Acessibilidade / Reportar erro

Performance of “RESIST-3 O.K.N. K-SeT” immunochromatographic assay for the detection of OXA-48 like, KPC, and NDM carbapenemases in Klebsiella pneumoniae in Turkey

ABSTRACT

In this study, the performance of the “RESIST-3 O.K.N. K-SeT” (Coris BioConcept, Gembloux, Belgium) immunochromatographic assay was evaluated in 132 Klebsiella pneumoniae comprising 102 carbapenem resistant and 30 carbapenem susceptible isolates. Genotypically known isolates of Gram negative bacteria (n = 22) including various species were also tested by the assay as controls. The isolates tested by the immunochromatographic assay and also were run PCR for bla KPC, bla IMP, bla VIM, bla NDM, and bla OXA-48. The rates of bla NDM, bla OXA-48, and bla KPC in carbapenem resistant isolates were found at 52.9%, 39.2%, and 2.0%, respectively. Both bla NDM and bla OXA-48 were found in six (5.9%) isolates. The results of the assay showed 100% concordance with those obtained by PCR in 132 K. pneumoniae. The agreement between the two methods was found to be identical at the isolate level. The assay also correctly detected all genotypically known isolates of Escherichia coli, Serratia marcescens, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae carrying bla KPC, bla NDM, and/or bla OXA-48. On the other hand, the assay did not exhibit any cross-reaction in control isolates harboring bla IMP and bla VIM. We conclude that the RESIST-3 O.K.N. K-SeT is a reliable, rapid, and user friendly test and we recommend it for routine diagnostic laboratories.

Keywords:
Klebsiella pneumoniae; Immunochromatographic test; NDM; KPC; OXA-48

Introduction

Multi-drug resistant Klebsiella pneumoniae isolates are of great concern worldwide.11 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682-707. Although carbapenems are widely used antibiotics in the treatment of infections caused by multi-drug resistant K. pneumoniae, nosocomial infections due to carbapenem resistant K. pneumoniae (CRKp) have also increased dramatically in the last decade.22 Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context treatment options, and detection methods. Front Microbiol. 2016;7:895. The main mechanism of carbapenem resistance in K. pneumoniae has been associated with the production of carbapenem hydrolyzing enzymes. Various types of class A, B, and D type carbapenemases have been identified in K. pneumoniae. KPCs are the most commonly seen class A carbapenemases and endemic in the USA, Colombia, Brasil, Argentina, Italy, Poland, China, Taiwan, Israel and Greece.11 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682-707.33 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med. 2012;18(5):263-272. Among class B carbapenemases, VIM and IMP have spread in many countries since the early 2000s and are endemic in Southern Europe and Asia-Pacific region.22 Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context treatment options, and detection methods. Front Microbiol. 2016;7:895. Another class B carbapenemase, NDM, has also spread rapidly and become a global threat since 2008.44 Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046-5054. In class D, OXA-48 type carbapenemases have become prevalent among K. pneumoniae and other members of Enterobacteriaceae in Turkey, Morocco, Tunisia, Libya, Algeria, Egypt, and India.11 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682-707.33 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med. 2012;18(5):263-272.,2828 Carrër A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 2010;54(3):1369-1373.,2929 Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597-1606.

The rapid and accurate laboratory diagnosis of carbapenemase-producing isolates is critical to enable the timely application of infection control measures. Standard susceptibility testing cannot specify the mechanism of carbapenem resistance. An ideal diagnostic method should be rapid and able to detect all types of threatening carbapenemases sensitively and specifically. Currently, there are various approaches to phenotypic tests based on different principles. These include inhibitor based approach (combination disk test, double disk synergy test, gradient diffusion strips), detection based on carbapenem hydrolysis (cloverleaf method, colorimetric assays, Carba NP, Blue-CARBA, carbapenem inhibition method, starch-iodine assay, spectrometry, electrochemical assay).55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.1010 van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. Rohde H, ed. PLOS ONE. 2015;10(3):e0123690. Although some of these methods exhibit high performance in diagnosis of KPC, IMP, VIM and NDM producers; none of them is highly sensitive and specific for detecting OXA-48 producers.55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.1111 Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2015;53(4):1245-1251. This may lead to challenges in the diagnosis of OXA-48 producers especially in regions where this type of carbapenemases are prevalent. Moreover most of the methods described above are time-consuming. Recent studies have revealed promising results with immunochromatographic assays for easy and rapid detection of specific carbapenamases.66 Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J Infect Chemother. 2017;23(1):1-11.,1212 Glupczynski Y, Evrard S, Ote I, et al. Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J Antimicrob Chemother. 2016;71(5):1217-1222.1919 Glupczynski Y, Jousset A, Evrard S, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother. 2017;72(7):1955-1960.

