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Abstract

Shigellosis produces inflammatory reactions and ulceration on the intestinal epithelium followed by

bloody or mucoid diarrhea. It is caused by enteroinvasive E. coli (EIEC) as well as any species of the

genus Shigella, namely, S. dysenteriae, S. flexneri, S. boydii, and S. sonnei. This current species des-

ignation of Shigella does not specify genetic similarity. Shigella spp. could be easily differentiated

from E. coli, but difficulties observed for the EIEC-Shigella differentiation as both show similar bio-

chemical traits and can cause dysentery using the same mode of invasion. Sequencing of multiple

housekeeping genes indicates that Shigella has derived on several different occasions via acquisition

of the transferable forms of ancestral virulence plasmids within commensal E. coli and form a

Shigella-EIEC pathovar. EIEC showed lower expression of virulence genes compared to Shigella,

hence EIEC produce less severe disease than Shigella spp. Conventional microbiological techniques

often lead to confusing results concerning the discrimination between EIEC and Shigella spp. The

lactose permease gene (lacY) is present in all E. coli strains but absent in Shigella spp., whereas

�-glucuronidase gene (uidA) is present in both E. coli and Shigella spp. Thus uidA gene and lacY

gene based duplex real-time PCR assay could be used for easy identification and differentiation of

Shigella spp. from E. coli and in particular EIEC.
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Introduction

Bacillary dysentery like shigellosis, endemic

throughout the world, is one of the major causes of morbid-

ity and mortality, especially among children > 5 years of

age in low and middle income countries including Bangla-

desh (Bardhan et al., 2010; Wen et al., 2012). The disease is

caused by enteroinvasive Escherichia coli (EIEC) or any of

the four species or groups of Shigella: S. dysenteriae, S.

flexneri, S. boydii, and S. sonnei. In the nineties, there are

about 165 million cases of Shigella infection annually

worldwide and 1.1 million Shigella-related deaths, with

98% of those cases in low income countries (Kotloff et al.,

1999). According to a recent review on Asian countries

(Bardhan et al., 2010), about 125 million cases of endemic

shigellosis occur per year. The study showed that the inci-

dence of shigellosis is similar to an earlier report (Kotloff et

al., 1999), however, the overall mortality rate due to

shigellosis has come down to ~ 0.01% and ~0.89% among

the youngest age group. Although EIEC is one of the

etiologic agents of diarrhea, very few epidemiologic stud-

ies have been done globally to estimate the actual disease

burden due to EIEC, individual risk factors for infection or

prospective reservoirs of EIEC. Adequate attention was not

given to the epidemiology of EIEC, since it is often found

to be rare etiological agent of diarrhea compared to other

diarrhea-causing enteropathogens (Vieira et al., 2007;

Moreno et al., 2010). Identification and differentiation of

Shigella spp. and EIEC from environmental and clinical

specimens by conventional culture and biochemical assays
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are complex and time consuming. This review focuses on

phenotypic and genotypic relationship among EIEC and

Shigella spp., and recent progress of clinical and practical

research, and utility of currently available molecular meth-

ods for differentiation between Shigella spp. and E. coli, in

particular emphasis on EIEC based on literature study.

Identification and Classification

The Japanese scientist Kioshi Shiga first identified

Shigella in the 1898s. He termed it as Bacillus because it

seemed to be related to Bacillus coli, which is now referred

to as E. coli (Hale, 1991). In taxonomy, Shigella strains

were classified into a different genus from E. coli in the

1940s due to their pathological significance. The genus is

divided into four species and at least 54 serotypes based on

their biochemical and/or the structure of the O-antigen

component of LPS present on the cell wall outer mem-

brane: S. dysenteriae (subgroup A, 16 serotypes), S.

flexneri (subgroup B, 17 serotypes and sub-serotypes), S.

boydii (subgroup C, 20 serotypes), and S. sonnei (subgroup

D, 1 serotype) (Simmons and Romanowska, 1987;

Talukder and Azmi, 2012).

