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Abstract

Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in

newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by

which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter

systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The

aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in

cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-kB and CREB, which regulate

genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine

did not activate NF-kB in the same way as cocaine. However, the attenuation of NF-kB activity after the pretreatment of the

cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-kB by cocaine is, at least partially, due to

activation of D1 receptors. NF-kB seems to have a protective role in these cells because its inhibition increased cellular death

caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role

of both CREB and NF-kB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the

brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of

degenerative processes.
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Introduction

Drug abuse and addiction constitute a public health

problem of great importance: both affect many people and

cause a wide variety of consequences to society. Cocaine

is an abused drug with a high prevalence worldwide.

According to the United Nations Office on Drugs and

Crime (UNODC, 2011 ,http://www.unodc.org/documents/

data-and-analysis/WDR2011/World_Drug_Report_2011_

ebook.pdf.), although cocaine use has declined, it is still

one of the most abused drugs in the USA. Cocaine inhibits

the dopamine transporter (DAT) in neuron terminals,

causing an increase in extracellular dopamine levels.

Activation of dopamine transmission in the mesocortico-

limbic system is a common characteristic of all addictive

drugs. This system originates in the ventral tegmental area

(VTA) and projects mainly to the nucleus accumbens (NAc)

and prefrontal cortex (PFC). Repeated exposure to

cocaine leads to neuroadaptations in themesocorticolimbic

system that are associated with the development of

addiction (1,2). Addiction is a chronic relapsing disease

(3) and its treatment is the most expensive of the

neuropsychiatric disorders (4), mainly owing to the costs

of health care, productivity loss, and crime (UNODC,

2011).

Cocaine Toxicity

Cocaine users seek the effects of euphoria (feeling of

well-being), self-confidence, and increased alertness.

However, cocaine abuse can also lead to adverse effects

such as anxiety, paranoia, self-centered behavior, dys-

phoria, and delusions (5). Moreover, many studies have

demonstrated a variety of toxic effects of cocaine in

humans (5-8) and animals (9,10). A study of 332 cocaine

users in São Paulo found that one-fifth had severe
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seizures and death resulting from its chronic use (11). It

has also been demonstrated that the use of high doses of

cocaine is associated with violent behavior, including

murder and suicide (12). The stimulant effects of cocaine

can lead to a rapid increase in its intensity due to a

sensitization process related to drug craving and

increased intake, leading to the use of increasing

concentrations of the drug by chronic users (13). There

are reports that cocaine causes cardiovascular, neuro-

muscular, and central nervous system toxicity, and

complications such as infections, kidney and lung injury,

liver toxicity, and reproductive disorders (14). The

occurrence of epilepsy and psychiatric and neurological

deficits is also related to the use of this drug (15). Cocaine

can affect cellular morphology or function, including:

inhibition of neurite extension (extensions of the cell

bodies of neurons) (16), changes in the function and

morphology of mitochondria (17), reduced dilation of the

endoplasmic reticulum (18), and abnormal lysosomal

proteolysis (19). Cognitive disorders such as learning

and memory deficits are reported in most chronic users of

cocaine (20-22) and in children of dependent mothers (23-

25). Prenatal exposure to cocaine (26,27) may affect fetal

development because cocaine is able to cross the

placenta (28) and accumulate in the fetus (29,30). The

consequences - for developing neurons - of in utero

exposure to psychostimulants are regarded as a major

area of interest. It is estimated that approximately 30,000-

160,000 newborns are exposed to cocaine in utero per

year (Mathias, 1995 ,http://archives.drugabuse.gov/

NIDA_Notes/NNVol10N1/NIDASurvey.html.). However,

the consequences of prenatal cocaine use and the

mechanism of action by which this drug exerts its effects

have not been widely investigated. It has been reported

that newborns exposed to cocaine in utero tend to have low

birth weight, decreased head circumference, systemic

hypertension, tachycardia (31,32), and deficits in cognitive

development (33,34). The cognitive abnormalities detected

in the first year of life appear to contribute to learning and

attention disabilities at school age (35). The changes

associated with intrauterine exposure to cocaine may be

related to molecular adaptations or to anatomical changes

in specific brain regions, such as the anterior cingulate

cortex, prefrontal cortex, and middle frontal areas that

regulate cognitive and emotional development (25).

In vitro studies investigating the effects of cocaine in

cell culture neuroglioblastomas (36), PC12 cells (37),

cortical neurons of fetal mice (38), and neuronal precursor

cells (39) have reported changes in the growth and

differentiation of neurons and in the activation of cell

death pathways. In addition, it has been reported in

animal studies that prenatal exposure to cocaine causes

morphological brain abnormalities and cognitive deficits

after birth (34,40). Taken together, these data suggest

that cocaine can cause a variety of adverse effects on

neuronal development.