In this study we aimed to evaluate the performance of a newly marketed immunochromatographic assay, “RESIST-3 O.K.N. K-SeT” (Coris BioConcept, Gembloux, Belgium) targeting OXA-48 like, KPC, and NDM type carbapenemases in a collection of carbapenem resistant K. pneumoniae.

Materials and methods

Study isolates

A total of 132 non-duplicated clinical K. pneumoniae isolates collected in two university hospitals between July 2014 and December 2016 were included. 102 out of 132 K. pneumoniae were resistant to ertapenem in routine testing by an automated antimicrobial susceptibility test system (VITEK® 2, bioMérieux, Marcy l’Etoile, France). The resting isolates were susceptible to carbapenems in routine testing (Table 1).

Table 1
The results of RESIST-3 O.K.N. K-SeT immunochromatographic assay in 132 clinical Klebsiella pneumoniae and 22 control isolates compared to PCR.

Reference and PCR control strains

To assess the specificity of the new immunochromatographic assay, a collection (n = 22) of Gram negative bacteria which have been previously characterized by PCR and/or DNA sequencing for the presence of bla KPC, bla IMP, bla VIM, bla NDM, and bla OXA-48 genes were also studied with RESIST-3 O.K.N. K-SeT (Table 1). Escherichia coli ATCC 25922 were used as a reference strain in antimicrobial susceptibility testing.

Bacterial identification

Identification of the isolates was confirmed by MALDI-TOF mass spectrometry (VITEK® MS, bioMérieux, Marcy l’Etoile, France).

Antimicrobial susceptibility testing

Standard disk diffusion test was performed on all isolates to confirm the ertapenem susceptibility results obtained with the VITEK® 2 system.2020 Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20(4):O255-O266. In addition, ertapenem MICs were determined by the gradient diffusion strip test (Etest®, bioMérieux, Marcy l’Etoile, France) in the isolates. The European Committee on Antimicrobial Susceptibility Testing (EUCAST v 6.0) standards used as interpretive criteria for antimicrobial susceptibility testing.

Polymerase chain reaction

Carbapenemase encoding genes, bla KPC, bla IMP, bla VIM, bla NDM, and bla OXA-48, were investigated by in house single PCR method to confirm phenotypic test results in 132 K. pneumoniae isolates.2121 Aktaş Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy. 2008;54(2):101-106.,2424 Perry JD, Naqvi SH, Mirza IA, et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother. 2011;66(10):2288-2294.2626 Cole JM, Schuetz AN, Hill CE, Nolte FS. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol. 2009;47(2):322-326.

Immunochromatographic assay

All isolates (132 K. pneumoniae and 22 genotypically known Gram negative bacteria) were tested by the RESIST-3 O.K.N. K-SeT according to the manufacturer's instructions. Briefly, a single colony on Columbia agar + 5% sheep blood (bioMérieux, Marcy l’Etoile, France) was suspended in 10 drops of lysis buffer. Three drops of the suspension were then added onto the test strip. The results were read with the naked eye within 15 minutes at room temperature (Fig. 1).

Fig. 1
Evaluation of the test results in the RESIST-3 O.K.N.K-SeT assay. 1; KPC producing K. pneumoniae, 2; OXA-48 producing K. pneumoniae, 3; NDM producing K. pneumoniae, 4; OXA-48 and NDM co-producing K. pneumoniae, 5; Carbapenem susceptible K. pneumoniae as negative control, 6; IMP producing E. cloacae, 7; NDM producing E. cloacae, 8; OXA-48 producing S. marcescens, 9; NDM producing E. coli, 10; NDM producing C. freundii, 11; Carbapenem susceptible E. coli as negative control.