On the other hand, EIEC was first reported as ‘para-

colon bacillus’ in 1944, but it was later designated as E. coli

O124. EIEC is associated with specific E. coli O-serotypes:

O28ac:NM, O29:NM, O112ac:NM, O121:NM, O124:NM,

O124:H30, O135:NM, O136:NM, O143:NM, O144:NM,

O152:NM, O159:H2, O159:NM, O164:NM, O167:H4,

O167:H5, O167:NM and O173:NM (Orskov et al., 1991;

Matsushita et al., 1993; Nataro and Kaper, 1998; Martinez

et al., 1999; Gibotti et al., 2004). All of the serotypes are

nonmotile except few biotypes of O28ac, O29, O124, O136

and O143 (Silva et al., 1980; Martinez et al., 1999). Some

of these EIEC-associated O antigens are identical or similar

to O antigens present in Shigella spp., namely: O112ac,

O124, O136, O143, O152, and O164 with Shigella O anti-

gens of S. dysenteriae 2/S. boydii 15/S. boydii 1, S.

dysenteriae 3/ provisional Shigella serovar 3615.53, S.

dysenteriae 3/S. boydii 1, S. boydii 8, provisional Shigella

serovar 3341:55, and S. dysenteriae 3, respectively

(Cheasty and Rowe, 1983; Landersjo et al., 1996;

Linnerborg et al., 1999). In fact, differentiation between

Shigella and EIEC strains with the same serotype is often

difficult due to their nearly identical physio-biochemical

traits. EIEC strains can be differentiated from typical mem-

bers of commensal E. coli strains by the Sereny test and/or

the identification of bacterial invasion-associated proteins

or genes via specific tests. However, these methods are not

routinely used for laboratory diagnosis and EIEC strains

are only provisionally identified by O serotyping with com-

mercially available antisera in diagnostic laboratories

(Beutin et al., 1997). Where a typable isolate additionally

carries a serotype occurring in both EIEC and Shigella spp.,

a taxonomic classification could be at best possible on the

basis of genes responsible for the higher metabolic activity

of EIEC (Ewing, 1986; Kibbee et al., 2013).

Phenotypic and Genotypic Relationship

Although Shigella and E. coli are closely related, E.

coli always show some different physio-biochemical prop-

erties than Shigella. More than 80% of E. coli are proto-

trophic, motile, able to decarboxylate lysine and ferment

many sugars, produce gas from D-glucose and indole posi-

tive, whereas Shigella are auxotrophic, obligate pathogens,

non-motile, unable to decarboxylate lysine, ferment few

sugars and never produce gas from D-glucose, except

Shigella flexneri 6, S. boydii 13 and S. dysenteriae 3 (Clay-

ton and Warren, 1929; Downie et al., 1933; Stypulkowska,

1964; Rowe et al., 1975; Silva et al., 1980; Toledo and

Trabulsi, 1983; Baumann and Schubert, 1984; Ewing,

1986; Scheutz F, 2005). Shigella spp. are unable to ferment

salicine and hydrolyze esculine (Bopp et al., 2003) . Of four

Shigella spp., only S. sonnei is able to ferment lactose

slowly and can be mucate positive (Goodman and Pickett,

1966). However, some EIEC strains have remarkable phe-

notypic and genotypic similarity with Shigella species

(Farmer et al., 1985; Lan et al., 2004). They are usually

nonmotile, lactose negative and lysine-decarboxylase neg-

ative except for a few serotypes, which are the Sereny test

negative and motile (Farmer et al., 1985). The few bio-

chemical properties that enable differentiation of E. coli

and Shigella spp. are mucate fermentation and acetate utili-

zation. EIEC may be positive for one or both of the proper-

ties, in contrast Shigella strains are negative for both and

more than 90% of other E. coli strains are positive for both

with very few exceptions (Bopp et al., 2003; Lan et al.,

2004).

