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ABSTRACT

Environmental concerns have led to the need of sustainable use of natural resources. The conventional
agriculture caused considerable impacts on soils and waters. It is important to change certain agricultural
managementsto environmental cleaner techniques. The sustai nabl e agriculture has pointed many approaches
and techniquesto reduce environmental impact. One of those strategiesisthe utilization of the soil microbiota
to induce plant growth, control of plant diseases and biodegradation of xenobiotic compounds. Studies on
the relationship between roots and microbiota are essential to achieve viable agricultural applications. These
studies indicate that one of the most abundant microorganisms in the rhizosphere (area around the roots) is
fluorescent Pseudomonas spp. They have been considered as an alternative to agrochemicals for controlling
plant diseases and increasing plant development. This review addresses the main findings on fluorescent
Pseudomonads. It summarizes and discusses significant aspects of thisgeneral topic, including (i) rhizosphere
as a microhabitat; (ii) taxonomic, genetic and ecological aspects of fluorescent Pseudomonads in the
rhizosphere; (iii) mechanisms of Plant Growth Promoting and Biological Control and (iv) commercial use of

PGPRin agriculture.
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RHIZOSPHEREASA MICROHABITAT

Roots alter chemical and physical characteristics of soil
and makeit aspecialized habitat that increases the microbiota
community. Thiscommunity influenceisimportant sinceroots
absorb water and nutrients and pathogens can go into the
plants.

Thetermrhizosphere, proposed by Hilter one hundred years
ago, wasinitially defined asthe soil areaunder theinfluence of
plant roots. Subsequent studies concluded that the rhizosphere
consists of three different regions: endorhizosphere which
composes of the root tissues; rhizoplane is the root
bidimensional surface and ectorhizophere, which represents
the adjacent soil (74,89). However, the endorhizosphere term

has been avoided (65) because, semantically, it could determine
a zone of the ecological niche and not exactly a niche inside
the plant. Beyond that there is not a standard term and it can
confuse the precise determination of the ecological niche and
the microbial groups on it. Finally, authors proposed the
elimination of theterm. Nowadays, rhizosphere and rhizoplane
are the terms to describe external niches to the roots and there
is divergence of termsto define the internal niche.

Microbial community increasesfrom outsideto insideroots
(89). Closer biochemical interactions between microorganisms
and plants are related to that increment in the community (89).
The bacteria that inhabit inner tissues of roots are called
endophytic bacteria. There are different definitions to the
“endophytic microorganism” term (7,65). Wilson (164) defined
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as endophytic microorganisms, bacteria and fungi that fully
colonizeinner tissues of plantsduring part or al their lifecycle
without causing disease symptoms. This definition is
considered appropriated to define these microorganisms (109).
Bacteria genera, such as Pseudomonas, Azospirillum,
Acetobacter, Herbaspirillum, Bacillus are described as
endophytic bacteria(7,109).

Themicroorganismsmainly colonizetheroot cap, epidermis
and cortex. Theroot cap produces mucilagethat protects against
desiccation and adheres to soil and microorganisms that can
useit asnutrient source. The mucilage amount and composition
depends on the plant species. In corn, the polysaccharide is
basically constituted of § 1-4 glucan with hydrophilic polymers
of galactose and fucose and lesser quantity of xylose, arabinose,
galacturonic acids, some phenolics and proteins (89). Fucose
that occurs in the mucilage and in layers of corn root cap cell
walls is important in host - pathogen - symbiosis recognition
systems. (e.g. Azospirillum lipoferum). Mandimba et al. (90)
observed specific chemotaxis of diazotrophic maizeisolatesto
maize mucilage. Cells released from root cap can also supply
nutrients to the microorganisms. Corn roots can release
approximately 10.0000 cells/day (89).

Mostly bacteria colonize the epidermis and the root hairs.
These bacteria produce mucilage that is similar to pectin
(polygalacturonic acid). They arepresent inintercellular spaces
of the cortex and can penetrate the cells. Saprophytic
microorganisms, as Pseudomonas fluorescens, can colonize
dead cortical cells of pearoots (22).

Nutrient availability is the base for root colonization. That
availahility is the photosynthetic translocation from leaves to
rootsthat arereleased to soil. Therhizodepositionisconsidered
the main carbon source to soil (167). The amount of
rhizodeposition changes according to the plant species and
the environmental conditions. Values from 10 to 100mg of
Carbon/g of root dry weight or 20% of photosynthates has

been cited (167). Therhizodeposited materialscan besma | water-
soluble organic compounds or complex compounds, as
flavonoids. Those materials are grouped as. exudates that are
water-soluble, which flow from the roots without involving
metabolic energy; secretions that are high molecular weight
compounds, which depend upon metabolic processes; lysates
released from cellsautolysisthat include cell wallsor evenwhole
cells; and gases such as ethylene and CO, (167). These
rhizodeposited materials stimulate and select the soil microbial
communities associated to the plant rhizosphere. Among them,
bacterial community isthe most influenced (89). Therhizosphere
effect is not group specific and it can influence different
morphological, physiological and taxonomic groups.
Nevertheless, the short gram-negative rods represent significant
part of the bacteria associated with the rhizosphere. These
organisms propagate very quickly, are able to use aminoacids
and water-soluble sugars and are resistant to some antibiotics
(2). Generally Pseudomonas, Flavobacterium, Alcaligenes and
Agrobacterium are especially common in the rhizosphere (1).
The nutritional versatility of the genera Pseudomonas is
described in many reports (99,113). Pillai and Swarup (127)
studied the catabolism of flavonoid in a strain of P. putida.
They observed that the strain was able to utilize awide range of
flavonoids, including flavonols, flavones and isoflavones.
Benizri et al. (10) observed that exudates of maize rhizosphere
can influence in the production of indol acetic acid by a strain
of P. fluorescens. The microbe utilization of the exudates,
especialy amino acids and sugars, may be important to the
plant development and yield.

