Acessibilidade / Reportar erro

AMPA and angiotensin type 1 receptors are necessary for hemorrhage-induced vasopressin secretion

Abstract

Hypovolemia induced by hemorrhage is a common clinical complication, which stimulates vasopressin (AVP) secretion by the neurohypophysis in order to retain body water and maintain blood pressure. To evaluate the role of brain L-glutamate and angiotensin II on AVP secretion induced by hypovolemia we induced hemorrhage (∼25% of blood volume) after intracerebroventricular (icv) administration of AP5, NBQX, or losartan, which are NMDA, AMPA, and AT1 receptor antagonists, respectively. Hemorrhage significantly increased plasma AVP levels in all groups. The icv injection of AP5 did not change AVP secretion in response to hemorrhage. Conversely, icv administration of both NBQX and losartan significantly decreased plasma AVP levels after hemorrhage. Therefore, the blockade of AMPA and AT1 receptors impaired AVP secretion in response to hemorrhage, suggesting that L-glutamate and angiotensin II acted in these receptors to increase AVP secretion in response to hemorrhage-induced hypovolemia.

Vasopressin; Hemorrhage; AMPA; NMDA; Angiotensin receptor type 1


Introduction

Hemorrhage is common in clinical settings and can have several causes such as injuries, diseases, surgeries, childbirth, gastrointestinal pathologies, among others (11. Brenner A, Arribas M, Cuzick J, Jairath V, Stanworth S, Ker K, et al. Outcome measures in clinical trials of treatments for acute severe haemorrhage. Trials 2018; 19: 533, doi: 10.1186/s13063-018-2900-4.
https://doi.org/10.1186/s13063-018-2900-...
). Severe bleeding can cause hypovolemic shock and, consequently, death (11. Brenner A, Arribas M, Cuzick J, Jairath V, Stanworth S, Ker K, et al. Outcome measures in clinical trials of treatments for acute severe haemorrhage. Trials 2018; 19: 533, doi: 10.1186/s13063-018-2900-4.
https://doi.org/10.1186/s13063-018-2900-...
). In response to hypovolemia and/or hypotension, magnocellular neurons in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei secrete arginine vasopressin (AVP) through the neurohypophysis into the blood (22. Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301: R905-R915, doi: 10.1152/ajpregu.00800.2010.
https://doi.org/10.1152/ajpregu.00800.20...
,33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). AVP then acts on V2 receptors in the kidney to increase water reabsorption and, consequently, decrease urinary water loss. Concomitantly, AVP also acts on V1 receptors in blood vessels and exerts its vasoconstrictor effects (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). Thus, AVP secretion plays an important role in survival after hemorrhage.

AVP secretion is dependent on the activity of magnocellular neurons, which is controlled by a complex neural circuit that integrates the information regarding blood pressure and extracellular fluid volume and osmolality (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). The information concerning blood volume and arterial pressure is transmitted to the brain from baroreceptors and volume receptors, which send afferent signals to the nucleus of the solitary tract (44. Share L. Role of vasopressin in cardiovascular regulation. Physiol Rev 1988; 68: 1248-1284, doi: 10.1152/physrev.1988.68.4.1248.
https://doi.org/10.1152/physrev.1988.68....
). In turn, this nucleus sends projections to the magnocellular neurons in the PVN and SON that respond either by increasing or decreasing AVP release as necessary to maintain the homeostasis of the body water and arterial pressure (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). Osmorreceptor neurons at the circumventricular organs respond to changes in plasma osmolality and sodium levels. These nuclei project to the PVN and SON increasing the activity of magnocellular neurons and, consequently, increasing AVP secretion in response to hyperosmolality. Furthermore, the magnocellular neurons are also intrinsically osmossensitive, directly responding to changes in extracellular osmolality to modulate AVP production and secretion (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
).