Cocaine effects on CREB and NF-kB
The induction by cocaine of the immediate expression

of genes involved in apoptotic cascades has been

reported by several researchers and it is believed that

this effect is mediated primarily by the stimulation of D1

receptors (41,42). Thus, it is suggested that cocaine

causes changes in gene transcription that can be

associated with some long-lasting functional changes

(43). CREB is a transcription factor that can be

phosphorylated by several protein kinases. CREB pro-

teins comprise a family that binds to a particular sequence

of DNA, called the cAMP response element (CRE) (44).

Activation of CREB involves several steps; the phosphor-

ylation of serine 133 (45) and the recruitment of CREB-

binding protein (CBP) are crucial (46,47). CREB plays an

important role in mediating the effects of cAMP and

neurotransmitters that act on gene expression via the

cAMP pathway. Some of the genes that contain CRE sites

express Fos, proencephalin, somatostatin, tyrosine

hydroxylase, a1-Na, K-ATPase, and vasoactive intestinal

peptide (48,49). The activation of the cAMP pathway is

regulated by the dopaminergic system, so the transcrip-

tion factor CREB seems to be involved in the effects of

chronic administration of psychostimulants (50).

NF-kB plays an important role in regulating the

inflammatory response and cell death (51). NF-kB is a

transcription factor found in a variety of cell types,

including neurons and microglia (52). NF-kB can be

activated by pro-inflammatory stimuli such as: pathogen-

derived lipopolysaccharide (LPS); cytokines, including

tumor necrosis factor-alpha (TNF-a) and interleukin-1 b
(IL-1b); and reactive oxygen species (53-55).

NF-kB proteins comprise members of the Rel/NF-kB
family, forming homo- and heterodimers through a

combination of the p65 (or RelA), p50, p52, c-Rel, or

RelB subunits. It is constitutively expressed in the

cytoplasm where it is bound to IkB, a protein that masks

the nuclear localization signal of NF-kB, thereby retaining

it in the cytoplasm (56). Inducers of NF-kB act through

intracellular signaling cascades that activate the IkB
kinases (IKKs), which phosphorylate two specific N-

terminal serines of IkBa, resulting in IkBa polyubiquitina-

tion and degradation in the 26S proteasome (57).

When IkBa is degraded, NF-kB migrates to the

nucleus and modulates the transcription of target genes

involved in cell death. Evidence obtained in our laboratory

showed, by electrophoretic mobility shift assay, that

1.0 mM cocaine induced activation of NF-kB in PC12

cells after 6 h of incubation (58). The activation of the p50/

p65 subunit of NF-kB by cocaine is linked to the activation

of the D1 dopamine receptor (58). Cocaine concentrations

used in our study were similar to those previously used by

others in different cell types (59,60). Cocaine-induced NF-

kB activation was also observed in macrophages (61),

human brain endothelial cells (62), and PC12 cells (63). In

addition, in vivo studies in mice showed that chronic
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administration of cocaine induced NF-kB activation in NAc

(64). It is important to note that high constitutive NF-kB
activity mediates resistance to oxidative stress in neuronal

cells (65) and in agents that inhibit NF-kB activation-

induced apoptosis in response to several neurotoxins

(66,67). In fact, in our study, the inhibition of NF-kB

significantly increased cell death accelerated by cocaine

treatment, suggesting that this transcription factor plays a

protective role in cocaine-treated PC12 cells (58). In

addition, Lee et al. (62) showed an anti-apoptotic effect of

NF-kB in PC12 cell death induced by auto-oxidized

dopamine. Taken together, the results showed that

concentrations of cocaine comparable to the concentra-

tion that has been reported in plasma levels (0.3 mM to

1 mM) of subjects who use this drug (60,68) can induce

changes in transcription factors that are important to the

inflammatory response and innate immune response (69)

and to cell death and the cell protection response.

Cell Death and Cocaine

Cell death can occur by two distinct mechanisms:

necrosis and apoptosis. Necrosis, also called pathological

or accidental cell death, occurs when cells are exposed to

an extreme variation of their physiological conditions

(such as hyperthermia and hypoxia) with consequent

damage of the membrane, leading to cell death.

Apoptosis, unlike necrosis, is a selective and regulated

process important for embryogenesis, development, and

the depletion of infected cells. However, a change in the

process of apoptosis can lead to the development of

some neurodegenerative diseases such as stroke,

Alzheimer’s disease, and Parkinson’s disease (70).

Given the diversity of situations that can cause

neuronal death by apoptosis, it is not surprising that

several components of signal transduction have been

described that participate in this process. Among them is

the loss of growth factors with neurotrophic activity such

as neuronal growth factor (71), which can be caused by

an increased release of cytokines such as TNF-a (72), the

excitotoxicity caused by an excessive increase in the

concentration of excitatory amino acids such as glutamate

(73), or by the increased oxidative stress and modulation

of transcription factors such as NF-kB (74).