It was reported that Shigella and E. coli show 80-90%

similarity at the nucleotide level, while other Escherichia

spp. have a much lower degree of similarity and are geneti-

cally distant (Brenner et al., 1972). Multilocus enzyme

electrophoresis and ribotyping analyses revealed that

Shigella genotypes are interspersed within E. coli geno-

types, irrespective of their nomen-species (Rolland et al.,

1998). Likewise, a high degree of relatedness between

Shigella and E. coli is found based on 16S rDNA analysis

(Christensen et al., 1998). DNA-DNA re-association stud-

ies, sequencing of numerous other housekeeping genes,

virulence genes and complete genome sequencing showed

that EIEC and Shigella spp. formed a distinctive E. coli

pathovar (Brenner et al., 1972; Brenner, 1973; Lan et al.,

2004). However, the discrimination between EIEC and

Shigella spp. is necessary as both exhibit a number of clini-

cal differences. For example, Shigella spp. can cause hae-

molytic uraemic syndrome (HUS), a clinical syndrome

characterized by progressive renal failure associated with

microangiopathic (nonimmune, Coombs-negative) hemo-

lytic anemia and thrombocytopenia, whereas EIEC is not

known to cause HUS (Johnson, 2000).
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Genetic Structure of Shigella

Each of the Shigella genomes includes a single circu-

lar chromosome and /or a circular virulence plasmid (VP)

that harbors conserved primary virulence determinants

(Sasakawa et al., 1992). The whole-genome sequencing of

all four Shigella spp. and E. coli revealed that they share a

fundamental core genome of approximately 3 Mb (Lukjan-

cenko et al., 2010). The Shigella chromosome has more

than 200 pseudogenes, 300~700 copies IS-elements, nu-

merous deletions, insertions, translocations and inversions.

Although, Shigella chromosomes share most of their genes

with E. coli K12 strain MG1655, bacteriophage-mediated

horizontal gene transfer is the main contributor for the mas-

sive diversity of putative virulence genes (Venkatesan et

al., 2001). Shigella spp. became highly virulent pathogens

with distinct clinical and epidemiological features via gain-

ing and loss of gene functions in adaptation and convergent

evolution, by means of bacteriophage integration, IS-

mediated transposition and formation of pseudogenes

(Yang et al., 2005; Peng et al., 2006).

Phylogenetic Relationship

The sequencing of multiple housekeeping genes indi-

cates that Shigella has risen on several different occasions

from several independent ancestors by acquisition of the

transferable forms of ancestral VPs within the group of

nonpathogenic E. coli. Based on the analysis of sequence

variation in eight housekeeping genes of Shigella, Pupo et

al. proposed that Shigella strains fall into three main clus-

ters and four outliers (Pupo et al., 2000). In 2007, Yang et

al. showed a similar phylogenetic tree using the DNA se-

quences of 23 housekeeping genes, which corroborated the

credibility of the previous conclusions (Yang et al., 2007).