The rhizosphere effect on the Pseudomonads was detected
after twenty days cycles of the soybean growth (17). It was
observed significant increase in the total fluorescent
Pseudomonads community and the in phenazine (antibiotics)
producersafter each cycle, characterizing an accumul ative effect

(Fig. 1).
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Figure 1. Fluorescent Pseudomonads community in the rhizosphere: (a) total community of fluorescent Pseudomonads; (b)

phenazine producers— Phz+ (2,17).
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FLUORESCENT PSEUDOMONASTAXONOMIC
STATUS

The genus Pseudomonas belongs to the y subclass of the
Proteobacteria and includes mostly fluorescent Pseudomonads
as well as a few non-fluorescent species. Fluorescent
Pseudomonas group represents: 1) phytopathogenic cytochrome
¢ oxidase-positive species, such as P. cichorii, P. marginalis
and Pitolaasii; 2) non-phytopathogenic, non-necrogenic strains,
such as Pfluorescens, Pputida, P. chlororaphis, P.aureofaciens
and P. aeruginosa type species; 3) phytopathogenic necrogenic
fluorescent Pseudomonas spp without cytochrome ¢ oxidase: P.
syringaeand P. viridiflava. Non-fluorescent Pseudomonas group
constitutes of P. stutzeri, P. mendocina, P. alcaligenes and P.
pseudoal caligenes (15,51,115). Thistopic specifically will focus
on fluorescent Pseudomonads becausethey are present in many
environments, especially inthe plant rhizosphere. Many studies
involve these bacteria that are able to improve plant growth
and plant health and areimplicated in the natural supressiveness
of certain soilsto many soil-borne diseases (163) whereas others
participatein the biodegradation of natural and man-madetoxic
chemica compounds.

Phenotypic characterization has been used to cluster and
identify bacteriaaccording to some features such asmorphol ogy,
pigmentation, and reactionsto dyesand nutritional requirements.
Nutritional propertieswere examined in acollection of 267 non-
phytopathogenic Pseudomonas strains of different origins,
among which 175 were fluorescent Pseudomonads. It was
observed that P. fluorescens and P. putida are very
heterogeneous. P. putida was subdivided into biotypes A and
B, which became biovars A and B. P. fluorescens was aso
subdivided into 7 biotypes. ThebiotypesA, B, C, D and F were
then called biovars (bv. | to V) and biotypes D and E becamethe
P. chlororophis and P. aureofaciens, respectively (116) which
were then clustered as the P. chlororaphis (60). P. fluorescens
bv. V includes strains that often cannot be classified because
properties that are essentia for the differentiation from other
biovarsare not identified. Thissystem of multiplebiovarsreveals
a high phenotypic heterogeneity, and probably reflects high
genomic diversity. Phenotypic studies revealed this high
variability with these two species, which resulted in subdivision
inthese biovarsand sub-grouped of each one (46,57,71,74,142).
To elucidate the real taxonomic condition of these subgroupsit
is important to characterize genotypically the species and
biovars. DNA-rRNA hybridization studiesled to thedelineation
of the genus Pseudomonas into five homology groups (117).
The genus Pseudomonas sensu stricto corresponds to the
Palleroni sensu rRNA homology group | and contains all the
fluorescent species(115,116). Different studies show very high
genomic variability within biovarsof P. fluorescensand P. putida
and probably some biovars correspond to undescribed species
(25,117,118). Bossiset al. (15) also got similar results. Thelevel
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of similarity of rhizosphere isolates identified as P. fluorescens
or P. putida, by the phenotypic criteria of Palleroni (116) was
never greater than 55% as compared with the type strains of P.
fluorescens and P. putida (15).

Future studies on the ecology of fluorescent Pseudomonads
requirereliable, fast and cheap methodsto identify large numbers
of isolates. The description of new species within the distinct
speciesP. fluorescens and P. putida remainsto be donein order
to elucidate the taxonomic status of this group.

GENETIC CHARACTERIZATION OF
PSEUDOMONADS

The nucleotide sequences of various genes, especially those
of small-subunit (SSU) rRNA has been widely used to
identification and classification of microorganisms (165). The
study of SSU rRNA sequences resulted in many findings, such
as the Archaea, a group of prokaryotes that is separated from
Bacteria. This gene is most widely used. Its sequence is a
mosaic of highly conserved regions interspersed with variable
and hypervariable stretches that makes it convenient for PCR
primer design (50,144). The 16SrRNA genefrom Pseudomonas
Spp contains 1492 nucleotide positions, of which 148 arevariable
and 65 positions of these are within three hypervariableregions
(101). The “Pseudomonas hypervariable (hv) regions’ were
defined as: hv 1, E. coli 16SrRNA gene sequence positions 71-
95; hv 2, E. coli 16SrRNA gene sequence positions 455 - 475;
and hv 3. E. coli 16S rRNA gene sequence positions 998-1043
(43,101). These positions are located, respectively, within the
regionsV1: helix 6, V3: helix 18 and V 6: helices P35-1 and P35-2
(43,104). Theregionshvlisconsidered one of themost variable
sequences in 16S rRNAs of bacteria across the phylogenetic
spectrum (49,165) and isuseful for differing intragenericlineages
and discerning the type strains of some species of Pseudomonas
(101). Godfrey and Marshall (43) used primers based in these
regions to study the diversity of Pseudomonads isolates from
different parts of the world. By this approach they could detect
Pseudomonadsfrom different speciesin the soil from containers
that arrived in New Zealand.