Results

A total of 132 K. pneumoniae isolates (102 CRKp and 30 CSKp) were evaluated for the presence of OXA-48 like, KPC, and NDM carbapenemases by the RESIST-3 O.K.N K-SeT immunochtomotographic assay. The results of the RESIST-3 O.K.N. K-SeT assay were compared those obtained by PCR targeting these genes (Table 1). Ertapenem MICs in CRKp isolates ranged from 1 to >32 µg/mL (MIC50: 32 µg/mL, MIC90: >32 µg/mL) by the gradient diffusion strip test. Rates of bla NDM, bla OXA-48, bla KPC, genes in CRKp isolates were found to be 52.9%, 39.2%, and 2.0%, respectively, by PCR. Combined positivity for both bla NDM and bla OXA-48 genes was found in six (5.9%) isolates. The carbapenemase genes bla IMP and bla VIM were not detected in any of 132 study isolates. The results of the RESIST-3 O.K.N. K-SeT assay showed 100% concordance with those obtained by PCR. The agreement between the two methods was found to be identical at the isolate level. The RESIST-3 O.K.N. K-SeT assay did not exhibit any cross-reaction in genotypically known bacteria (n = 8) harboring bla IMP and bla VIM genes (Table 1). The results obtained with the assay also showed agreement in genotypically known (n = 9) Enterobacteriaceae isolates (Escherichia coli, Serratia marcescens, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae) carrying bla KPC, bla NDM, and/or bla OXA-48 genes (Table 1). False positive result was not observed in five carbapenem susceptible E. coli isolates which were known negative for bla KPC, bla IMP, bla VIM, bla NDM, and bla OXA-48.

Discussion

Infections due to carbapenemase producing K. pneumoniae pose great concerns since they are associated with high morbidity and mortality.11 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682-707.33 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med. 2012;18(5):263-272. Rapid and specific diagnosis of carbapenemase producers plays a crucial role in preventing the spread of CRKp among hospitalized patients. Although PCR is recommended as ‘gold standard’ in carbapenemase detection,55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.,1818 Wareham DW, Abdul Momin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-3 O.K.N. (OXA-48, KPC NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017;55(4):1223-1225.,2727 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228-236. in terms of laboratory use, it has several unfavorable properties that limit its usefulness in many routine diagnostic laboratories.55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.,2727 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228-236. These properties include difficulty in application, and the need for specific equipment and trained personnel.55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.,88 Hrabák J, Chudáčkova E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20(9):839-853.,99 Hammoudi D, Ayoub Moubareck C, Karam Sarkis D. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods. 2014;107:106-118. Moreover, PCR cannot reveal the expression state of a gene. The availability of a reliable, rapid, and a simple phenotypic assay to detect carbapenemases would be of great benefit. Furthermore, such a test should be able to identify most of the prevalent carbapenemases with epidemiological significance. Various phenotypic methods developed so far are considered as reliable assays especially in detecting class A and B carbapenemases by many authors.55 Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18(5):432-438.1111 Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2015;53(4):1245-1251. However these methods remained unsatisfactory in the diagnosis of OXA-48 producers. A few immunochromatographic assays in the market have been shown as reliable and fast for detecting OXA-48 and/or KPC producers, separately.1212 Glupczynski Y, Evrard S, Ote I, et al. Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J Antimicrob Chemother. 2016;71(5):1217-1222.1717 Pasteran F, Denorme L, Ote I, et al. Rapid identification of OXA-48 and OXA-163 subfamilies in carbapenem-resistant gram-negative bacilli with a novel immunochromatographic lateral flow assay. J Clin Microbiol. 2016;54(11):2832-2836. Unfortunately, these tests are not able to identify the most common carbapenemases, simultaneously. In this study, we evaluated the performance of a recently introduced RESIST-3 O.K.N. K-SeT immunochromatographic assay. It is the first assay in the market targeting the detection of KPC, NDM, and OXA-48 together.