The most striking features are that each cluster includes

strains from different Shigella species. The phylogenic tree

shows that most of the Shigella strains belong to three clus-

ters (C1, C2 and C3) leaving S. sonnei (SS), S. dysenteriae

(D) serotype 1, 8, 10 and S. boydii serotype 13 (B13) as out-

liers. Cluster 1 can be sub-clustered to SC1, SC2, SC3, and

a minor branch consisting of only S. dysenteriae 7. Sub-

cluster 1 contains only D strains (D3-4, D6, D9, D11-13),

SC2 contains mostly B strains (B1, B3, B6, B8, B10, and

B18) but also D5, and SC3 contains three B strains (B2, B4,

and B14) and F6. Cluster 2 is mainly composed of B strains

(B5, B7, B9, B11, and B15-17) and D2. Cluster 3 consists

of mostly S. flexneri (F) strains (F1a, F1b, F2a, F2b, F3,

F4a, F4b, F5, Fx, and Fy) and B12. The most profound ob-

servation is that each of the five clusters/sub clusters con-

tains strains mostly from only one serogroup indicates that

serological classification is highly correlated with the ge-

notypes and continues to be useful in epidemiologic and di-

agnostic investigations. In the phylogenetic tree, B13 is

distant from all the E. coli/Shigella strains, which is consis-

tent with a recent report that B13 and E. albertii strains

form a distinct lineage of enteric pathogens that had sepa-

rated from an E. coli-like ancestor about 28 million years

ago (Hyma et al., 2005). MLST analysis revealed that EIEC

strains grouped into four clusters with one outlier strain

(which was found in Shigella cluster 2), indicating the inde-

pendent derivation of EIEC several times (Lan et al., 2004).

In comparison of EIEC with Shigella clusters, the authors

showed that EIEC clusters have diverged less than Shigella

clusters, although Shigella-EIEC forms one single pathovar

of E. coli (Lan et al., 2004).

Pupo et al. proposed that the three main clusters of

Shigella had independently evolved from multiple E. coli

ancestors with diverse genetic backgrounds 35,000-

270,000 years ago (Pupo et al., 2000). This indicated that

dysentery existed long before civilization and was one of

the early infectious diseases of human. S. sonnei had devel-

oped as a human-pathogenic clone of E. coli approximately

10,000 years ago (Shepherd et al., 2000). The descent times

are relatively recent when one takes in account that a major

nonpathogenic E. coli cluster diverged from other bacteria

8-22 million years ago. These data are probably no coinci-

dence because pathogenesis of Shigella is based on surviv-

ing in the intestinal epithelial cells of humans only-a perfect

host-adaptation (Pupo et al., 2000). Sequence variations in

the clusters of Shigella and EIEC indicated that EIEC might

have arisen from E. coli ancestors after Shigella developed.

Based on this derivation of EIEC, two hypotheses about

EIEC in relation to Shigella were stated. First, EIEC strains

are in an intermediate stage and are a potential precursor of

‘full-blown’ Shigella strains. Second, like Shigella, EIEC is

a distinct group of organisms that is adapted to human

hosts, but is better equipped to survive outside the host (Lan

et al., 2004).