Thelarge database of 16SrRNA sequencesisimportant for
the analysis of environmental isolates and recognition of new
sourcesof diversity (101). Nevertheless, there are some pitfalls
in the use of rDNA for studies of biodiversity (42). The gene
sizeis constant and consequently different genes could not be
easily separated by size. In addition, inspite of the 16S genes
have hypervariable and extremely informative regions. They
are often not divergent enough to separatein closerel ationships
(42,107). Fonseca(38) analyzed around 80 isolates of fluorescent
Pseudomonads from rhizosphere of carrot and lettuce planted
in consortia. Phenotipycal analysisindicated that the major part
of the isolates was Pseudomonas putida. Nevertheless, the
genotypic analysis by restriction of 16S genes did not properly
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differentiate among the isol ates because the profiles were very
similar. Other techniques are utilized to solve these limitations
for characterizing isolates from the environment. The region
located between the 16S and 23S (ITS1) rRNA genesis very
variable in size and sequence even within closely related
taxonomic groups (50). Size pattern can characterize different
communitiesof Eubacteria or Archaea and thewidely divergent
sequence allows the detection of species-like units very
precisaly by PCR, aligo-probesor long DNA probe hybridization
(42,58). Locatelli et al. (77) designed aset of primers specificfor
Pseudomonas that allowed the amplification of ITS1 together
withasignificant part of 16SrDNA. The primerswere conserved
for all the Pseudomonas sequences tested and they showed
specificity and efficiency for the amplification of 1100 to 1300
bp fragment to the Pseudomonas spp. This set of primers
was tested to genotypic characterization of fluorescent
Pseudomonads from an agroecol ogical systemin Rio de Janeiro
State. They wereisolated from lettuce and carrot rhizosphere. It
was distinguished many groups, indicating diversity of that
community and certain groupswere closely related to the plants
(16). It was possible to observe the specificity for plants and
parts of the rhizosphere. These results suggested that those
isolates could better survive and compete in the rhizosphere
and consequently are more efficient Plant Growth Promoting
Rhizobacteria(PGPR) and/or Biologica Control Agents(BCA).

Interspersed repetitive DNA sequence elements are
present in prokaryote genomes and can be used as primers
sitesfor genomic DNA amplification (30,157). Threefamilies
of repetitive sequences have been studied in most detail,
including the 35 - 40 bp Repetitive Extragenic Palindromic
(REP) sequence, the 124-127 bp, Enterobacterial Repetitive
I ntergenic Consensus (ERIC) sequence and the 154 bp BOX
element comprised of three subunits (boxA, boxB and boxC)
(30,87). These sequences are located in distinct, intergenic
positions all around the chromossome. Louws at al. (81)
demonstrated that REP, ERIC and BOX-PCR, referred to as
rep-PCR collectivelly, were useful for the rapid molecular
characterization of plant pathogenic bacteria, like
Xanthomonas and Pseudomonas, especially at the pathovar
level. Pseudomonad isolates from soybean rhizosphere
cultivated in a Brazilian savannah area were analysed by
BOX (Fig. 2) and ERIC - PCR (17). It was observed that the
major part of them had similar profile to the strain 2-79
(Pseudomonas fluorescens). This strain was characterized
asaphenazine-producer (PCA-Phenazine-1-CarboxilicAcid),
antibiotic involved in supression of “Take-all” disease in
wheat (151). It isimportant to comment that most part of the
Brazilian isolates had positive reaction to the presence of
phzC and phzD genes (Fig. 3b). Fragments related to PCA
gene synthesis obtained by PCR from an isolate showed
96% identity to phenazine gene fragment of strain 2-79
(17) (Fig. 3a). It suggested that it is the same gene for the
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antibiotic synthesis. This result is in agreement with the
hypothesis that phz genes are conservative among P.
fluorescens, P. aureofaciens and P. chlororaphis (161).

Many other approaches are used to analyze the diversity of
the Pseudomonads. Delorme et al. (33) studied the membrane -
bound nitrate reductase (narG) and nitrous oxide reductase
(nosZ) genesdiversity, implicated in the denitrification process.
They compaired the similarity indexes of the narG and nosZ
genesin different strains and the genesled to the identification
of two different groups of strains. The first group presented
similarity between the genes suggesting similar evolutionary
pathway. The second group, on the other hand showed higher
diversity of the nosZ gene compared to the narG gene,
suggesting different evolutionary rates.
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Figure 2. Genotypic characterizartion by BOX — PCR of
fluorescent Pseudomonas from Brazilian soil savannah. (@)
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strains of fluorescent Pseudomonas; (b) Similarity dendrogram
by UPGMA; * P. fluorescens strain 2-79.
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Figure 3. (a) - Alignment of nucleotide sequences of Phenazine-1-Carboxilic Acid (PCA) genes from an isolate of Brazilian
savannah and strain 2-79 - (*) indicates identical nuclectides; (b) Detection of genes for phenazine production (1 - P. fluorescens

strain2-79 - fragment size: 1,4kb) (17).

ECOLOGICAL ASPECTSOF PSEUDOMONADSIN
THERHIZOSPHERE

The association between microorganisms and roots can be
beneficial, neutral or harmful, but often the effects depend on
the soil conditions (112). The main objective in understanding
the rhizosphere effect is to increase the balance of beneficial
over the harmful microbes. Nevertheless, high capacity of
colonization and competition is necessary for the establishment
of these organisms. Colonization potential is related to the
support of nutritional balance from roots to microbes, as well
as, the genesrelated to rhizosphere colonization (14). Exudates
are readily available for microorganisms and increase their
number and activity in the rhizosphere (89) and competition
ability of microorganismsisrelated to microbes capacity of using
these excreted compounds (74). Some studies have shown that
organic acids form the nutritional basis of rhizosphere
colonization. A defect in the utilization of organic acids, which

form the major group of tomato exudate components, resultsin
decreased competitive colonization of the tomato rhizosphere
(14), whereas a defect in the use of sugars does not result in a
colonization defect (84). Some genes are involved rhizosphere
colonization. Rainey (131) described amethod called promoter-
trapping technology (IVET) that enables the isolation of
Pseudomonas fluorescens genes that showed high levels of
expression in the rhizosphere. This method identified 20 genes
that were induced during rhizosphere colonization and the
models of expression were analyzed. Fourteen genes showed
significant homology to sequences in GenBank that are
involved in nutrient acquisition, stress response, or secretion;
six showed no homology. Seven of the rhizosphere-induced
(rhi) genes have homol ogy to known non- Pseudomonas genes.

Themicroorganisms mainly colonizelateral rootsand ol der
parts of the root. They are grouped as opportunists that
predominate on fresh roots and strategists that are more
speciaized and predominate on older roots (140). Thislast group
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of bacteria is denominated Plant Growth Promoting
Rhizobacteria(PGPR). Thisterm describes bacteriawel | adapted
to root environment and distinguishes soil bacteriathat are not
ableto colonizethem (137).