In our CRKp collection, RESIST-3 O.K.N. K-SeT results exhibited excellent concordance with PCR, yielding 100% sensitivity for the tested isolates (Table 1). The assay also detected five NDM, three OXA-48 and one KPC producers correctly in genotypically known collection of E. cloacae, E. coli, S. marcescens, C. freundii, K. pneumoniae (Table 1). Considering the specificity of the test, all carbapenem susceptible isolates of K. pneumoniae (n = 30) and E. coli (n = 5) and the isolates harboring bla IMP, bla VIM genes were found to be negative by the assay. These results indicate the high specificity (100%) of RESIST-3 O.K.N. K-SeT. The assay also detected coproduction of NDM and OXA-48 in clinical isolates harboring bla NDM and bla OXA-48 genes. Recent studies have remarked the emergence of K. pneumoniae and other Enterobacteriaceae producing both carbapenemases from Turkey and some other countries.3131 Alp E, Perçin D, Colakoğlu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84(2):178-180.4040 Lázaro-Perona F, Sarria-Visa A, Ruiz-Carrascoso G, Mingorance J, García-Rodríguez J, Gómez-Gil R. Klebsiella pneumoniae co-producing NDM-7 and OXA-48 carbapenemases isolated from a patient with prolonged hospitalisation. Int J Antimicrob Agents. 2017;49(1):112-113. For that, our result was found to be significant in terms of the reliability of RESIST-3 O.K.N. K-SeT in detecting NDM and OXA-48 co-producers. We have a limited number of KPC producers in our collection. Therefore, it is not easy to reach a conclusion about the reliability of the RESIST-3 O.K.N. K-SeT test in KPC detection. As stated in many reports KPC is not an endemic carbapenemase in our country.11 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682-707.33 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med. 2012;18(5):263-272.,2828 Carrër A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 2010;54(3):1369-1373.3030 Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-163. Two recently published reports have shown that the RESIST-3 O.K.N. K-SeT exhibited the high performance in the detection of KPC producers as well as the producers of NDM and OXA-48.1818 Wareham DW, Abdul Momin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-3 O.K.N. (OXA-48, KPC NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017;55(4):1223-1225.,1919 Glupczynski Y, Jousset A, Evrard S, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother. 2017;72(7):1955-1960. As concluded by the authors of these two studies we also suggest that the assay has a limitation in terms of detecting other carbapenemases such as IMP and VIM producers. We suggest that there is still a need for different assays in detection the isolates producing carbapenemases other than KPC, NDM, and OXA-48.

Besides the evaluation of RESIST-3 O.K.N. K-SeT performance, our work has also revealed some outputs regarding the prevalent carbapenemases in our CRKp collection. Accordingly, the most common carbapenemase has been NDM (52.9%), followed by OXA-48 (39.2%). These two carbapenemases have been found together in 5.9% of CRKp isolates. We consider these results to be very remarkable in terms of revealing the predominance of NDM in our CRKp collection. Almost all studies published from Turkey so far, have emphasized OXA-48 prevalence in the country.2121 Aktaş Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy. 2008;54(2):101-106.,2828 Carrër A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 2010;54(3):1369-1373.,3131 Alp E, Perçin D, Colakoğlu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84(2):178-180.,3333 Çakar A, Akyön Y, Gür D, et al. Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul. 2016;50(1):21-33. Although the presence of various reports from Turkey notifying the emergence of NDM in the country, this is the first report highlighting the very high rate of NDM in an extended collection of CRKp in our region.3131 Alp E, Perçin D, Colakoğlu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84(2):178-180.3535 Guven Gokmen T, Nagiyev T, Meral M, Onlen C, Heydari F, Koksal F. NDM-1 and rmtC-producing Klebsiella pneumoniae isolates in Turkey. Jundishapur J Microbiol. 2016;9(10):e33990. Moreover the detection of CRKp isolates harboring NDM together with OXA-48 was considered as a premonitory outcome of the study because it shows the spread of CRKp NDM and OXA-48 co-producers.3131 Alp E, Perçin D, Colakoğlu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84(2):178-180.4040 Lázaro-Perona F, Sarria-Visa A, Ruiz-Carrascoso G, Mingorance J, García-Rodríguez J, Gómez-Gil R. Klebsiella pneumoniae co-producing NDM-7 and OXA-48 carbapenemases isolated from a patient with prolonged hospitalisation. Int J Antimicrob Agents. 2017;49(1):112-113. On the other hand, this report has been the third one from Turkey presenting the isolation of KPC producing K. pneumoniae, so far.4141 Labarca J, Poirel L, Özdamar M, Turkoglü S, Hakko E, Nordmann P. KPC-producing Klebsiella pneumoniae, finally targeting Turkey. New Microbes New Infect. 2014;2(2):50-51.,4242 Poirel L, Yilmaz M, Istanbullu A, Arslan F, Mert A, Bernabeu S, et al. Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob Agents Chemother. 2014;58(5):2929-2933. Kuskucu et al. also isolated KPC enzymes in two E. coli isolates in Turkey.4343 Kuskucu MA, Karakullukcu A, Ailiken M, Otlu B, Mete B, Aygun G. Investigation of carbapenem resistance and the first identification of Klebsiella pneumoniae carbapenemase (KPC) enzyme among Escherichia coli isolates in Turkey: a prospective study. Travel Med Infect Dis. 2016;14(6):572-576. In many other countries, including Turkey's neighboring country Greece, the predominant enzyme type is KPC. The absence of any regional spread or institutional outbreaks due to KPC in Turkey may be associated with the already high burden of other resistance determinants among K. pneumoniae isolates, and the genetic failure of the sporadic KPC cases to transfer their plasmids carrying the bla KPC gene.