In nervous tissue, apoptosis and necrosis may coexist

or occur sequentially, with the mode of cell death being

influenced by the intensity and duration of harmful stimuli

and also by the energy state of the cell (75). One way to

induce apoptosis is by the release of mitochondrial

cytochrome c and the subsequent activation of caspases

3, 6, and 7 (76).

In addition to the caspase-dependent apoptotic pro-

cess, caspase-independent events may also occur (77).

One of the most studied proteins involved in apoptosis is

caspase-independent apoptosis-inducing factor, which,

when released from mitochondria, translocates to the

nucleus, where it induces DNA fragmentation independent

of caspases. The proteins that form part of the Bcl-2 family

(Bax, Bak, Bcl-XL, Bcl-2, and others) regulate programmed

cell death, the integrity of the mitochondria, and cyto-

chrome c release (78). By acting on mitochondria, these

proteins have an important role in determining death and

cell survival (79). The Bax protein is considered pro-

apoptotic and the Bcl-2 protein anti-apoptotic (60). The

expression of Bcl-2 is increased in neurons that survived

ischemic strokes, and a reduction in this protein exacer-

bates neuronal death (80). The expression of Bcl-2 can be

induced by several promoters that bind to its regulatory

region, including CREB (81). Thus, the Bcl-2/Bax balance

is crucial to the regulation of cell death.

Brain-derived neurotrophic factor (BDNF) is a neuro-

trophin that plays an important role in neuronal protection.

The intracellular signaling of BDNF occurs by the binding

of neurotrophin to its receptor TrkB and by the activation

of protein tyrosine kinases in the cytoplasm (82). BDNF is

regulated by many factors, including transcription factors

such as NF-kB and CREB. These, too, are indirectly

regulated by the expression of the receptor TrkB, which
requires the presence of secondary events such as

increased cAMP or Ca2++ to be efficiently inserted in the

plasma membrane, thereby being able to transduce the

signal triggered by the binding of BDNF (83).

Several reports suggest that cell death by apoptosis

plays an important role in the induction of neuronal loss

caused by cocaine and other psychostimulants (84,85). It

has been shown that cocaine activates the mitochondrial

apoptotic pathway, decreasing the levels of mitochondrial

cytochrome c and activating caspases 3 and 9 in cultured

neuronal cortex (59). In myocardial cells, cocaine inhibits

a complex of the respiratory chain of mitochondria (68)

and decreases the mitochondrial membrane potential and

ATP levels in cardiomyocytes (86). Finally, the results of

microarray experiments (87) suggest that mitochondrial

function and energy metabolism are affected in the brains

of cocaine human abusers.

We confirmed that cocaine treatment induced PC12

cell death by apoptosis and that necrosis was associated

with mitochondrial dysfunction, increased LDH release,

activation of caspase 3, decreased Bcl-2 expression, and

increased a-spectrin cleavage. In our experiments, we

found an increase in BDNF mRNA levels 6 h after

treatment with cocaine, indicating a transitory rise in this

neurotrophin. BDNF regulates the differentiation and

apoptosis of neurons and glial cells (88), and the increase

in BDNF may be considered as a line of defense against

the apoptosis process caused - in our model - by cocaine.

In fact, the increase in BDNF mRNA levels could be linked

to the activation of NF-kB and CREB (89). The protective

role of NF-kB in cocaine treatment of PC12 cells may be

associated with the expression of anti-apoptotic genes,

such as BDNF. However, the compensatory mechanisms

for cell death induced by cocaine are ineffective at
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terminating the apoptosis process later (Figure 1). It is

interesting to note that methamphetamine and 3,4-

methylenedioxymethamphetamine can also induce apop-

tosis in the same way as cocaine, but cocaine seems to

be less toxic (84). This may be due to the induction of

protective systems (e.g., NF-kB and BDNF) by cocaine.

Therefore, the activation of both transcription factors may

represent a compensatory mechanism to limit cell death

associated with cocaine drug abuse.

Although we have considered the induction of apopto-

sis related to mitochondrial dysfunction as the prime

pathway involved in cocaine neurotoxicity, it is important

to consider other alternative pathways that can also play an

important role in this process, such as the NADPH oxidase

pathway. In fact, cocaine is associated with severe

oxidative stress in cardiomyocytes involving the production

of reactive oxygen species, leading to MAPK activation

and an apoptosis process that is mediated by NOX2 (90).

An understanding of the mechanisms by which cocaine

induces cell death in the brain will contribute to the

development of new therapies designed to slow the

progress of neurodegenerative processes in drug abusers.

Cocaine can cause damage to the newborn children of

pregnant women who use cocaine during the pregnancy.

As the migration behavior of neurons ultimately deter-

mines their connectivity, synaptic potential, and success

of neurotransmission, cocaine may produce behavioral

and anatomical alterations as a result of maternal cocaine

use during pregnancy by acting on neuronal guidance. An

understanding of the mechanisms by which cocaine leads

to motivational alterations in offspring may ultimately pave

the way for the development of strategies for educational

intervention programs and/or potential pharmacological

treatments.
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