Many bacteria genera are described as PGPR (102). Many
members of genera Pseudomonas perform beneficia effects
on plants (17,20,76,137). Among them P. putida and P.
fluorescens are fluorescent Pseudomonas species that
represent significant part of these members (52,137). The
bacteria and roots association has been intensively reported
(74,89,102). Lemanceau et al (74) analyzed theroot colonization
by native fluorescent Pseudomonads. The study characterized
genetically and phenotypically strainsisolated from bulk soil,
rhizosphere, rhizoplane and root tissue from tomato and flax. It
concluded the plant has selective influence on fluorescent
Pseudomonads community and the selection intensity varies
according to the plant. Major part of the flax isolates was
different from those selected from bulk soil and the difference
increased when observed closer to the roots. This effect was
less significant at tomato roots. Root tissues analysisindicated
that the main Pseudomonads species in flax is Pseudomonas
putida bv. A and in tomato is P. fluorescens bv. I1. Aradjo et al
(4) observed that fluorescent Pseudomonas were able to
compete onto the rhizoplane of maize. The increase in the
heterotrophic and total of gram negative communitiesindicated
this competition ability. In addition, they observed that 30% of
isolateswereidentified as P. fluorescens and 50% were classified
as P. putida. It was observed that P. putida was prevalent in
the Pseudomonad community inhabiting the rhizospheres of a
consortia cultivation of lettuces and carrots (38,39). The
prevalence of these organismsisrelated to itsfast colonization
ability (111) and its capacity of producing secondary
metabolites (150). Certain metabalites, such asantibiotics, play
an important role in the fluorescent Pseudomonads survival.
Mazzola et al (94) reported that phenazines, a group of
antibiotics produced by fluorescent Pseudomonads,
contributed to the survival and capacity of competition by P.
fluorescens strain 2-79 and P. aureofaciens strain 30-84. The
antibiotics have excellent activity against a variety of
microorganisms, including anumber of fungi and bacteriathat
commonly occur in the rhizosphere of wheat and increased
their ability to compete with the native microbiota. The
production of these metabolites is considered the most
important mechanism for plant disease control (149).

Denitrification process and production of pyoverdine
seemed to be involved on the ability of Pseudomonads to
competein the rhizosphere. Mirleau et al. (98) observed that
nitrate reductase and pyoverdine defective mutants were
significantly less competitive than the wild type strain in the
rhizosphere or in the bulk soil. Delorme et al. (33) suggested
that Pseudomonads strains that had both genes for
denitrification process (nar G and nosZ) would better survive
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in the soil environment. That observation was reinforced in
the results obtained in laboratory experiments. Fluorescent
Pseudomonad total denitrifiers showed the best rhizosphere
competence. Several studies have been done about the effect
of plant on the microbial community. The effect on the
dynamics, composition and activities of native bacterial
populations, specially the components that have antagonistic
action (12,44). Nowadays, several studies have beenfocusing
on this topic (11,122,129). Gomes et al. (44) studied the
bacterial diversity of the rhizosphere of two cultivars of maize
by TGGE (Temperature Gradient Gel Electrophoresis). They
observed that the rhizosphere effect was higher in the young
plants compared to mature plants. Presence of Pseudomonads
was representative in the rhizosphere community, despite it
was not dominant. Bergsma-Vlami et al. (12) analyzed the
dynamics, genotypic diversity and activity of 2,4-
diacetil phluoroglucinol (DAPG) producer Pseudomonas spp.
in the rhizosphere of four plants cultivated in two different
soils. DAPG is an important antibiotic, produced by some
fluorescent Pseudomonads, to the control of plant diseases
caused by fungi. (128,129,161) They observed relative high
population of DAPG producer Pseudomonas spp. (10* a 10°
Colony Forming Units/g of roots) in the rhizosphere of the
plant species, except to lily. Nevertheless, lily rhizosphere
supported, on average, the highest population densities of
fluorescent Pseudomonas spp. Similar density popul ation was
observed in the wheat rhizosphere cultivated in suppressive
soil to Gaeumannomyces graminisvar. tritici (34,130) andin
the pearhizosphere cultivated in suppressive soil to Fusarium
oxysporumf. sp. pisi (70). Bergsma-Vlami et al. (12) analyzed
the DAPG producer genotypic diversity by means of DGGE
(Denaturing Gradient Gel Electrophoresis). They observed a
total of seven genotypic groups, some of them found only in
therhizosphere of specific plant specie. Those results showed
the influence of host plant in the dynamics and composition
of that community. Berg et al (11) analyzed the bacterial
community of potato rhizosphere and phyllosphere. The most
significant species of all microenvironments was
Pseudomonas putida, and rep-PCR with BOX primers showed
that those isolates showed microenvironment-specific DNA
fingerprints. P. putida isolates from the rhizosphere and
endorhiza gave nearly identical fingerprints confirming the
high similarity of bacterial populations. The presence of
phID gene was evaluated also. It was found only among
Pseudomonas spp. isolates from the rhizosphere and
endorhiza, but not in the phyllosphere.

Another important approach isthe study of the dynamics
of introduced population in the microbial rhizosphere
community. Lottmann et al. (80) observed the establishment
of introduced bacteria in the rhizosphere of potatoes. The
DGGE pattern of rhizosphere and geocaulosphere
communities did not show differences between the



inoculated and non-inoculated potatoes. It was also
observed that introduced strains did not become a dominant
member of the bacterial community. In other study, the effect
of co- inoculation of two strains of P. fluorescens and
arbuscular mycorrhizal fungi were evaluated on tomato
rhizosphere. Both the fluorescent Pseudomonads and the
myco-symbiont improved the plant growth and, depending
on the inoculum combination, it strongly affected root
architecture. One of the strains increased mycorrhizal
colonization, suggesting that it was amycorrhization hel per
bacterium (41). The co - inoculation of fluorescent
Pseudomonas and Rhizobium also improved plant growth
in terms of shoot height, root length and dry weight in pea.
Both the fluorescent pseudomonads and Rhizobium
exhibited a wide range of antifungal activity against
pathogens specific to pea (69).

