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Abstract

The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), the active
form of vitamin D3, is an important regulator of calcium homeostasis,
exerts antiproliferative effects on various cell systems and can induce
differentiation in some kinds of hematopoietic cells. These effects are
triggered by its receptor, vitamin D receptor (VDR), a phosphoprotein
member of the nuclear receptor superfamily, which functions as a
transcriptional factor. VDR binds as a heterodimer with retinoid X
receptor (R X R) to hexameric repeats, characterized as vitamin D-
responsive elements present in the regulatory region of target genes
such as osteocalcin, osteopontin, calbindin-D28K, calbindin-D9K,
p21WAF1/CIP1, TGF-ß2 and vitamin D 24-hydroxylase. Many factors
such as glucocorticoids, estrogens, retinoids, proliferation rate and
cell transformation can modulate VDR levels. VDR is expressed in
mammary tissue and breast cancer cells, which are potential targets to
hormone action. Besides having antiproliferative properties, vitamin
D might also reduce the invasiveness of cancer cells and act as an anti-
angiogenesis agent. All of these antitumoral features suggest that the
properties of vitamin D could be explored for chemopreventive and
therapeutic purposes in cancer. However, hypercalcemia is an unde-
sirable side effect associated with pharmacological doses of 1,25-
(OH)2D3. Some promising 1,25-(OH)2D3 analogs have been devel-
oped, which are less hypercalcemic in spite of being potent antiprolif-
erative agents. They represent a new field of investigation.
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Mechanism of action of vitamin D

Vitamin D is in fact a secosteroid hor-
mone which in its active form, 1,25-dihy-
droxyvitamin D3 (1,25-(OH)2D3), is an im-
portant regulator of bone development and
metabolism and calcium homeostasis. Be-
sides these well-known functions on classi-
cal target tissues (bone, kidneys, intestine,
parathyroids), 1,25-(OH)2D3 plays an impor-

tant role in the regulation of cell growth and
differentiation in cells other than its classical
targets.

Vitamin D can be obtained in two distinct
ways, i.e., through dietary intake (fatty fish,
fish oil, mushrooms, vitamin D-fortified food
such as milk) and/or the endogenous path-
way, in which the precursor 7-dehydrocho-
lesterol, present in the skin, upon the action
of sunlight becomes pre-vitamin D, the latter
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being subsequently hydroxylated in the liver
and kidneys to 25-(OH)D3 and 1,25-(OH)2D3,
the active form (1).

The hormone exerts its effects via ge-
nomic and non-genomic mechanisms. In the
first case, the response is triggered by its
nuclear receptor - the vitamin D receptor or
VDR, which is a trans-acting transcriptional
factor and a member of the nuclear hormone
receptor superfamily. The N-terminal do-
main of VDR is configured into two zinc-
coordinated fingers responsible for DNA
recognition and binding, whereas the C-ter-
minal domain binds the 1,25-(OH)2D3. VDR
binds selectively to DNA primarily as a het-
erodimer with retinoid X receptor (R X R).
The binding of the hormone and the receptor
causes a conformational alteration in the
linkage domain of the latter with consequent
dissociation of co-repressors, facilitating the
interactions between VDR and co-activator
proteins such as the members of the p160,
SRC-1, 2 and 3 families, and the protein
complex named DRIP. These co-activators
modulate the chromatin structure and the
contact with the basal transcriptional factors
(2). The receptor/1,25-(OH)2D3 complex
regulates gene transcription both positively
and negatively through binding motifs in the
promoter regions of target genes, designated
vitamin D response elements, or VDREs.
Several VDREs have been characterized and
they generally consist of two direct repeats
of six nucleotides (AGGTCA) separated by
three aleatory nucleotides; however, neither
the sequence of half-sites nor the spacing
between them is well conserved. VDREs
have been identified in genes such as
calbindin-D28K (3) and calbindin-D9K, which
are calcium-binding proteins mainly present
in mammalian kidney and intestine, respec-
tively; osteocalcin (4) and osteopontin (5),
which are bone matrix proteins produced by
osteoblasts; vitamin D 24-hydroxylase (6),
an enzyme that inactivates 1,25-(OH)2D3;
p21WAF1/CIP1 (7), a cyclin-dependent kinase
inhibitor; c-fos, an early response gene, and

transforming growth factor ß2 (TGF-ß2) (8).
VDR has been detected in numerous clas-