The critical step for Shigella creation is the acquisi-

tion of the antecedent forms of the VP, which is a non

self-transferable large single-copy plasmid of 180-230 kb

(Hale et al., 1983). This VP is essential for invasiveness,

cell survival and apoptosis of Macrophages (Harris et al.,

1982; Sansonetti et al., 1982b; Sansonetti et al., 1983). The

virulence associated genes on the pINV are probably ac-

quired horizontally from another unrelated genus, because

the A+T content of the nucleotides of these genes is 75%,

while the A+T content of all Shigella and E. coli genomes is

50% (Adler et al., 1989; Hale, 1991). Based on the analysis

of three virulence genes (ipgD, mxiA, and mxiC) that are lo-

cated on the invasion region of VP in Shigella and EIEC

strains, two forms of VPs (pINVA and pINVB) were found

(Lan et al., 2001; Yang et al., 2007). Lan et al. extensively

studied 32 EIEC strains and found that all but two EIEC

strains have the pINV A form (Lan et al., 2004). S. sonnei

has only pINVB and other serotypes have mixed form. The

acquisition of the VP in an ancestral E. coli strain preceded

the diversification by radiation of all Shigella and EIEC

groups. The DNA sequence indicated that a 31-kb entry re-

gion of VP encodes components of the Mxi [membrane

Shigella and EIEC differentiation 1133



excretion of Ipa]-Spa[surface presentation of invasion

plasmid antigens] TTSS [type three secretion system] ap-

paratus, substrates of this apparatus (IpaA-D [invasion

plasmid gene]), their dedicated chaperones (IpgA, IpgC,

IpgE and Spa15) and two transcriptional activators (VirB

and MxiE) (Buchrieser et al., 2000). Outside of the entry re-

gion, there are i) virG gene, encoding outer membrane pro-

tein (VirG), responsible for bacterial movement within the

cytoplasm of infected cells, ii) virF gene, encoding a trans-

criptional activator (VirF), controls expression of icsA and

virB, and iii) the sepA gene encodes a secreted serine prote-

ase of the autotransporter family. Moreover, the virulence

plasmid also contains two copies of the shet2 gene encod-

ing a putative enterotoxin, and genes encoding several se-

creted proteins (VirA, IpaH4.5, IpaH7.8, IpaH9.8) and six

uncharacterized protein designated (outer Shigella

proteins): OspB, OspC1, OspD1, OspE1, OspF, and OspG

(Harris et al., 1982; Sansonetti et al., 1982a; Sansonetti et

al., 1983). The plasmid encoded proteins are directly in-

volved in the entry into host epithelial cells. With the acqui-

sition of the pINV, Shigella and EIEC were able to live in

the human intestinal epithelial cells. For the invasion and

maintaining in the host, Shigella and EIEC need a com-

bined expression of genes located on the pINV and chro-

mosome (Sansonetti et al., 1982b; Maurelli et al., 1998).

The Shigella genome has adapted to the acquisition of

invasion plasmid by multiple different events, such as: (i)

controlling at promoter level, (ii) mutations within genes,

(iii) the suppression or over expression of certain genes, or

(iv) deletion of anti-virulence genes which is called “black

hole” to evolve toward a pathogenic lifestyle (Maurelli et

al., 1998). For example, the loss of cadA gene is a black

hole in EIEC and Shigella. CadA encodes for lysine decar-

boxylase activity (LDC), which is present in almost all

non-enteroinvasive E. coli. Cadaverine produced by lysine

decarboxylase has been shown to attenuate the bacteria’s

ability to induce polymorphonuclear leucocytes transepi-

thelial migration. Because of the inhibiting influence of

cadaverin on the virulence of Shigella, LDC activity was

lost by genome deletion (Maurelli et al., 1998). Conse-

quently, LDC is a biochemical trait which can be used to

differentiate between other E. coli vs. Shigella and EIEC,

but not between EIEC and Shigella.

Pathogenesis Process

The illness caused by Shigella or EIEC is character-

ized by the destruction of the colonic epithelium caused by

the inflammatory response induced upon invasion of the

mucosa by bacteria (Parsot, 2005). It is well established

that the disease induced by EIEC is generally less severe

than Shigella does (DuPont et al., 1989; Moreno et al.,

2009; Bando et al., 2010; Moreno et al., 2012). Recombina-

tion techniques and the sequencing of the invasion plasmid

and chromosomal genes associated with virulence, gave in-

sight of the precise mechanism of infection by Shigella.

First, the bacteria in the intestinal lumen invade the colon

by transcytosis through microfold cells (M-cells) of the

Follicle-Associated Epithelium (FAE) to reach the underly-

ing submucosa (Croxen and Finlay, 2010). The disruption

of tight junctions and the damage that is caused by inflam-

mation also give Shigella entry to the submucosa. Although

Shigella phagocytosed by resident macrophages, it can es-

cape from the phagosome, and caspase-1-dependent in-

flammation activation resulting ultimate release from

macrophages. After cell death, the bacteria, released in the

submucosa, invade epithelial cells by endocytosis. During

the invasion of the epithelial cells, ipaBCD and mxiAB

genes of the ipa-mxi-spa island on the VP are brought to ex-

pression (Sansonetti et al., 1981; Sansonetti et al., 1982b;

Buysse et al., 1987; Venkatesan et al., 2001; Moreno et al.,

2009; Croxen and Finlay, 2010). IpaD is believed to play a

role in attaching to host cell membranes, and subsequently

IpaB plays a role in the endocytic uptake of the bacteria.