MECHANISMSOF PLANT GROWTH PROMOTING
AND BIOLOGICAL CONTROL

Many reports have evaluated the Pseudomonads as Plant
Growth Promoting Rhizobacteria and/or Biological Control
Agent (9,23,86;95,139,149,156). Experiments carried out in
laboratory, growth chamber and field condition checked the
efficiency of thesemicroorganisms(31,40,88,96,88). Plant Growth
Promoting Rhizobacteria (PGPR) can stimulate plant growth
directly as they can improve the supply of nutrients, such as
nitrogen and phosphorous (27,66,83) or by production of
phytohormones (85). Indirectly, PGPR can aso promote plant
development by the suppression of pathogens mediated by
different mechanisms(27,52,162).

Many reports show different PGPR species that have the
mechanism of directly improving plant devel opment (66,114).
Strains of fluorescent Pseudomonas spp. and Bacillus spp.
were able to stimulate plant growth by different traits like
nitrogen fixation, phosphate solubilization, production of
organic acids and I1AA (Indole Acetic Acid) (114). Severa
researchers have selected strains of Bacillus, Azotobacter,
Azospirillumand Pseudomonas that produces gibberellin - like
substances in culture and reported that they are important to
plant growth responses (56,146). Eklund (36) concluded that
gibberellin-like substances and other growth-promoting
compounds were produced by Pseudomonas spp. Growth
stimulation of cucumber was observed following seed
inocul ation with these strains (36). The positive effects of PGPR
on plant growth are always correlated with remarkable changes
in root morphology (13,92,108). It is generally assumed that
these developmental responses are stimulated by
phytohormones produced by the bacteria (14). Among the plant
growth regulators, auxin may play amajor role supported by the
fact that a screen for Arabidopsis thaliana mutants insensitive to
Pseudomonasrhizobacteriaresulted in theisolation of two mutants
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dteredintheAux1 auxininflux trangporter (120). Butitisnecessary
to know that the auxin effect depends on the concentration.
Inoculation with increasing doses of Pseudomonas strains had
positive result to a certain concentration above which it was
observed deleterious effects (121).

The suppression of soil-borne plant pathogens is an
important indirect mechanism for plant development. The
suppression of del eterious populationsin the rhizosphere occurs
at several forms. Competition for nutrients supplied by roots
and seeds and occupation of sites favored for colonization
(niche exclusion) probably are responsible for a certain degree
of disease suppression by most PGPR and are of primary
importance in some strains. Paulitz (119) reported that the
biological control of Pythium damping-off by P. putida N1R,
applied to the soybean and pea seeds, was mediated by the
ability of selected strainsto predominate on roots growing from
inoculated seed pieces or seed. Although, it is not the only
standard used for defining successful PGPR strains. Chin-A-
Woeng et al (26) observed that the colonization ability of certain
PGPR is related to the mechanism involved in the biocontrol
action. Antibiosis mechanism requiresaconvenient colonization
of the involved strain(s), while for Induced Resistance
mechanism, a lesser number of cells during a limited period,
may be sufficient to obtain a successful response in the host
plant.

Systemic Acquired Resistance (SAR) isinduced when plant
activates its defense mechanism in response to the pathogen
primary infection during plant-pathogen interactions (154,160).
Induction can occur through biotic factors (e.g. infecting or
feeding pathogens) or through chemical agents (e.g. sdicylate).
Induced Systemic Resistance (ISR) is a defense response to the
local presence and activity of a variety of bictic and abiotic
agents by plants (91). PGPR €licit defensive response by the
plant to the pathogen presence. It causes the production of
specific substances. Van Peer et al. (155) showed that
bacterization of carnation roots with P. fluorescens WCS417
reduced significantly the wilting caused by Fusarium
oxysporium f. sp. dianthi. Upon pathogen infection, higher
amounts of the anthranilate derived phytoalexins dianthalexin
(2-phenyl - 7 - hydroxy - 1,3 - benzoxazin - 4H - one) and agroup
of diantramides accumulated in plants that had received aroot -
pretreatment with strain WCSA17 than in untreated control plants.
I SR has been shown to occur in radish, tobacco, common bean,
cucumber (72,73,110,169).

Production of metabolites such as, hydrogen cyanides,
siderophores, extracellular lytic enzymes and antibioticsisthe
primary mechanism of biocontrol (85,103,105,111). Production
of hydrogen cyanidesisamajor factor in the antagonism of P.
fluorescens CHAO against soil-borne tobacco pathogen
Thielaviopsis basicola and has been proposed to act directly
on pathogen without damaging the plant (158). Synthesis of
HCN is induced by high ferric iron concentrations whereas
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conditions of low iron are inhibitory (160). Many soils
Pseudomonads secrete molecul es designated siderophores that
bind ferricironwith high affinity. These yellow-green fluorescent
siderophores are hydroxamate or phenolate groups and are
classified as pyoverdines or pseudobactins (133). Iron
competition, mediated by siderophores, is important for
biological control (79). Production of siderophoresisthe main
mechanism by which P. putida WCS358 controls Fusarium
pathogenesis in carnation and radish (160). Biosurfactants are
another group of secondary metabolites produced by some
Pseudomonas spp. Biosurfactantsare polimeres of low molecular
weight that reduce the surface and interfacial tensions and
polimeres of high molecular weight that bind to the surfaces
(135). Some of these compounds have antimicrobial activity,
likerhamnolipides (RHL s) and peptide biosurfactants. TheRHLs
showed activity against zoospores of oomycetes. They caused
theimotility and lise of zoosporesin lessthan one minute (145).
One strain of P. aeruginosa produced RHL B that inhibited the
germination of spores of Phytophora capsici e Colletotrichum
orbicularie in vitro (63). The Pseudomonas produces some
lipopeptide surfactantsthat areabletoinhibit microbia growth.
Viscisamide and tensine produced by strains of soil
Pseudomonasinhibited micelial growth of somefungi (106,152).