sical and nonclassical target tissues of 1,25-
(OH)2D3, in tumors of various origins and
cell lines such as NIH-3T3 mouse fibro-
blasts and MCF-7 human breast cancer cells
(9,10). The responsiveness of target cells to
the hormone depends on the amount of VDR
and many factors can modulate VDR levels.
Previous studies by our group and others
have shown, for example, that glucocorti-
coids, prolactin, estrogens, retinoids and
growth factors might influence VDR expres-
sion in mammary and leukemic cells (9,11-
14). In HL-60 myeloblastic cells, VDR con-
tent correlated indirectly with the prolifera-
tion rate expressed by the fraction of cells in
the G0/G1 phase (13). However, in other
leukemic cell lines such as U937 and K562,
phorbol ester treatment caused growth ar-
rest, which was not accompanied by VDR
down-regulation (14). Our data for leukemic
cells suggest that VDR expression is not
consistently changed upon inhibition of cell
proliferation.

In addition to this genomic pathway, vi-
tamin D has also been reported to induce
nontranscriptional responses involving acti-
vation of transmembrane signal transduc-
tion pathways. Moreover, 1,25-(OH)2D3

modulates voltage-dependent Ca2+ channel-
mediated Ca2+ influx in cultured chick muscle
cells by a non-genomic pathway involving
G protein-dependent stimulation of both the
adenylyl cyclase/cyclic AMP/PKA messen-
ger system and a phosphoinositide-specific
phospholipase C (PLC). The rapid activa-
tion of PLC, in turn, generates diacylgly-
cerol and inositol-1,4,5-triphosphate, pro-
moting the activation of protein kinase C and
rapid release of Ca2+ from endogenous stores
(15). These effects could be mediated by a
putative but as yet unidentified membrane
receptor (16). Other findings support evi-
dence that some actions of 1,25-(OH)2D3

such as monocyte differentiation are medi-
ated by activation of phosphatidylinositol 3-
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kinase, a lipid kinase, which forms a com-
plex with VDR, suggesting that non-genom-
ic and genomic mechanisms could take place
in concert (17).

Vitamin D and breast cancer

Epidemiological studies have shown that
death rate and incidence of breast cancer
tend to increase with increasing latitude,
suggesting that solar radiation might play a
protective role in breast cancer development.
These studies also provide provocative data
indicating an inverse relationship between
decreased sunlight exposure and diminished
vitamin D production on the skin and higher
breast cancer incidence and mortality (18,19).
According to this hypothesis, it was reported
that white women affected by breast cancer
show lower 1,25-(OH)2D3 blood levels than
unaffected ones (20). In addition, Mawer et
al. (21), in a study on breast cancer patients,
found the highest serum 1,25-(OH)2D3 lev-
els in the early stage as compared to more
advanced bone metastatic disease.

Another possible link between the vitamin
D pathway and breast cancer was recently
reported as an amplification of CYP24, lo-
cated in a region of recurrent aberration at
20q13.2 in breast cancer. This gene encodes
vitamin D 24-hydroxylase, an enzyme respon-
sible for 1,25-(OH)2D3 degradation, and its
overexpression could lead to abrogation of
growth control mediated by vitamin D (22).
On the other hand, 25-(OH)D3-1a-hydroxy-
lase, responsible for 25-(OH)D3 activation,
was detected in normal human breast as well
as in breast carcinoma samples, indicating that
both normal and cancerous tissues could be
capable of 25-(OH)D3-1a-hydroxylation (23)
and local synthesis of 1,25-(OH)2D3.

Receptors for 1,25-(OH)2D3 in MCF-7, a
cultured breast cancer cell line, were first
shown by Eisman et al. (10) in 1979 and later
VDR expression was reported in carcino-
gen-induced rat mammary tumors as well
(24). VDR was also detected in some normal

breast tissues such as the mammary gland of
pregnant and lactating rabbits but not in
virgin rabbits (25).

The antiproliferative effect of 1,25-
(OH)2D3 was demonstrated in vitro in MCF-
7 cells and other estrogen receptor-positive
as well as -negative breast cancer cell lines
(11,26). The in vivo antitumor effect of 1,25-
(OH)2D3 or its analogs on rat mammary car-
cinogen (7,12-dimethylbenzanthracene, or
N-methyl-N-nitrosourea)-induced tumors
was observed as reduced total tumor burden
or extended tumor latency and lessened tu-
mor incidence (27,28).