The afferent input to the magnocellular neurons is influenced by a series of mediators, among which are angiotensin II (ANG II) and L-glutamate (55. Antunes-Rodrigues J, Ruginsk SG, Mecawi AS, Margatho LO, Cruz JC, Vilhena-Franco T, et al. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. Braz J Med Biol Res 2013; 46: 327-338, doi: 10.1590/1414-431X20132788.
https://doi.org/10.1590/1414-431X2013278...
). Intracerebroventricular (icv) losartan administration blocks the ANG II-induced AVP release, indicating that AT1 receptors are responsible for this response (66. Hogarty DC, Speakman EA, Puig V, Phillips MI. The role of angiotensin, AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res 1992; 586: 289-294, doi: 10.1016/0006-8993(92)91638-U.
https://doi.org/10.1016/0006-8993(92)916...
). Additionally, studies in brain slices demonstrated that ANG II depolarizes magnocellular neurons in the PVN (77. Li Z, Ferguson AV. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 1996; 71: 133-145, doi: 10.1016/0306-4522(95)00434-3.
https://doi.org/10.1016/0306-4522(95)004...
) and SON (88. Okuya S, Inenaga K, Kaneko T, Yamashita H. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 1987; 402: 58-67, doi: 10.1016/0006-8993(87)91047-X.
https://doi.org/10.1016/0006-8993(87)910...
). Mice with knockdown of AT1 receptors in AVP neurons exhibited decreased AVP secretion in response to hypertonic saline loading or icv ANG II administration (99. Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, et al. Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314: R770-R780, doi: 10.1152/ajpregu.00435.2017.
https://doi.org/10.1152/ajpregu.00435.20...
).

Ionotropic glutamate receptors, such as α‐amino‐3‐hydroxy-5‐methylisoxazole-4‐propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA), have been previously shown to mediate AVP secretion (1010. Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
https://doi.org/10.1210/en.2011-2079...
,1111. Morsette DJ, Sidorowicz H, Sladek CD. Role of non-NMDA receptors in vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants. Am J Physiol Regul Integr Comp Physiol 2001; 280: R313-22, doi: 10.1152/ajpregu.2001.280.2.R313.
https://doi.org/10.1152/ajpregu.2001.280...
). Administration of L-glutamate directly into the SON induces AVP release, an effect that may be blocked by AMPA receptor antagonists in basal conditions (1010. Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
https://doi.org/10.1210/en.2011-2079...
). In hypothalamus-neurohypophysis explants, AMPA receptor antagonists block the AVP secretion in response to osmotic stimulation (1111. Morsette DJ, Sidorowicz H, Sladek CD. Role of non-NMDA receptors in vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants. Am J Physiol Regul Integr Comp Physiol 2001; 280: R313-22, doi: 10.1152/ajpregu.2001.280.2.R313.
https://doi.org/10.1152/ajpregu.2001.280...
), whilst metabotropic glutamate receptors did not influence AVP release (1212. Morsette DJ, Sidorowicz H, Sladek CD. Role of metabotropic glutamate receptors in vasopressin and oxytocin release. Am J Physiol Regul Integr Comp Physiol 2001; 281: R452-R458, doi: 10.1152/ajpregu.2001.281.2.R452.
https://doi.org/10.1152/ajpregu.2001.281...
). We have recently shown that L-glutamate stimulates the secretion of AVP through NMDA receptors after hypertonic extracellular volume expansion (EVE) (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
). The participation of different ionotropic L-glutamate receptors in hemorrhage-induced AVP release is not known. Thus, the present study aimed to evaluate the participation of L-glutamate AMPA and NMDA receptors and ANG II AT1 receptors in the brain on hemorrhage-induced AVP secretion.

Material and Methods

Animals

All procedures were approved by the Ethics Committee of the Ribeirão Preto Medical School, University of São Paulo (#36/2010) and were conducted in accordance with the current legislation. Male Wistar rats (∼300 g) were obtained from the animal facility of Ribeirão Preto Medical School and maintained in collective cages (41×34×16 cm, four rats per cage) in a room with controlled temperature (23±2°C) and 12-h light/dark cycle (lights on from 6 am to 6 pm) with free access to filtered tap water and standard rat chow.