Soils can be microbiologically characterized as conductive
and suppressive soils. Conductive soils are described as
soils in which plant phytopathogens are detected.
Suppressive soils are defined as soils in which the pathogen
does not establish or persist; it establishes but causes little
or no damage, or the pathogen establishes and causes
disease for awhile but thereafter the diseaseislessimportant,
although it may persist in the soil (29). Suppressive soils
have been described for avariety of plant pathogens (29,54).
Lemanceau and Alabouvette (75) reported that the
mechanism of suppression to Fusariumwilt has been related
to the activity of microorganisms such as fluorescent
Pseudomonads competing with the pathogen. There are
numerous reports of antibiotic produced by Pseudomonas
spp. Howell and Stipanovic (55) isolated the antibiotic
pyrrolnitrin from cultures a strain of P. fluorescens that
inhibited growth of Rhizoctonia solani, T. basicola,
Alternaria sp. and Verticillium dahliae “in vitro”. Cotton
seedling survival increased from 30 to 79% when planted
into R. solani-infested soil by pre-plant treatment of seeds
with the strain of P. fluorescens or pyrrolnitrin. A year later,
the same author isolated another antibiotic, pyoluteorin,
produced by another strain of P. fluorescens. This antibiotic
was inhibitory to Pythium ultimum and reduced seedling disease.
Unlike pyrrolnitrin, which persisted actively in soil about 30 days,
pyoluteorin was quickly absorbed and inactivated by soil colloids.
Weller and Cook (163) reported that two strainsisol ated from wheat
roots, growing in suppressive soils to take-all caused by
Gaeumannomyces graminis var. tritici, significantly reduced
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disease when introduced as seed treatment. They indicated that
the antibiotics produced by the strains were responsible for that
reduction. Furthers reports concluded that phenazines and
phloroglucinolsinhibited the pathogeninvitroand instu (130,151).
Many reports showed the efficiency of these antibioticsto control
certain plant diseases (8,32,34,128,132). Recently, Kaur et al. (62)
suggested that D-gluconic acid wasthe most significant antifungal
agent produced by Pseudomonas spp. strain AN5 in biocontrol
of take-all on wheat roots. It indicates that diverse
compounds can be associated to the disease suppression
and it is necessary continuos investigation to detect them.

Phenazine production was associ ated to the “ Sudden Death
Syndrome” (SDS) caused by Fusariumsolani, in soybean (17).
Themajor part of the Pseudomonasisol ates from soybean crop
area without incidence of SDS, produced PCA, Phenazine-1-
CarboxilicAcid. Theisolateswere ableto inhibiting Fusarium
solani growth in vitro.

Bacteria speciesutilize complex communication mechanisms
caled quorum-sensing (QS) that link cell density with gene
expression (61,138). Diffusible signal molecules denominated
autoinducers like acyl-homoserine lactones, accumulate in the
extracellular environment, reach a critical threshold
concentration and activate the response which leads to gene
expression. At threshold cell-density level, bacteria produce
substances that inhibit proliferation of pathogens; beneficial
bacteria responsible for nitrogen fixation on the other hand,
use QS to optimize nodule formation on plant roots. Further
advances and better understanding of QS in the rhizosphere
will facilitate exploitation of bioinoculantsin soil health, plant
productivity, bioremediation strategies to environmental
applications (138). Plant-associated Pseudomonads utilize
guorum-sensing systems to regulate some features that could
affect their persistence and viability in plant surfaces (37,78).

The production of the phenazine compounds, as well as,
secondary metabolites is regulated by quorum sensing (QS)
systems (26). Thisis observed to P. aureofaciens strain 30-84,
effective against take-all, in which there are two separate QS
systems that regulate the production of antibiotics and
secondary metabolites, exoproteases activity and cell surface
features (168). Theregulation of phenazine productionislinked
to the genes phzR and phzl members of luxl/luxR gene group
and islocated upstream of the phenazine operon (93,166). PhzR
isatranscriptional activator of phenazine gene expression that
functions in response to the cell density- dependent
accumulation of a diffusible, acylated homoserine lactone
(AHSL) auto-inducer, synthesisof which requiresphzl (148). A
phzR mutant of 30-84 did not produce phenazines but was
complemented by awild type plasmid-borne phzR can function
in trans to activate phenazine gene expression. Evidence for a
diffusible auto-inducer resulted from the observation that cell-
free supernatant of 30-84 wild-typeor E. coli expressing the 30-
84 phzl gene, produced premature expression of biosynthetic



genes (166). In othersanalysisAHSL rolein the rhizosphere, a
phzl defective population of strain 30-84 was restored to wild-
type levels of phenazine expression when a population
expressing phzl was present (148). These results showed that
AHSL activate phenazine expression and raised the hypothesis
that signals produced by heterologous rhizosphere strains could
influence the timing or level of phenazine synthesis of the
antibiotic producing PGPR in situ (125,126,148).

The presence of a positive autoregulatory loop or quorum-
sensing systems, such as luxl/luxR families, seemed to be
appropriate in environments like rhizosphere where nutrient
avaliahility istransitory. When populationsare small or substrate
islimiting, AHSL concentrationswould remain below the level
required inducing antibiotic gene expression, conserving
resourcesfor growth and maintenance. If the nutrient avail ability
increases, and consequently thereisincreasein the populations,
AHSL concentrations could reach the level and carbon and
energy used to antibiotic production. Evidence for aQS system
in strain 30-84 came from the observation that phzR gene in
transto achromosomal phzR::lacZ fusionresultedina3.5-fold
promotion in B-gal actosidase production (124,126).

The continuous analysis of strains important to biological
control areindicating that biosynthesis of antifungal secondary
metabolites in Pseudomonas spp. is commonly controlled by a
two-component system comprising the sensor kinase GacS and
the response regulator GacA. gacSisthe new designation for a
group of conserved genes in Pseudomonas spp. that encode
functionally homologous cognate sensor kinases (e.g., apdA,
lemA, pheN, and repA) (64). In P. fluorescens CHAO, thissystem
tightly controls the expression of several biocontrol factors,
such as Phl, HCN, pyoluteorin (52,53). A bacterial signal that
was not yet identified, triggers autophosphorilation of the GacS
sensor. The phosphate group is transferred to the response
regulator GacAby aphospho-relay mechanism (52), Threegenes
that encode the small non-coding RNAsRsmX, RsmY and Rsm
Z are expressed. Each three RNAs specifically binds two small
proteins, RsmA and RsmE. In P. fluorescens, these proteins
function as post-transcriptional represssorsof typical biocontrol
genes by intefering with the function of ribosome-binding site
(52,134).

