RNI and ONOO- has been
reported in majority of parasitic infections including Giardia
lamblia, Entamoeba coli [44], L. amazonensis [45], T. gondii
[46], L. mexicana [47], Schistosoma mansoni [28], Opisthorchis
viverrini [48] and Clonorchis sinensis [15].

NO and Related Molecules in Protozoal Infections
Inducible NO, synthesized by the iNOS, is an anti-

pathogen and tumoricidal agent. However, its production
requires a tight control because of cytotoxic and immune-
modulation activity [49]. Although there are several
immunological mechanisms to eliminate the intracellular
pathogens, they have elaborated a variety of strategies to
escape immune response and to make possible survival and
replication in the host. Several parasites are highly sensitive
to NO and their derivatives, however some parasites modulate
the production of toxic molecules [50]. Interestingly,
hemoglobin, myoglobin, and neuroglobin may protect
intracellular protozoa from the antiparasitic effects of NO [51].
Despite the wide evidence about anti-protozoal effects of NO,
little efforts have been made to develop NO-based drugs in
human medicine. This is mainly due to the difficulty in
designing chemical carriers able to release the right amount of
NO, in the right place and in the right time, to avoid toxic
effects against non-target host cells [49].

Leishmania sp.
NO produced by human and canine macrophages has been

involved in the intracellular killing of leishmania. Mechanisms
of parasite survival and persistence in the host have been
thoroughly investigated, and include suppression of iNOS
and the parasite entry into iNOS negative cells [49]. The iNOS
expression by macrophages plays an important role during
the control of leishmania infection in dogs [52], thisNO may
be involved in the long-term protection of dogs against natural
Leishmania infection and in the clinical presentation of canine
leishmaniasis [53]. Application of potential prodrugs to
cultures of infected mouse macrophages that were deficient
in iNOS caused rapid death of the intracellular protozoan
parasite Leishmania major with no host cell toxicity [54].
Therefore, some antileishmanial drugs act via NO modulation
[55-57].

NO in Immunity of Parasitic Infections
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Name Other names Type Regulated by Present in Human chromosome Mouse chromosome

nNOS Neuronal NOS Constitutive Ca2+/ calmodulin Brain and 12 5
(NOS1) other tissues 12q24.1-12q24.31 (site 56.0)

iNOS A Inducible NOS Inducible Endotoxin, Macrophages 17 11
(NOS2A) cytokines Neutrophiles 17q11.2-17q12 (site 45.6)

Chondrocytes
Hepatocytes

iNOS B Inducible NOS Unknown Unknown Unknown 17 11
iNOS C (NOS2B) 17p11.2-17q11.2 (site 45.6)

(NOS2C)
eNOS Endothelial Constitutive Ca2+/ calmodulin Endothelial 7 5

NOS (NOS3) cells 7q35-7q36 (site 9.0)

Plasmodium sp.
The main control of malaria in human and animals, is

achieved by NO-mediated mechanisms. Protection from severe
malaria in African children has been found associated with
polymorphisms of the iNOS promoter; however, a pathogenic
role of endogenous NO has been documented in cerebral
malaria [49]. There is conflicting evidence regarding the role
of NO in the process of resistance against malaria parasites.
Schizonts treated in vitro with NO donors caused a delayed
infection to mice in a dose and time-dependent manner, which,
suggest an inhibitory role for NO [58] with influence on
parasitemia and survival of Plasmodium berghei in infected mice
[59] or P. berghei Anka in rats [60]. Moreover, human severe
malaria is associated with decreased NO production [61] and
iNOS variants in regions of differing disease manifestation [62].
Low NO bioavailability might contribute to pathologic activation
of the immune system [63] and to the experimental cerebral malaria
[64]. Mechanism of NO action in malaria explain the presence of
its molecules in food vacuole which is a critical parasitic
compartment involved in hemoglobin degradation, heme
detoxification and a target for antimalarial drug action [65]. The
role of other haem enzymes including iNOS is indicated in malaria
infection [66]. NO and peroxynitrite concentration is reported to
be higher than hemoglobin concentration, and yet no parasite
killing was detected, therefore hemoglobin protects Plasmodium
parasites from oxygen radicals [67].