The roles of the other known virulence genes associated

with invasion of the cell have yet to be discovered. Once in-

ternalized, the phagocytic vacuole is quickly lysed by the

invading bacterium, thereby allowing its escape into the

host cell cytoplasm, where it nucleates and assembles an

F-actin comet at one of its poles (Bernardini et al., 1989).

This result in the bacterium moving inside epithelial cells

and passing from cell to cell, thereby is causing a very effi-

cient process of intracellular colonization. Shigella actin

based motility is mediated by a single outer membrane pro-

tein, IcsA (VirG) (Lett et al., 1989). Glycine-rich repeats in

the amino terminal end of IcsA (VirG) bind neuronal

Wiskoff-Aldrich Syndrome Protein (N-WASP) (Suzuki et

al., 1998), a member of the WASP family of Cdc-42-

dependent mediators of actin nucleation via the Arp 2/3

complex. Formation of a complex between IcsA, N-WASP,

and Arp 2/3 at the bacterial surface is sufficient to cause

actin nucleation/polymerization in the presence of actin

monomers (Egile et al., 1999). Motile intracellular Shigella

then involve components of the cell intermediate junction

to form a protrusion that is internalized by the adjacent cell,

thus causing cell-to-cell spread (Sansonetti et al., 1994). In-

vasion of epithelial cells by Shigella stimulates the release

of proinflammatory cytokines and chemokines, such as

IL-8 attacks polymorphonuclear leukocytes (PMN) to the

infection site and their transmigration through the epithe-

lium, which results in major tissue destruction and inflam-

mation.

Difference in Pathogenecity and Virulence
Genes Expression

EIEC produce less severe disease than S. flexneri

(Moreno et al., 2009; Bando et al., 2010; Moreno et al.,

2012). An inoculum of 106 EIEC cells is sufficient for in-

fection, whereas as low as 102 Shigella cells can cause suc-

cessful infection (DuPont et al., 1971). S. flexneri induced
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keratoconjunctivitis quickly and more severely than the

EIEC strains. One of the hypotheses for this phenomenon is

the increased efficiency of Shigella in spreading through

epithelial cells compared to EIEC. (Moreno et al., 2009).

Moreover, it is noteworthy that Shigella and EIEC showed

significant differences in the expression of regulatory and

pathogenic genes (icsA, icsB, ipaA-D, virF and virB). It

was found that S. flexneri expresses pathogenic genes at

significantly higher levels than that of EIEC (Moreno et al.,

2009; Bardhan et al., 2010). The virF and virB genes act in

a regulatory cascade to trigger virulence genes transcription

following the receipt of specific environmental signals by

the bacterium (Adler et al., 1989; Prosseda et al., 1998).

The VirF protein initiates the transcription of the virB regu-

latory gene, and the product of this gene (VirB) in turn acti-

vates the promoters of the structural virulence genes (Porter

and Dorman, 2002). Among the studied genes, only the

virF gene was more expressed by EIEC than by S. flexneri.

All the other genes were less expressed in EIEC. The lower

expression of these genes might lead to significant differ-

ences in virulence between EIEC and Shigella, leading to a

weaken dissemination capacity of EIEC. These data also

corroborated the differences in the mechanism by which

EIEC and S. flexneri manipulate the host intestinal cells,

and suggest that their genes respond specifically to the en-

vironment of the host cell milieu, resulting in different dis-

ease outcomes (Moreno et al., 2009). Regarding the immu-

ne response related to dendritic cells (DCs), the innate

immune response upon EIEC infection are preserved al-

though DCs fail to activate naive T lymphocytes (Moreno

et al., 2012). Moreover, EIEC showed a late killing effect in

J774 macrophage cultures in compare to S. flexneri (Bando

et al., 2010). This data could explain why EIEC takes lon-

ger time than Shigella species to cause diarrhea.