icv cannula implantation and drug microinjection

The animals were anesthetized with 2.5% 2,2,2-tribromoethanol (1 mL/100 g body weight, intraperitoneal). When in anesthetic plane, animals were placed in a stereotaxic apparatus. Next, a cannula (stainless steel; 0.7 mm external diameter, 0.4 mm internal diameter, and 10 mm long) was inserted into the right lateral ventricle at the coordinates: 0.5 mm posterior to bregma, 1.4 mm lateral from the middle line, 3.6 mm down from the skull, as previously described (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
). All animals received a prophylactic dose of antibiotic (50,000 units of penicillin G, intramuscular). After surgery, the animals were placed in individual cages for a 7-day recovery period, during which they were handled daily in order to decrease the influence of handling stress. Then, 20 min before hemorrhage, animals were submitted to icv microinjection of 5 μL/rat of vehicle (0.9% saline solution), NBQX (#1044, Tocris Cookson Ltd., United Kingdom), AP5 (#A8054, Sigma Chemical Co., USA), or losartan (Merck Sharp & Dohme, USA). Both NBQX and AP5 were used at doses of 10 and 30 nmol/5 μL per rat, as previously described (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
). Losartan was used at a dose of 100 nmol/5 μL per rat (1414. Mecawi AS, Lepletier A, Araujo IG, Olivares EL, Reis LC. Assessment of brain AT1-receptor on the nocturnal basal and angiotensin-induced thirst and sodium appetite in ovariectomised rats. J Renin Angiotensin Aldosterone Syst 2007; 8: 169-175, doi: 10.3317/jraas.2007.032.
https://doi.org/10.3317/jraas.2007.032...
).

Femoral artery cannulation and hemorrhage procedure

The hemorrhage procedure was carried out as previously described (22. Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301: R905-R915, doi: 10.1152/ajpregu.00800.2010.
https://doi.org/10.1152/ajpregu.00800.20...
). A polyethylene cannula (PE-10 connected to PE-50, Intramedic; Becton-Dickinson, USA) was inserted into the right femoral artery and externalized in the dorsal cervical region. Then, the cannula was flushed with isotonic saline with heparin (100 IU/mL Liquemine; Roche, Switzerland) to prevent obstruction. Twenty-four hours after femoral artery cannula implantation, isotonic saline with heparin (150 IU in 150 µL) was administered through the femoral catheter to prevent blood clotting; then the blood was removed through the femoral artery (15 mL/kg body weight, ∼25% of blood volume in 1 min) 20 min after the icv microinjection. In the control group, the same procedures were carried out without blood removal.

Hormone assessment

The animals were euthanized by decapitation 5 min after hemorrhage, and the blood was collected from the trunk in polypropylene tubes kept on ice, containing anticoagulant (15 IU of heparin/mL of blood). The plasma was separated by centrifugation at 1600 g for 20 min at 4°C and then stored at -20°C until extraction. Plasma AVP concentration was measured by specific radioimmunoassay as previously described (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
). Assay sensitivity and intra- and inter-assay coefficients of variation were 0.7 pg/mL, 7.6, and 12%, respectively.

Statistical analysis

GraphPad Prism v. 7.0 software (USA) was used for all statistical analyses. A two-way analysis of variance followed by Bonferroni post hoc test was used to compare groups. All data are reported as means±SE.

Results

In order to assess the influence of NMDA receptors on the response to hemorrhage, we microinjected AP5, a NMDA antagonist, 20 min prior to hemorrhage icv. Hemorrhage significantly increased plasma AVP (F(1,48)=23.73, P<0.001) while icv administration of AP5 did not change AVP plasma levels (F(2,48)=0.54, P=0.59), with no interaction between the two factors (F(2,48)=0.48, P=0.62), suggesting that the NMDA receptors were not involved in the AVP secretion in response to hemorrhage (Figure 1).

Figure 1
The intracerebroventricular administration of AP5 did not affect plasma arginine vasopressin (AVP) after hemorrhage. This result suggests that L-glutamate NMDA receptors are not necessary for hemorrhage-induced AVP secretion. Data are reported as means±SE. ***F(1,48)=23.73, P<0.001 compared to control (no hemorrhage) (ANOVA). Numbers in columns indicate the number of animals/group.