Toxoplasma sp.
In macrophages, Toxoplasma gondii inhibit NO

production, which suggests that an iNOS suppression
mechanism might be used for better survival in macrophages

[68]. Treatment of mice with a NOS inhibitor partially inhibited
the host-cell apoptosis induced by the parasite infection.
Apoptosis in host cells is due to the secretion of NO and
other soluble factors released by parasite infected cells [69].
T. gondii has a nitrite production and a putative NOS motif
genomic sequence. Recombinant protein derived from the
putative genomic sequence of T. gondii, is able to produce
nitrites [70]. In addition, NO modulates IFN-γ production in T.
gondii-infected mice, and that NO is involved in mediating a
protective response in toxoplasmosis susceptible, but not
resistant, mice strain during acute infection [71].

Trypanosoma sp.
Both intracellular and extracellular morphotypes of

Trypanosoma cruzi are killed by NO in vitro and in vivo. The
NO donation was shown to kill T. cruzi epimastigotes in culture.
[49]. iNOS is a potent modulator of chemokine expression
which is critical to triggering the generation of the inflammatory
infiltrate during T. cruzi infection [72]. DNA damage and NOS
activity was seen in infected mice with T. cruzi [73]. Moreover,
cytokine and NO is produced by T. brucei infection in rats
[74]. NO and iNOS was detected in myocardium and spleen of
dogs in the acute stage of infection with metacyclic or blood
trypomastigotes of T. cruzi [75].Immunisation with a major T.
cruzi antigen promotes pro-inflammatory cytokines and NO
production [76]. Therefore, NO may not be the sole contributor
to intestinal dysfunction resulting from T. cruzi infection [77].

Cryptosporidium sp.
An in vivo role for peroxynitrite formation in acute mucosal

defense against a noninvasive intestinal epithelial

Table 1. Comparison of three nitric oxide synthase isoforms.

Isoform Protein weight (KDa) Ca2+ dependency Expression Tissue distribution

nNOS 160 Ca2+ dependent constitutive Central and peripheral nervous system
iNOS 130 Ca2+ independent inducible Macrophage
eNOS 135 Ca2+ dependent constitutive Endothelial cells

Table 2. Chromosomal localization of nNOS, iNOS and eNOS sequences. (Mayer, 1998; Xu & Liu, 1998).



www.bjid.com.br

BJID 2009; 13 (December) 443

Cryptosporidium parvum pathogen was defined [78]. C.
parvum infection revealed the location, mechanism of
induction, specificity, and consequence of iNOS expression
in neonatal piglets [79]. These data suggest that NO may
reduce the parasite load in experimental cryptosporidiosis [80]
and it is indicated that number of C. parvum oocysts in feces,
proportion of CD4+, CD3+ T cells in blood, serum IFN-ã, and
NO content in intestinal tissue were all higher than those of
infected control group [81]. NO serves as a proximal mediator
of PGE2 synthesis and barrier function in C. parvum infection
[82]. Taken together these data suggest that both reactive
nitrogen and reactive oxygen species play protective roles in
experimental cryptosporidiosis [83].

Trichomonas sp.
NO is a macrophage-mediated cytotoxicity against

Trichomonas vaginalis [84] and protozoa produce NO and
display NOS activity [85]. Killing of extracellular protozoa such
as T. vaginalis by activated macrophages is also mediated by
NO [49] and protozoa degrades NO as a new pathogenic
mechanism of action in vitro [86]. These results suggest that
RNI radicals may have a role in limiting T. vaginalis infection
in asymptomatic women [87].