Current Approaches to Differentiate Shigella
spp. and EIEC

The above described characteristics suggest that

Shigella/EIEC could be differentiated genetically from typ-

ical E. coli by targeting marker genes. But designing a

rapid, sensitive and reliable molecular technique for identi-

fication and differentiation between EIEC and Shigella spp.

is very difficult due to their close biochemical similarity.

Till now few molecular methods have been described for

identification of the members of Shigella-EIEC pathover

from other typical E. coli. For example, apyrase-based

colorimetric test (Sankaran et al., 2009), loop-mediated

isothermal amplification method targeting the ipaH gene

(Song et al., 2005), PCR-ELISA (Sethabutr et al., 2000),

IpaC and IpaH gene -specific ELISA (Oberhelman et al.,

1993; Pal et al., 1997), large invasive plasmid (120-140

MDa) analysis based method (Ud-Din et al., 2010), colony

blotting using 2.5 kb HindIII fragment of invasion plasmid

(Small and Falkow, 1988). Moreover, PCR based assay tar-

geting- IS630-probes (Houng et al., 1997), virF gene

(Wang and Chen, 2012), ipaH gene (Thiem et al., 2004)

and IS1 region (Hsu et al., 2007), multiplex PCR (Anti-

kainen et al., 2009; Fujioka et al., 2013) and singleplex

real-time PCR (Liu et al., 2013) have been reported previ-

ously to detect the presence or absence of Shigella/EIEC.

Most recently, Ojha et al. developed a pentaplex PCR

which is able to detect and differentiate among Shigella

spp. (Ojha et al., 2013). Unfortunately, this method is also

unable to differentiate EIEC from Shigella spp.

Lactose fermentation is the biochemical hallmark of

E. coli which is exploited extensively for its detection by

conventional culture methods (Ito et al., 1991; Stoebel,

2005). The lacY gene, a gene encoding lactose permease, is

present in different members of the family Enterobac-

teriaceae like E. coli, Enterobacter cloacae, Citrobacter

freundii or Kluyvera ascorbata, while the b-glucuronidase

gene (uidA), which encodes the beta-glucuronidase en-

zyme is present in E. coli and Shigella spp. (Horakova et

al., 2008), Horakova et al. reported that the lacY gene is a

putative genetic marker for differentiation of Shigella spp.

from E. coli (Horakova et al., 2008). They developed a con-

ventional multiplex PCR, which seemed to work well to

differentiate Shigella from E. coli but not for EIEC-

Shigella differentiation. Additionally, this conventional

PCR failed to differentiate EIEC from Shigella due to pres-

ence of similar sized non-specific amplicons for Shigella

spp. In consequence, Pavlovic M et al. developed a simple,

rapid, reliable and specific probe-based duplex real-time

PCR assay specific for the genes uidA and lacY to mini-

mize the risk of detection of nonspecific targets (Pavlovic

et al., 2011). They successfully differentiated ninety-six

isolates including 11 EIEC isolates of different serotypes

and at least three representatives of each Shigella species

correctly. All the tested Shigella and E. coli including EIEC

isolates were positive for the uidA gene. Additionally, all E.

coli isolates were positive for the lacY gene, whereas none

of the tested Shigella isolate harbored the lacY gene. Even

cross reacting serotypes of EIEC (O112ac, O124 and

O152) were clearly differentiated from Shigella as EIEC by

the duplex real-time PCR. The selectivity of the lacY-uidA

duplex real-time PCR was 100%.

Conclusion

In summary, Shigella and EIEC can be differentiated

from commensal E. coli by testing for presence of the

ipaH-gene. Since Shigella and EIEC have similar physio-

biochemical characteristics, conventional identification

systems will identify members of the Shigella-EIEC patho-

var as either E. coli or Shigella. Conventional cultural tech-

niques often lead to confusing results concerning the

discrimination of EIEC and Shigella spp. The duplex real-

time PCR assay, which is simple, rapid, reliable and spe-

cific, can be used for differentiation of Shigella spp. from E.

coli and in particular EIEC.
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