Next, we used the NBQX, an AMPA receptor antagonist, to evaluate the participation of these receptors in AVP secretion after hemorrhage. Both hemorrhage (F(1,48)=15.24, P<0.001) and icv NBQX administration (F(2,48)=5.68, P=0.006) significantly changed plasma AVP levels, and the interaction between the two factors tended toward statistical significance (F(2,48]=2.92, P=0.06). The post hoc analysis showed that NBQX per se did not change AVP secretion in control animals, whilst after hemorrhage the highest dose of NBQX significantly lowered plasma AVP levels compared to saline (P=0.049) or low dose of NBQX (P=0.001) (Figure 2). These data showed that the blockade of AMPA receptors blunted hemorrhage-induced AVP secretion.

Figure 2
Intracerebroventricular administration of NBQX reverses the effect of hemorrhage on plasma arginine vasopressin (AVP). Thus, L-glutamate AMPA receptor signaling seems to be involved in the hemorrhage-induced AVP secretion. Data are reported as means±SE. ***F(1,48)=15.24, P<0.001 compared to control; +P=0.02 vs hemorrhage-saline; #P<0.001 vs hemorrhage-NBQX 10 (ANOVA). Numbers in columns indicate the number of animals/group.

Then, we assessed the influence of losartan, an AT1 receptor antagonist, on hemorrhage-induced AVP secretion. Similarly to NBQX, both hemorrhage (F(1,34)=7.27, P=0.01) and losartan (F(1,34)=6.39, P=0.016) administration changed plasma AVP levels. Additionally, interaction between the two factors was statistically significant (F(1,34)=14.63, P<0.001). The post hoc analysis showed that losartan administration did not significantly change plasma AVP secretion in control rats; however, hemorrhage-induced AVP secretion was abolished in rats submitted to previous icv losartan administration (P<0.001) (Figure 3). Therefore, AT1 receptor activation seemed to be necessary for AVP secretion after hemorrhage.

Figure 3
Losartan administration reverses the effects of hemorrhage on arginine vasopressin (AVP) secretion. This result indicates that angiotensin II AT1 receptor signaling is necessary for hemorrhage-induced AVP secretion. Data are reported as means±SE. ***P<0.001 vs control-saline, +++P<0.001 vs hemorrhage-saline (ANOVA). Numbers in columns indicate the number of animals/group.

Discussion

L-glutamate is the main excitatory neurotransmitter in the central nervous system and its receptors are ubiquitously expressed in the brain. Pharmacological studies demonstrated the existence of three main families of ionotropic glutamate receptors: AMPA, kainate, and NMDA receptors. AMPA and kainate receptors are rapidly activated and then desensitized, whilst NMDA receptors are involved in long-term plasticity and higher cognitive functions (1515. Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 2018; 98: 1080-1098, doi: 10.1016/j.neuron.2018.05.018.
https://doi.org/10.1016/j.neuron.2018.05...
). Magnocellular neurons in the PVN and SON are richly innervated by glutamatergic afferents (1616. Boudaba C, Di S, Tasker JG. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J Neuroendocrinol 2003; 15: 803-810, doi: 10.1046/j.1365-2826.2003.01063.x.
https://doi.org/10.1046/j.1365-2826.2003...
), which suggests a role for L-glutamate on the control of AVP secretion. NMDA receptors are implicated in AVP release in response to dehydration (1717. Xu Z, Herbert J. Effects of intracerebroventricular dizocilpine (MK801) on dehydration-induced dipsogenic responses, plasma vasopressin and c-fos expression in the rat forebrain. Brain Res 1998; 784: 91-99, doi: 10.1016/S0006-8993(97)01186-4.
https://doi.org/10.1016/S0006-8993(97)01...
), and we have previously demonstrated that after hypertonic extracellular volume expansion (EVE) the increase in plasma AVP is mediated by NMDA receptors, but it is not changed by AMPA receptors whilst opposite results are found for oxytocin (OT) secretion after hypertonic EVE (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
). Thus, different glutamate receptors are possibly involved in the control of different functions in magnocellular PVN and SON neurons.