The presence of VDR was also demon-
strated in normal human breast tissue (29)
and in a large proportion, ranging from 75 to
93%, of breast tumor biopsy specimens, as
assessed by specific 1,25-(OH)2D3 binding
in tumor extracts (25,30) or positive immu-
nostaining using antibodies to VDR (29,31).
In some small series of patients, correlations
of breast cancer VDR status with prognosis
were conflicting. Freake et al. (30) examined
breast cancer samples from 56 patients using
a hormone-binding assay, and VDR content
(less or more than 8 fmol/mg protein) could
not predict a difference in probability of
survival. In contrast, Colston et al. (31) found
a longer disease-free survival among pa-
tients with VDR-positive breast tumors as
evaluated by immunocytochemistry.

We determined VDR expression in breast
cancer or adjacent normal tissue from 50
Brazilian patients. VDR mRNA was detected
in almost all samples examined (96%), i.e.,
tumoral or non-tumoral adjacent tissues (Fig-
ure 1) (32). In immunohistochemical assays,
strong VDR staining was observed in the
nuclei of breast cancer epithelial cells, and it
was less intense in infiltrating fibroblasts
(Figure 2). Although 54% of the tumors
expressed higher VDR mRNA levels as com-
pared to normal breast tissue, no significant
difference was detected. Moreover, we could
not establish any correlation between VDR
mRNA expression in breast tumor tissue and
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disease outcome as evaluated by axillary
node status (data not shown).

Our next step was to test the action of
vitamin D on normal and transformed mam-
mary cells. HC11 is a spontaneously immor-
talized lineage derived from the mammary
gland of midpregnant BALB/c mice. These
cells retain characteristics of normal cells
such as growth inhibition by cell contact and
are able to differentiate in vitro and synthe-
size milk proteins (ß-casein) following stim-
ulation with lactogenic hormones. HC11 cells

do not express estrogen receptors and lack
wild-type p53 (33). On the other hand, HC11
cells transformed with the oncogene Ha-ras
(HC11ras) are no longer growth inhibited
upon cell contact, do not respond to lactoge-
nic hormones, and are tumorigenic when
injected into nude mice (34). Our studies
have demonstrated that only HC11 parental
cells are growth inhibited upon 1,25-(OH)2D3

treatment, whereas HC11ras cells respond
modestly to the hormone. This differential
sensitivity seems to reflect the decreased
VDR mRNA content of transformed cells as
compared to parental cells (35). Our recent
data indicate that even though both cell lines
present a similar VDR mRNA transcription
rate as evaluated by run off assays, VDR
mRNA seems to be less stable in HC11ras
than in parental cells (36).

We have also determined if less hyper-
calcemic 1,25-(OH)2D3 analogs, EB1089
(seocalcitol), which presents a double bond
in the C-17 side chain, and KH1060, a C-20
epimeric compound (both donated by Dr.
Lise Binderup, Leo Pharmaceutical Prod-
ucts, Ballerup, Denmark), exerted antipro-
liferative effects on HC11 and HC11ras cells.
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Figure 1. Vitamin D receptor (VDR) mRNA expression in breast cancer or normal adjacent
mammary tissue from Brazilian patients as evaluated by Northern blot assays. Total mRNA
was separated electrophoretically and hybridization was performed with 32P-labeled specif-
ic probes. VDR mRNA was detected in normal (N) and tumoral (T) samples as well as in
MDA-MB231 (breast cancer) and HB4A (normal breast) human cell lines. GAPDH (glyceral-
dehyde-3-phosphate dehydrogenase) was used as mRNA load control.

Figure 2. Vitamin D receptor
(VDR) expression in breast can-
cer tissue as determined by im-
munohistochemistry assay.
Strong VDR staining can be ob-
served in the nuclei of epithelial
cells. Magnification 600X.
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HC11 cells were growth inhibited by both
analogs, in contrast to HC11ras cells, as
evidenced by the growth curves presented in
Figure 3. A lower concentration of KH1060
(1 nM) as compared to 1,25-(OH)2D3 (10
nM) was able to double the duplication time
of HC11 cells in a similar way to the parent
compound (37).