Giardia sp.
Giardia intestinalis produce NO and display NOS activity

[85]. NO and arginine was detected as central components in
a novel cross-talk between a luminal pathogen G. lamblia and
host intestinal epithelium [88]. Moreover, NO accounts for
trophozoite killing and this effect is not mediated by
peroxynitrite [44]. Neuronal NOS is necessary for elimination
of G. lamblia infections in mice [89], however serum levels of
NO increased only in some cases during Giardiasis [90].

Entamoeba sp.
Trophozoites of Entamoeba histolytica produce NO in

culture by activated macrophages as a major cytotoxic
molecule against E. histolytica trophozoites [91]. NO produced
and that O2- and H2O2 may be cofactors for the NO effector
molecules [92-93]. NO production and iNOS mRNA expression
were confirmed in experimental hepatic amoebiasis [94] and
during development of liver abscess in hamster inoculated
with E. histolytica [95]. Unlike in mice, amoebic liver abscess
in hamsters [96] and in humans [97] is due to an excess in NO
production. NO is involved in the neutrophil and macrophage
killing of the E. histolytica [98]. Although, E. histolytica
selectively induces macrophage by modulating iNOS and NO,
allowing the parasites to survive within the host [99], E.
histolytica inhibits NO-mediated amoebicidal activity of
macrophages by consuming L-arginine [100]. The resistance
of the mice probably lies in non-specific immune responses,
among which the neutrophils activation and NO production
may be important amoebicide factors [101]. TNF-α and TGF-β
are demonstrated to be associated with NO-dependent
macrophage cytotoxicity against E. histolytica [92].

NO and Related Molecules in Helminthic Infections
NO possesses antiparasitic effects on both protozoa and

metazoa in definitive and intermediate hosts [51]. Several
groups have previously presented evidence for NOS activity
and immunoreactivity in several parasitic platyhelminthes,
indicating that NO release may play an important role in
helminth physiology [102]. Most helminthes induce
inflammation in the host associated with NO production
through somatic and excretory-secretory antigens of adult
worm and larvae [103]. An association was hypothesized that
helminthes may induce protection through immunoglobulin E
(IgE) and the CD23/NO pathway [104]. Our data imply that
NO production in host defense against the extracellular
parasite is probably in response to an IFN-ã activating signal.
Concomitant enhanced levels of IFN-ã and nitrite represent
useful indicators of the clinical aggressiveness of hydatidosis
[105].

Nematodes sp.
NO is produced in several nematodes including Ascaris

suum [106], Brugia malayi and Acanthocheilonema viteae
[107]. A potential role for NO as a neurotransmitter at the
neuromuscular junction was observed in A. suum [108]. In
addition, an inhibitory effect on nematode somatic muscle is
mediated by NO [109]. Although, the biochemical presence of
NOS activity is indicated in A. suum tissue [110] and in B.
malayi, NOS may play a role in developmental signaling [111].

Toxocara sp.
Antigens of T. canis is reported to produces NO and PGE2

in vitro [112]. In vivo production of NO during Toxocara canis
infection causes direct host damages and it is strongly related
to the oxidative stress and larval NO is effective in migration
[113]. A potential therapeutic strategy is presented for
experimental granulomatous hepatitis caused by T. canis in
mice through manipulation of iNOS expression [114]. In vivo
inhibition of iNOS decreases lung injury induced by this
nematode in infected rats [112]. Cytokines and iNOS is
involved in the cerebral pathology during infection with T.
canis [115], whereas, iNOS inhibition can protect the brains
of infected mice from damage [116].

Schistosoma sp.
NO and NOS was significantly involved in different stages

of human schistosomiasis including Schistosoma mansoni,
[117], S. haematobium [118] and S. japonicum infections [119].
Although, S. japonicum infection induce the expression of
iNOS in a time-dependent manner in the liver of the host, the
eggs may be the main factor in this induction [119]. There are
controversial reports about NOS activity in murine
schistosomiasis; NOS inhibits egg-induced granuloma
formation in the mouse liver [120], however NOS activity
increased during granulomatous inflammation in the colon
and caecum of pigs infected with S. japonicum [121] and its
inhibition reduces liver injury in mice [122]. An important

NO in Immunity of Parasitic Infections
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regulatory role for the iNOS biosynthetic pathway as a critical
determinant in the pathogenesis of granuloma was observed
[123].