In addition to the participation of different L-glutamate receptors in the control of AVP secretion, in this study we showed that AMPA receptors were involved in the control of AVP release after hemorrhage. Thus, an increase in plasma osmolality activates a glutamatergic circuit, which in turn activates NMDA receptors to induce AVP release (1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
), while a decrease in blood volume activates a different glutamatergic circuit that activates AMPA receptors to induce AVP release. These results indicated that AMPA and NMDA receptors may differentially regulate AVP release in response to different hydromineral challenges. Previous studies showed that pharmacological blockade of AMPA receptors in the SON attenuates the glutamate-evoked AVP release, while NMDA blockade in the SON does not change AVP release (1010. Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
https://doi.org/10.1210/en.2011-2079...
). These results indicate that in the SON, L-glutamate activates AMPA receptors to induce AVP release, similar to the results we demonstrated after hemorrhage and contrary to the results we found after hypertonic EVE. However, the same study showed that intra-PVN administration of L-glutamate does not affect AVP release in normal conditions but increases AVP release after pre-treatment with NMDA antagonists, indicating that in the PVN NMDA signaling inhibits L-glutamate induced AVP release (1010. Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
https://doi.org/10.1210/en.2011-2079...
). This suggests that, although both nuclei mediate AVP release, different physiological stimuli affect different populations of neurons in the SON and PVN to elicit AVP secretion. Together, the findings from this study and others (1010. Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
https://doi.org/10.1210/en.2011-2079...
,1313. Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
https://doi.org/10.1111/jne.12633...
) indicate the possibility that a decrease in blood volume activates AMPA receptors to increase plasma AVP, whilst increases in osmolality preferentially activate the NMDA receptors to increase plasma AVP. Hemorrhage causes hypotension/hypovolemia without changing osmolality, thus this information is conveyed to the brain mainly through changes in the activity of volume receptors and baroreceptors; whereas, challenges in osmolality are perceived primarily by osmosensitive neurons in specific brain regions, such as circumventricular organs (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). Possibly, these different pathways recruit diverse neural circuitries, neurotransmitters, and receptors reaching different magnocellular neuron populations to mediate the increase in AVP release, thus explaining the different L-glutamate receptors involved in this hormone secretion after hypertonic EVE and hemorrhage.

A decrease in blood volume and/or arterial pressure activates the renin-angiotensin system (RAS), which culminates in the increase of ANG II plasma levels; ANG II is a hormone that acts primarily through AT1 receptors to increase blood pressure (33. Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
https://doi.org/10.1002/cphy...
). In addition to its direct effect on vasoconstriction, ANG II also activates the local RAS of different tissues, such as the brain RAS. The increased activity of the brain RAS enhances the hypertensive effect of the peripheral RAS since it increases the activity of systems that also increase blood pressure, such as the sympathetic activity and AVP secretion (1818. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747-803, doi: 10.1152/physrev.00036.2005.
https://doi.org/10.1152/physrev.00036.20...
). Previous studies show that ANG II induces AVP release (66. Hogarty DC, Speakman EA, Puig V, Phillips MI. The role of angiotensin, AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res 1992; 586: 289-294, doi: 10.1016/0006-8993(92)91638-U.
https://doi.org/10.1016/0006-8993(92)916...
,88. Okuya S, Inenaga K, Kaneko T, Yamashita H. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 1987; 402: 58-67, doi: 10.1016/0006-8993(87)91047-X.
https://doi.org/10.1016/0006-8993(87)910...
,99. Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, et al. Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314: R770-R780, doi: 10.1152/ajpregu.00435.2017.
https://doi.org/10.1152/ajpregu.00435.20...
). Hemorrhage increases ANG II in both the plasma and the hypothalamus (1919. Phillips MI, Heininger F, Toffolo S. The role of brain angiotensin in thirst and AVP release induced by hemorrhage. Regul Pept 1996; 66: 3-11, doi: 10.1016/0167-0115(96)00088-2.
https://doi.org/10.1016/0167-0115(96)000...
). In this study, we demonstrated that icv losartan blunted hemorrhage-induced AVP secretion, which indicates that brain ANG II-AT1 receptor signaling was necessary for this response. In a study that used a hemorrhage protocol similar to ours (∼25% blood removed) (2020. Lee WJ, Yang EK, Ahn DK, Park YY, Park JS, Kim HJ. Central ANG II-receptor antagonists impair cardiovascular and vasopressin response to hemorrhage in rats. Am J Physiol 1995; 268: R1500-R1506, doi: 10.1152/ajpcell.1995.268.1.C127.
https://doi.org/10.1152/ajpcell.1995.268...
), icv losartan administration also blunted hemorrhage-induced AVP secretion. However, these results contradict a previous report that described that central losartan administration did not change AVP in response to hemorrhage (1919. Phillips MI, Heininger F, Toffolo S. The role of brain angiotensin in thirst and AVP release induced by hemorrhage. Regul Pept 1996; 66: 3-11, doi: 10.1016/0167-0115(96)00088-2.
https://doi.org/10.1016/0167-0115(96)000...
). These differences are possibly due to the different severity of the hemorrhage used since they withdrew a greater volume of blood. Thus, in a moderate blood loss the blockade of AT1 receptors with losartan reduces AVP secretion, but in severe blood loss other additional mechanisms probably sustain AVP-secretion in response to hemorrhage after the blockade of AT1 signaling. Another possible explanation is the pathway used for losartan administration, as they used an intravitreal injection (1919. Phillips MI, Heininger F, Toffolo S. The role of brain angiotensin in thirst and AVP release induced by hemorrhage. Regul Pept 1996; 66: 3-11, doi: 10.1016/0167-0115(96)00088-2.
https://doi.org/10.1016/0167-0115(96)000...
). These results highlight the complexity of the regulation of AVP secretion and further indicate that different circuits may be involved in the regulation of AVP release after different stimuli.