COMMERCIAL USE OF PGPRINAGRICULTURE

Nowadays, many trading products for plant disease control
arebased on BCAs(Table 1). Commercia development of this
agricultural product must follow several criteria: large application
on magjor crops, quality control, chemical effects and inoculum
formulation (20). Product safety, production costs, effectiveness
against target organisms and acreage and value of crops to be
treated must all be considered in the development of biological
control and PGPR. Microorganisms should be considered for
scale-up and commercial use, even where the disease or
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nematode problem solved may be specific to arelatively small
geographic area, a single crop or cropping system, or a few
users such as certain growers, processors, or communities (28).

In California and Idaho, PGPR have been effective in
increasing yields of potato, sugar beet and radish (20). However,
it will be necessary to test strains in other potato growing
regions to determine their versatility. It has been discussed the
many factorsthat may affect rhizosphere microbial communities
anditislikely different soils, varieties, climatic conditions, etc.
will have effect on PGPR performance. Strategies like, use of
mixtures of strains (123) and usefertilizer sprays, like urea, that
canimproverhizosphere colonization (97) can helpto overcome
some problems and make preparations more competitive in a
variety of growing regions.

In addition to physical, environmental, microbial and variety
factors that may affect PGPR, other characteristics must be
examined before large-scale commercial production will be
practical. Strains of Pseudomonas spp. can mutate in culture
and generally lose viahility when stored for aperiod of severa
weeks (52). Any mutation or lacking of viability may greatly
affect performance and could be a catastrophic occurrence for
the company selling the product. Efficient quality control will
be definitely essential. Reliable assays to check the efficacy of
the strainswill be necessary. M ethods for monitoring inocul ant
quality are being devel oped. Duffy and Défago (35) elaborated
a method based on the distinctive appearance of GacS/GacA
system mutants. Mutation blocks the biosynthesis of
antimicrobial compoundsin strain P. fluorescens CHAO. They
were able to control mutants and clean contaminated cultures
using certain minerals, like zinc, copper, manganese or diluting
themedia

The identification of factors that control the fate and
performance of the inoculants, small-scale analyses are needed
due to the heterogeneity characterizing the complex soil and
rhizosphere environments (141,142). Direct staining techniques
and advanced microscopy had provided the first detailed single-
cell imagesof root colonization by these bacteriausing fluorescent
antibodies, fluorescent in situ hybridization and marker gene
technology. Fluorescence-labeled antibodies have been used
with success for detection of root-colonizing Pseudomonas
strains by immunofluorescence microscopy (68,153). TherRNA-
targeted fluorescent in situ hybridization (FISH) technique offers
the possibility of non-extractive detection of target bacteria.
Hence, fluorescence-labelled oligonucl eotide probes, constructed
on the basis of 16S rRNA sequence information, hybridize to
specific sequences in the ribosomal RNA of fixed and
permeabilized target cells (3). Nevertheless, very few cases does
rRNA-targeting oligonucleotide sequences provide a specificity
compatible with detection of a specific Pseudomonas strain
(19). However, using a dual staining technique where
immunofluorescence labelling differentiates a specific
Pseudomonas strain, the FISH technique appear to be suitable
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Table 1. Examples of bacteriaformulated as products used as Biological Control Agents.

Product (Brand name) Biocontrol Agent Tar get Pathogen/Disease
AtEze Pseudomonas chlororaphis 63-28 wilt diseases as well as stem and root rots
Balad Bacillus pumilus QST2808 Asian soybean rust
Bio-save10LP, 110 Pseudomonas syringae Botrytis cinerea, Penicillium spp.,

Mucor pyroformis, Geotrichum candidu

BlightBan A506* * Pseudomonas fluorescens A506

Frost damage, Erwinia amylovora,
and russet-inducing bacteria

Other B. subtilis, B. lichenformis,

Companion Bacillus subtilisGB03 B. megaterium Target Pathogen/Disease;
Rhizoctonia, Pythium, Fusarium, and Phytophthora
Burkholderia cepacia Rhizoctonia, Pythium, Fusarium,
Deny type Wisconsin and disease caused by lesion, spiral, lance,

and sting nematodes

EcoGuard Bacilluslicheniformis SB3086 Dollar spot, low and moderate disease pressure

Pseudomonas fluorescens strains A506 . .

Frostban A and 1629RS, Pseudomonas syringae 742RS Frost-forming bacteria

Frostban B Pseudomonas fluorescens A506 Frost-forming bacteria

Frostban C Pseudomonas syringae 742RS Frost-forming bacteria

Frostban D Pseudomonas fluorescens 1629RS Frost-forming bacteria

Gdltral Agrobacterium radiobacter Strain 84 Crown gall disease caused by

Agrobacterium tumefacien

GB34 Biologica Fungicide Bacillus pumilus GB34

Fungal pests Rhizoctonia and Fusarium

Green Releaf Bacilluslicheniformis SB3086

Many fungal species especialy
those causing leafspot and blight diseases

Source: APS Biological Control Committee - http://www.oardc.ohio-state.edu/apshec/

for discrimination between levels of the growth activity in
inoculant Pseudomonas popul ationsin rhizosphere (82). Another
problem is the autofluorescence from soil particles and that can
mask the specific fluorescence signal emitted by thetagged cells.
Therefore, moredetailed in situ studiesof single-cell distribution
of Pseudomonasinocul ants, usingimmunochemical methodsand/
or FISH have only been possible with the advent of confocal
laser scanning microscopy (CLSM) (82). Insertion of marker or
report genes has been commonly used to distinguish the
introduced Pseudomonadsfrom indigenous popul ations (45,141).
Some of the most popular genes used as markers or reporters
encode enzymes (IUxAB, lacZ, luc, xylE, gusA) in which case a
product of thereaction catalyzed by themarker geneismonitored
(bioluminescence, color, etc.) (141). Gene product can also be
detected by immunochemical techniques. Specific physical
properties of the gene products may mediate their detection. It
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occurs to the product of gfp gene that is a protein, which emits
green fluorescence when excited (24).