Finally, we conclude that the RESIST-3 O.K.N.K-SeT assay is a reliable, rapid, user-friendly test and we recommend it for routine diagnostic laboratories especially in regions where OXA-48 and NDM producers are prevalent.

Acknowledgments

We thank Cigdem Kayacan for granting the OXA-48, IMP-1 and VIM-4 positive strains.

This study was supported by internal funding and partly supported by in-kind grant from Zemed Medikal Tekstil ve Dıs Tic. Ltd. Sti., Istanbul, Turkey.

This study was approved by the Marmara University Clinical Research Ethics Committee (Decision No: 09.2017.224).

REFERENCES

  • 1
    Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25(4):682-707.
  • 2
    Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context treatment options, and detection methods. Front Microbiol 2016;7:895.
  • 3
    Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med 2012;18(5):263-272.
  • 4
    Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;53(12):5046-5054.
  • 5
    Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V. Identification and screening of carbapenemase-producing Enterobacteriaceae Clin Microbiol Infect 2012;18(5):432-438.
  • 6
    Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J Infect Chemother 2017;23(1):1-11.
  • 7
    Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemother 2016;28(1):1-19.
  • 8
    Hrabák J, Chudáčkova E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 2014;20(9):839-853.
  • 9
    Hammoudi D, Ayoub Moubareck C, Karam Sarkis D. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods 2014;107:106-118.
  • 10
    van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. Rohde H, ed. PLOS ONE 2015;10(3):e0123690.
  • 11
    Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol 2015;53(4):1245-1251.
  • 12
    Glupczynski Y, Evrard S, Ote I, et al. Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J Antimicrob Chemother 2016;71(5):1217-1222.
  • 13
    Dortet L, Jousset A, Sainte-Rose V, Cuzon G, Naas T. Prospective evaluation of the OXA-48 K -SeT assay, an immunochromatographic test for the rapid detection of OXA-48-type carbapenemases. J Antimicrob Chemother 2016;71(7):1834-1840.
  • 14
    Wareham DW, Shah R, Betts JW, Phee LM, Momin MHFA. Evaluation of an immunochromatographic lateral flow assay (OXA-48 K-SeT) for rapid detection of OXA-48-like carbapenemases in Enterobacteriaceae J Clin Microbiol 2016;54(2):471-473.
  • 15
    Rubio E, Zboromyrska Y, Pitart C, et al. Evaluation of a rapid immunochromatographic test for the detection of OXA-48 carbapenemase. Diagn Microbiol Infect Dis 2017;87(3):266-267.
  • 16
    Fernández J, Fleites A, Rodcio MR, Vazquez F. Evaluation of OXA-48 K-Se T: an immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae Diagn Microbiol Infect Dis 2016;85(1):12-15.
  • 17
    Pasteran F, Denorme L, Ote I, et al. Rapid identification of OXA-48 and OXA-163 subfamilies in carbapenem-resistant gram-negative bacilli with a novel immunochromatographic lateral flow assay. J Clin Microbiol 2016;54(11):2832-2836.
  • 18
    Wareham DW, Abdul Momin MHF. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-3 O.K.N. (OXA-48, KPC NDM) lateral flow multiplexed assay. J Clin Microbiol 2017;55(4):1223-1225.
  • 19
    Glupczynski Y, Jousset A, Evrard S, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother 2017;72(7):1955-1960.
  • 20
    Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014;20(4):O255-O266.
  • 21
    Aktaş Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy 2008;54(2):101-106.
  • 22
    Livermore DM, Andrews JM, Hawkey PM, et al. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly?. J Antimicrob Chemother 2012;67(7):1569-1577.
  • 23
    Aktaş Z, Kayacan ÇB. Investigation of metallo-beta-lactamase producing strains of Pseudomonas aeruginosa and Acinetobacter baumannii by E-test, disk synergy and PCR. Scand J Infect Dis 2008;40(4):320-325.