Collectively our data showed that hemorrhage required AMPA, but not NMDA, signaling to elicit AVP secretion in response to hemorrhage, indicating that different challenges to body fluid homeostasis may recruit different glutamatergic circuits within the brain that in turn activate different glutamate receptors to induce AVP release. In conclusion, both AMPA and AT1 receptor signaling were necessary for the hemorrhage-induced AVP release, which suggests an important role for ANG II and L-glutamate in AVP release after hypovolemia/hypotension.

Acknowledgments

We thank Maria Valci dos Santos and Milene Mantovani for their excellent technical support. This work was supported by grants from the Fundação de Amparo è Pesquisa do Estado de São Paulo (FAPESP, 2019/27581-0). R.C. Dos-Santos was supported by grant 2019/01260-2 from FAPESP.

References

  • 1
    Brenner A, Arribas M, Cuzick J, Jairath V, Stanworth S, Ker K, et al. Outcome measures in clinical trials of treatments for acute severe haemorrhage. Trials 2018; 19: 533, doi: 10.1186/s13063-018-2900-4.
    » https://doi.org/10.1186/s13063-018-2900-4
  • 2
    Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301: R905-R915, doi: 10.1152/ajpregu.00800.2010.
    » https://doi.org/10.1152/ajpregu.00800.2010
  • 3
    Mecawi AS, Ruginsk SG, Elias LLK, Varanda WA, Antunes-Rodrigues J. Neuroendocrine regulation of hydromineral homeostasis. Compr Physiol 2015; 5: 1465-1516, doi: 10.1002/cphy.
    » https://doi.org/10.1002/cphy
  • 4
    Share L. Role of vasopressin in cardiovascular regulation. Physiol Rev 1988; 68: 1248-1284, doi: 10.1152/physrev.1988.68.4.1248.
    » https://doi.org/10.1152/physrev.1988.68.4.1248
  • 5
    Antunes-Rodrigues J, Ruginsk SG, Mecawi AS, Margatho LO, Cruz JC, Vilhena-Franco T, et al. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. Braz J Med Biol Res 2013; 46: 327-338, doi: 10.1590/1414-431X20132788.
    » https://doi.org/10.1590/1414-431X20132788
  • 6
    Hogarty DC, Speakman EA, Puig V, Phillips MI. The role of angiotensin, AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to central angiotensin. Brain Res 1992; 586: 289-294, doi: 10.1016/0006-8993(92)91638-U.
    » https://doi.org/10.1016/0006-8993(92)91638-U
  • 7
    Li Z, Ferguson AV. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 1996; 71: 133-145, doi: 10.1016/0306-4522(95)00434-3.
    » https://doi.org/10.1016/0306-4522(95)00434-3
  • 8
    Okuya S, Inenaga K, Kaneko T, Yamashita H. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro Brain Res 1987; 402: 58-67, doi: 10.1016/0006-8993(87)91047-X.
    » https://doi.org/10.1016/0006-8993(87)91047-X
  • 9
    Sandgren JA, Linggonegoro DW, Zhang SY, Sapouckey SA, Claflin KE, Pearson NA, et al. Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 2018; 314: R770-R780, doi: 10.1152/ajpregu.00435.2017.
    » https://doi.org/10.1152/ajpregu.00435.2017
  • 10