Another important point to be considered is the pesticide
use in the cropping systems. Apparently the majority of
fungicides do not affect PGPR. Fungicides used on potato seed
pieces, likebenomy!, captan, PCNB did not affect PGPR strains
but mancozeb was inhibitory using in vitro tests (21).
Pseudomonas spp. have a biochemical machinery that confers
many possibilities to degrade many compounds (67,143).
However, further testing will be necessary as new strains are
found and new crops with various chemical needs are tested.

Initially, bacterization of seeds utilized bacterial growth from
culture media suspended in water. Although growth responses
were noted in some cases, the problems with this system on a
large scale are apparent. Strains may soon die in water
suspensions and unless planting are done immediately after



treatment, the inoculum dries and the populations of PGPR
decline (21). Powered formulations of PGPR have been
developed and anumber of commercially available gumswere
tested as suitable substrates for PGPR in comparison to
methylcellulose. It was observed that PGPR establishment on
roots and stimulation growth depends on the carrier. There is
variability between crops that will be encountered when
attempting to devel op formulationsfor wide usage. Suslow and
Schroth (147) showed methylcellulose powder formulations
were most suitable for pelleting onto sugar-beet. Powered
formulations have benefit as the ease of storage, transport and
handling. Also, by pelleting seed with a powder formulation is
possible to concentrate a higher population of PGPR around
the seed than by dipping in bacterial suspensions. The powder
formulations also allow for storage for prolonged periods of
time until planting. It is necessary more studies to determine
most efficient formsto apply PGPR to the plants.

CONCLUDING REMARKS

The use of fluorescent Pseudomonads as PGPR and/or
Biological Control Agents (BCA) requires the precise
understanding of the interactions between plant-bacteria, anong
bacteria - microbiotaand how biotic and abiotic factor influence
inthisrelationship. In afew years, modern technologies, such as
immunofluorescence microscopy and reporter genes, have
improved the study of Pseudomonas inoculantsin soil and have
markedly enhanced the knowledge about their behavior in this
environment (45,141). Nevertheless it is necessary to better
understand the plant response to the presence of these
introduced bacteria (eg. presencein the high concentration, asin
theinoculants). Animportant considerationisthe characterization
of the rhizosphere popul ations. Comprehension of the dynamics
of the microbial populations could shed light in the process to
select successful strains promoting plant growth and/or
suppressing diseases. Recent advances in studies of the
intraspecies and interspecies signaling are providing an
important area for scientific research, as well as, relevant
application. Understanding quorum sensing systemsin antifugal
metabolite production and identification of promoters that can
be induced or increased in the rhizosphere give new approaches
for the development of new biological control agents (136,159).

Another important concern is the impact of microorganism
massive introduction can cause to the soil ecosystem. It is
important to evaluate the possible impact on the native
communitiesand theresulting effects. Many studieshad analyzed
the impact and the survival and ability to compete of these
microorganisms. Botelho et al. (18) observed no differenceinthe
size, structure and function of bacteria communities analyzed
when astrain of P. fluorescenswasintroduced by seeds of maize.
Guimardes et al. (47,48) and Aradijo et al. (4,5,6) observed that a
strain of P. fluorescens and itsOGM were ableto survival and/or
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colonize bulk soil and rhizosphere of maize. Moénne-L occoz et
al. (100) results suggested that the root-associated
Pseudomonas community of sugar beet seedlings wasresilient
to the impact that may be caused by a taxonomically related
inoculant. Nevertheless, the response of introduction of
microorganismswill vary dueto aplethoraof factorsthat should
be checked before considering their use asa BCA.

Many strategies to achieve the control of plant diseases
using microorganismsashbiological control agents (BCASs) have
produced significant success. Recently, Ji et al. (59) tested a
combined use of foliar biological control agentsand PGPR. The
foliar biocontrol agent (P. syringae strain Cit7) and PGPR (P.
fluorescens strain 89B-61) provided significant control of
bacterial speck and spot of tomatoinfieldtrials. Theseagronomic
strategies are relevant since one of the goals of using PGPR/
BCAs, isto make them trustable and assessabl e product to the
farmers. Consequently, continuos searching for new approaches
to improve the efficiency of PGPR/BCAs are tightly linked to
understand the ecological, genetic and biochemical relationships
in their habitat. This is a strategy to achieve a sustainable
agriculturein theworld.

RESUMO

Pseudomonas spp. associadas a rizosfera de plantas
deuso agricola - um panorama

As preocupacdes com o0 meio ambiente tém levado a
necessidade do uso sustentével dos recursos naturais. A
agricultura convencional tem causado impactos consideraveis
no solo e nas &guas. E importante mudar certas técnicas
agricolas por outras consideradas mais limpas para 0 meio
ambiente. Uma estratégia € a utilizacdo da microbiota do solo
parainduzir o crescimento de plantas, controlar fitomoléstiase
parafazer abiodegradacéo de compostos xenobi 6ticos. Estudos
sobre a relagéo entre as raizes e a microbiota sdo essenciais
paraconseguir aplicagoes viaveis naagricultura. Estes estudos
tém indicado que um dos mai s abundantes microrganismos na
rizosfera (regido ao redor daraiz) € Pseudomonas spp. do grupo
fluorescente. Estes tém sido considerados como aternativa
tanto aos agrotdxicos no controle de doenca de plantas como
na inducdo do seu desenvolvimento. Esta revisdo mostra os
principais conhecimentos sobre Pseudomonas spp. do grupo
fluorescente. Estaresume e discute aspectos significantes deste
tépico, incluindo, (i) rizosferacomo microhabitat; (ii) aspectos
taxondmicos, genéticos e ecoldgicos de Pseudomonas spp.
do grupo das fluorescentes na rizosfera; (iii) mecanismos de
Promocao de Crescimento de Plantas e Controle Biolégico e
(iv) uso comercia de PGPR naagricultura.

Palavras-chave: promogéo de crescimento vegetal, controle
bioldgico, Pseudomonas fluorescente, rizosfera
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