  • 24
    Perry JD, Naqvi SH, Mirza IA, et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother 2011;66(10):2288-2294.
  • 25
    Pitout JDD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005;43(7):3129-3135.
  • 26
    Cole JM, Schuetz AN, Hill CE, Nolte FS. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol 2009;47(2):322-326.
  • 27
    Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9(4):228-236.
  • 28
    Carrër A, Poirel L, Yilmaz M, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 2010;54(3):1369-1373.
  • 29
    Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67(7):1597-1606.
  • 30
    Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017;17(2):153-163.
  • 31
    Alp E, Perçin D, Colakoğlu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect 2013;84(2):178-180.
  • 32
    Kilic A, Baysallar M. The first Klebsiella pneumoniae isolate co-producing OXA-48 and NDM-1 in Turkey. Ann Lab Med 2015;35(3):382-383.
  • 33
    Çakar A, Akyön Y, Gür D, et al. Investigation of carbapenemases in carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains isolated in 2014 in Turkey. Mikrobiyol Bul 2016;50(1):21-33.
  • 34
    Karabay O, Altindis M, Koroglu M, Karatuna O, Erdem AF. The carbapenem-resistant Enterobacteriaceae threat is growing: NDM-1 epidemic at a training hospital in Turkey. Ann Clin Microbiol Antimicrob 2016;15(1):6.
  • 35
    Guven Gokmen T, Nagiyev T, Meral M, Onlen C, Heydari F, Koksal F. NDM-1 and rmtC-producing Klebsiella pneumoniae isolates in Turkey. Jundishapur J Microbiol 2016;9(10):e33990.
  • 36
    Barguigua A, El otmani F, Lakbakbi el yaagoubi F, Talmi M, Zerouali K, Timinouni M. First report of a Klebsiella pneumoniae strain coproducing NDM-1 VIM-1 and OXA-48 carbapenemases isolated in Morocco. APMIS 2013;121(7):675-677.
  • 37
    Balm MND, La M-V, Krishnan P, Jureen R, Lin RTP, Teo JWP. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin Microbiol Infect 2013;19(9):E421-E423.
  • 38
    Doi Y, O’Hara JA, Lando JF, et al. Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae Emerg Infect Dis 2014;20(1):163-165.
  • 39
    Stella Uwaezuoke N, Kieffer N, Iregbu KC, Nordmann P. First report of OXA-181 and NDM-1 from a clinical Klebsiella pneumoniae isolate from Nigeria. Int J Infect Dis 2017;61:1-2.
  • 40
    Lázaro-Perona F, Sarria-Visa A, Ruiz-Carrascoso G, Mingorance J, García-Rodríguez J, Gómez-Gil R. Klebsiella pneumoniae co-producing NDM-7 and OXA-48 carbapenemases isolated from a patient with prolonged hospitalisation. Int J Antimicrob Agents 2017;49(1):112-113.
  • 41
    Labarca J, Poirel L, Özdamar M, Turkoglü S, Hakko E, Nordmann P. KPC-producing Klebsiella pneumoniae, finally targeting Turkey. New Microbes New Infect 2014;2(2):50-51.
  • 42
    Poirel L, Yilmaz M, Istanbullu A, Arslan F, Mert A, Bernabeu S, et al. Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob Agents Chemother 2014;58(5):2929-2933.
  • 43
    Kuskucu MA, Karakullukcu A, Ailiken M, Otlu B, Mete B, Aygun G. Investigation of carbapenem resistance and the first identification of Klebsiella pneumoniae carbapenemase (KPC) enzyme among Escherichia coli isolates in Turkey: a prospective study. Travel Med Infect Dis 2016;14(6):572-576.

Edited by

Associate Editor: Elizabeth Marques

Publication Dates

  • Publication in this collection
    Oct-Dec 2018

History

  • Received
    26 Apr 2017
  • Accepted
    5 Feb 2018
  • Published
    1 Mar 2018
Sociedade Brasileira de Microbiologia USP - ICB III - Dep. de Microbiologia, Sociedade Brasileira de Microbiologia, Av. Prof. Lineu Prestes, 2415, Cidade Universitária, 05508-900 São Paulo, SP - Brasil, Ramal USP 7979, Tel. / Fax: (55 11) 3813-9647 ou 3037-7095 - São Paulo - SP - Brazil
E-mail: bjm@sbmicrobiologia.org.br