    Busnardo C, Crestani CC, Resstel LBM, Tavares RF, Antunes-Rodrigues J, Corrêa FMA. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012; 153: 2323-2331, doi: 10.1210/en.2011-2079.
    » https://doi.org/10.1210/en.2011-2079
  • 11
    Morsette DJ, Sidorowicz H, Sladek CD. Role of non-NMDA receptors in vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants. Am J Physiol Regul Integr Comp Physiol 2001; 280: R313-22, doi: 10.1152/ajpregu.2001.280.2.R313.
    » https://doi.org/10.1152/ajpregu.2001.280.2.R313
  • 12
    Morsette DJ, Sidorowicz H, Sladek CD. Role of metabotropic glutamate receptors in vasopressin and oxytocin release. Am J Physiol Regul Integr Comp Physiol 2001; 281: R452-R458, doi: 10.1152/ajpregu.2001.281.2.R452.
    » https://doi.org/10.1152/ajpregu.2001.281.2.R452
  • 13
    Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; e12633, doi: 10.1111/jne.12633.
    » https://doi.org/10.1111/jne.12633
  • 14
    Mecawi AS, Lepletier A, Araujo IG, Olivares EL, Reis LC. Assessment of brain AT1-receptor on the nocturnal basal and angiotensin-induced thirst and sodium appetite in ovariectomised rats. J Renin Angiotensin Aldosterone Syst 2007; 8: 169-175, doi: 10.3317/jraas.2007.032.
    » https://doi.org/10.3317/jraas.2007.032
  • 15
    Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 2018; 98: 1080-1098, doi: 10.1016/j.neuron.2018.05.018.
    » https://doi.org/10.1016/j.neuron.2018.05.018
  • 16
    Boudaba C, Di S, Tasker JG. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J Neuroendocrinol 2003; 15: 803-810, doi: 10.1046/j.1365-2826.2003.01063.x.
    » https://doi.org/10.1046/j.1365-2826.2003.01063.x
  • 17
    Xu Z, Herbert J. Effects of intracerebroventricular dizocilpine (MK801) on dehydration-induced dipsogenic responses, plasma vasopressin and c-fos expression in the rat forebrain. Brain Res 1998; 784: 91-99, doi: 10.1016/S0006-8993(97)01186-4.
    » https://doi.org/10.1016/S0006-8993(97)01186-4
  • 18
    Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747-803, doi: 10.1152/physrev.00036.2005.
    » https://doi.org/10.1152/physrev.00036.2005
  • 19
    Phillips MI, Heininger F, Toffolo S. The role of brain angiotensin in thirst and AVP release induced by hemorrhage. Regul Pept 1996; 66: 3-11, doi: 10.1016/0167-0115(96)00088-2.
    » https://doi.org/10.1016/0167-0115(96)00088-2
  • 20
    Lee WJ, Yang EK, Ahn DK, Park YY, Park JS, Kim HJ. Central ANG II-receptor antagonists impair cardiovascular and vasopressin response to hemorrhage in rats. Am J Physiol 1995; 268: R1500-R1506, doi: 10.1152/ajpcell.1995.268.1.C127.
    » https://doi.org/10.1152/ajpcell.1995.268.1.C127

Publication Dates

  • Publication in this collection
    04 Feb 2022
  • Date of issue
    2022

History

  • Received
    9 Oct 2021
  • Accepted
    1 Dec 2021
Associação Brasileira de Divulgação Científica Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto SP Brazil, Tel. / Fax: +55 16 3315-9120 - Ribeirão Preto - SP - Brazil
E-mail: bjournal@terra.com.br