The inhibitory effects of 1,25-(OH)2D3 on
breast cancer cell growth could be mediated
by inducing the expression of cyclin-depend-
ent kinase inhibitors such as p21WAF1/CIP1

(38) and p27KIP1 (39). A functional vitamin

D response element was described in the
promoter region of the p21WAF1/CIP1 gene (7).
On the other hand, 1,25-(OH)2D3 positive
regulation of the p27KIP1 gene does not di-
rectly involve VDR but is mediated by the
transcription factors Sp1 and NF-Y (40).
Other potential molecular effectors of the
antiproliferative actions of 1,25-(OH)2D3

could be TGF-ß1 (41), which exerts antipro-
liferative actions on epithelial cells and its
receptor type II (Tß-RII) (42). In addition, it
was shown that the c-myc protooncogene
could be down-regulated by 1,25-(OH)2D3

Figure 3. Growth curves of HC11 parental and Ha-ras transformed cells (HC11ras). Cells (2 x 104) were seeded onto 8.8-cm2 plates and maintained in
the absence (control) or presence of 1, 10 or 100 nM EB1089 or 10 pm, 0.1 nM or 1 nM KH1060 and harvested at 24-h intervals. Two independent
assays were performed in triplicate and mean cell number was plotted on monolog graph paper.
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in breast cancer cells (43). The hormone
enhances HOXB4 (a homeobox gene prod-
uct) that binds to MIE1 sites located at intron
1 of the c-myc gene and as a result a tran-
scriptional elongation block takes place (44).
It was also demonstrated that 1,25-(OH)2D3

could inhibit the mitogenic activity of insu-
lin and insulin growth factor I-stimulated
growth of MCF-7 cells (45) which may be
related to insulin growth factor binding pro-
tein (IGFBP)-5 (46) and IGFBP-3 (47) up-
regulation. Furthermore, the antiprolifera-
tive effect of 1,25-(OH)2D3 could be modu-
lated by induction of BRCA1 gene expres-
sion, as recently reported (48). On the other
hand, 1,25-(OH)2D3-induced growth inhibi-
tion may involve activation of apoptosis in
vitro with up-regulation of genes associated
with mammary gland apoptosis such as
TRPM-2/clusterin and cathepsin B as well
as with down-regulation of antiapoptotic
genes such as bcl-2 (38). Vitamin D-stimu-
lated apoptotic regression in mice bearing
MCF-7 xenografts was also described (49).

The underlying mechanism of the anti-
proliferative effects of 1,25-(OH)2D3 on
HC11 cells has yet to be clarified. Our data
suggest that it does not involve c-myc down-
regulation (Figure 4) (50) or TGF-ß1 up-
regulation (51). Cell cycle regulators such as
cyclins D1 and D3 and p27KIP1 determined
by Western blot were also not involved. We

have observed a slight increase of CDKI
p21WAF1/CIP1 and cyclin E expression (data
not shown).

Vitamin D analogs have already been
employed in some clinical studies and topi-
cal treatment of patients with locally ad-
vanced or cutaneous metastatic breast can-
cer with calcipotriol resulted in very few
responses (52), whereas a phase I study in
which patients with advanced breast and
colorectal cancer received EB1089 showed
a few cases of disease stabilization (53).

In addition to having effects on cell pro-
liferation 1,25-(OH)2D3 has been shown to
inhibit the invasive potential of breast can-
cer cells in vitro (54) and its analog EB1089
can prevent skeletal metastasis development
in vivo (55) and angiogenesis in vitro and in
vivo (56) in human breast carcinoma cells
transplanted into nude mice. Furthermore,
an interaction between 1,25-(OH)2D3 or ana-
logs with chemotherapeutic drugs active on
breast cancer, such as doxorubicin (57) and
paclitaxel (58), was also demonstrated, re-
sulting in potentiation of cytotoxicity in MCF-
7 cell cultures. In addition, topical 1,25-
(OH)2D3 increased the antitumor effect of
cyclophosphamide in female mice inocu-
lated with murine mammary tumor (59) and
additive effects were observed when a vita-
min D analog, CB1093, was administered
together with paclitaxel to MCF-7 growing
in immunodeficient mice (60).

Taken together, these studies indicate that
vitamin D and its analogs have important
antitumoral properties, which might be ex-
plored in chemopreventive as well as in thera-
peutic cancer approaches.

Concluding remarks

The involvement of the vitamin D3 path-
way in breast carcinogenesis and cancer pro-
gression has not been fully clarified. Besides
the tumor growth-suppressive activity of vi-
tamin D3 compounds in vitro and in vivo,
additional aspects may be involved in the
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D4 h D6 h D72 h D4 h D72 h C

c-myc

18S

HC11 HC11ras

Figure 4. Expression of c-myc mRNA in HC11 and HC11ras cells exposed or not (C, control)
to 100 nM 1,25-(OH)2D3 (D) for short (2, 4, 6 h) or long (72 h) periods of time, evaluated in
Northern blot assays.

C D2 h
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