Fasciola sp.
The levels of both superoxide and NO radicals were

reported to be significantly higher in patients with Fasciola
hepatica in compare with control group, indicating these
radicals may have a role in the immunity against human [124]
and rodent infections [125]. Some parasiticidal effects of
peroxynitrite was reported on bovine liver flukes including F.
hepatica and Dicrocoelium dendriticum in vitro [126]. The
mechanism of cytotoxicity was dependent on the production
of NO and required attachment of effector cells to the newly
excysted juvenile liver F. hepatica tegument in infected hosts
[127]. Trematoda immune suppression, decreases NO
production by host peritoneal cells and it is one of the
strategies of the parasite to avoid the potential killing effect
of NO during peritoneal migration [128].

Echinoccocus sp.
The results of experimental infection with Echinococcus

granulosus, E. multilocularis and E. alveolaris showed that
serum NO level was significantly increased, which is needed
for in vitro killing of protoscoleces [117, 129, 130]. The NO
elevation on hepatic pathological lesions of disease showed
a marked reduction of granuloma size with absence of
concentric fibrosis [117]. Controversially, some researchers
reported NO-mediated immunosuppression following murine
Echinococcus infection [131] and the high level of NO
production during chronic infection, which contribute more
to immunosuppression than to limitation of parasite growth
[132]. Results indicated that IFN-ã mediated iNOS is induced
as one of host defense mechanism against human E.
granulosus infection [133]. Collectively, the data indicated
that NO concentration correlate with IFN-γ levels, and overall
suggest that their production together play a role in the host
defense mechanisms in human hydatidosis [134].

Taenia sp.
Macrophage activation and NO production are effector

mechanisms that importantly contribute in host resistance to
Taenia crassiceps infection [135]. NO contributes directly to
a component of inhibitory transmission in guinea-pig T. coli
[136], therefore a possible role of L-arginine-NO pathway is
presented in the modulation of transmission in this guinea-
pig cestoda [137]. In addition, the source and role of basal NO
in vitro in proximal segments of another species of taenia (T.
caeci) in guinea pig was also indicated [138].

Conclusive Remarks
Taken together, the data provided by researchers highlight

the fact that NO and/or its related molecules are involved in
many infectious diseases, but the involvement is not
independent of other immune events. It is indicated that NO

is an important, but possibly not essential contributor in the
control of acute phase of parasitic infections. Although, the
protective immune responses against microorganisms are
multifactorial, the final effector molecules that mediate
organism death are not known, NOS, NO, and RNI have been
significantly implicated. It is concluded that NO is only part
of an immunopathological chain against infection and the anti-
microbial function did not relate only to NO action, therefore
a combination of NO and other immune factors is required to
resolve pathogens. In summary, it is highlighted the complexity
and variation of NO-released by different NOS isoforms in
parasitic infections and discussed that NOS activation could
have both pro- and anti-inflammatory effects. Moreover, it is
emphasised here that iNOS-derived NO may have an extra-
functional qualification to overcome pathogenic parasites. It
is possible that these effects could be critically dependent on
the type and concentration of NO generated. Finally, it is still
unclear whether NOS inhibition would be a good therapeutic
target in parasitic infections. It is suggested that the
detrimental effect of NOS is related to the L-arginine and NO
concentrations, because NO at high concentration has a clear
anti-inflammatory effect [139-142]. Thus, activation of NO could
be a potential therapeutic strategy to suppress parasitic
infections [143-145]. Nevertheless, the functional role of NO
and NOS isoforms in the immune responses of host against
the majority of parasites is still highly controversial. Therefore,
the involvement of NO and its up / downstream molecules in
parasitic infections is cuurently under debate and it is still
required more investigations [146-147].
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