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Abstract

The use of limiting dilution assay (LDA) for assessing the frequency
of responders in a cell population is a method extensively used by
immunologists. A series of studies addressing the statistical method of
choice in an LDA have been published. However, none of these
studies has addressed the point of how many wells should be em-
ployed in a given assay. The objective of this study was to demonstrate
how a researcher can predict the number of wells that should be
employed in order to obtain results with a given accuracy, and,
therefore, to help in choosing a better experimental design to fulfill
one’s expectations. We present the rationale underlying the expected
relative error computation based on simple binomial distributions. A
series of simulated in machina experiments were performed to test the
validity of the a priori computation of expected errors, thus confirm-
ing the predictions. The step-by-step procedure of the relative error
estimation is given. We also discuss the constraints under which an
LDA must be performed.
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Introduction

The use of limiting dilution assay (LDA)
for assessing the frequency of responders in
a cell population is a method extensively
used by immunologists. A series of studies
addressing the adequate estimator (the statis-
tical method of choice) in an LDA have been
published (1-6). Interestingly, however, none
of these studies has clearly addressed the
point of how many wells should be em-
ployed in a given assay. Many qualitative
propositions are available, mainly of heuris-
tic value instead of a quantitative one. For

example: “Numbers of replicates ... 180 per
dilution and not less than 60 ...” (Lefkovits
and Waldmann, quoted in 2); “... reliable
estimates with replicates of the order of 20.”
(2); “Our experiments indicate that values
between 24 and 72 are efficient ...” (3); “In
our laboratory we use 12 dilution steps with
8 wells per dilution ...” (4).

The objective of the present study was to
demonstrate how a researcher, when setting
up a limiting dilution assay, can predict how
many wells should be employed in order to
obtain results with a given accuracy, and,
therefore, to help choose a better experimen-
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tal design to fulfill one’s expectations.

Rationale

The observation of clusters in place of
discrete events. Consider a finite population
of cells, some of which are responders to a
given stimulus while the others are non-
responders. This defines a relative frequency
of responders in such a population as the
number of responders divided by the total
number of cells. This has the same general
form of the frequentist definition of prob-
ability1, and thus the probability p of finding
a responder among cells of that population is
equal to the relative frequency f:
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¬= − =
                                   (1)

where YT stands for the sum of the cells of
the population, Rc for the sum of the re-
sponder cells, and ¬Rc for the sum of the
non-responder cells. Obviously, p and q end
up by defining a binomial distribution. If a
certain number of cells (events) are observed,
say n, there shall be an expected p.n number
of positive events (i.e., responding cells)
among n. This was defined at the level of the
discrete individual event, i.e., each cell in the
population.

Consider that instead of observing n indi-
vidual events one observes clusters of events,
and classifies a cluster as positive if there is
at least one positive discrete event within it
(but how many of these discrete positive
events are present in a positive cluster is
unknown) and as negative otherwise. The
question is how can we infer p (or q) by
observing these clusters instead of the par-

ticular events themselves. As stated by
Strijbosch et al. (3), it is easy to demonstrate
how one is truly observing what is going on
in the realm of the discrete events by observ-
ing the realm of clusters of those events.

Consider a cluster, Ck, composed of dis-
crete yk events (cells). The probability of a
cluster of this size being negative is the
probability that all yk events within it are
negative:

( ) k k
y y

kProb(C i ) 1 p q Q= − = − = = (2)

where Cki = - is “the cluster i is negative”.
Take N of these clusters. What is the prob-
ability of zero positive events, at the cluster
level, in N clusters?

N
0(N)P Q=                                               (3)

However, the number of discrete events com-
posing these N clusters (of the same size) is
N.yk and the probability of zero positive
events at the individual level will be:

( )k k
NN y y N

0(y)P q q Q⋅= = =                  (4)

and, therefore, the probability of zero posi-
tive events at the cluster level is equal to the
probability of zero positive events at the
individual level, as it was expected to be
demonstrated. We will use, without further
considerations, the result in which, for small
p (i.e., f) and big sample sizes, the Poisson
distribution fits well the underlying bino-
mial one (i.e., Stirling’s approximation;
7,8):

k

(C )k

p y
0P e

− ⋅=                                           (5)

In an LDA, yk is the number of cells per well
in a given dilution (e is the natural logarithm
base). The parameter p is interchangeable
with f, the relative frequency of responders

1It is not our concern to consider the arguments about the various definitions of probability.
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(see above).
The map from P0(C) = Q to f: features of a

binomial distribution. An interesting result
emerges from equation 2. If a set of N clus-
ters (of the same size at this point) is ob-
served, the binomial distribution observed is
defined by Prob(Cki = -) = Q and Prob(Cki =
+) = P = 1 - Q, therefore, (P + Q)N = 1. The
final objective of an LDA is to estimate p (or
f, equation 5) from the observed Qob. The
best estimate one can make of p by observing
these N clusters is mapped to the best esti-
mate one can make of Q from Qob.

Given the binomial distribution resulting
from (P + Q)N = 1, let us consider a coin that
has a probability Q of tail-up in a flip (and 1 -
Q of head-up). A clear quantitative question
is how many outcomes do we need to ob-
serve in order to believe that the Qob estima-
tor we have (Qob, in this example, is the tail
outcome/N outcome ratio) is equal to the
true Q? Obviously, stated as this, the ques-
tion has two possible and useless answers: if
Q is determined in a finite population of
events then Qob = Q only if the entire popula-
tion has been sampled; if Q is determined in
an infinite population of events then Qob = Q
only when we observe infinite outcomes.
However, the question allows a change from
its inclusive form to the exclusive one that
maintains the essential quantitative feature:
how many events should we observe in order
to be sure, at a given precision level, that the
true Q is a value neither lower than a given
Qlow nor higher than another given Qhigh?
Because each of these probabilities, Qlow and
Qhigh, defines a binomial distribution in a
sample of size N, we can define beforehand
the limiting cases:

low low
low ob

Q P
Q t Q

N

⋅+ ⋅ =               (6a)

high high
high ob

Q P
Q t Q

N

⋅
− ⋅ =            (6b)

where t is a tabulated value from the Student
distribution with N degrees of freedom at the
desired confidence level (for example, t =
1.96 for a 95% confidence interval with
degrees of freedom tending to infinite). There-
fore, the best map one can track down from
the observed Qob in N clusters to p (or f) is
the range from Qlow to Qhigh. Two features of
equations 6a and b are: 1) the limits Qlow and
Qhigh are asymmetrical in relation to Qob (un-
less Qob = 0.5) and 2) the limits have to be
found iteratively. Because equations 6a and
b are the best that can be done, any estimator
of p should not result in a range greater than
Qlow to Qhigh in order to obtain the best accu-
racy allowed by the observed Qob in N clus-
ters. At the same time, no estimator can
result in a range smaller than those limits, in
order to be fair.

A note on estimators of LDA. The solu-
tion of equations 6a and b results in limits
that are asymmetrical to the observed frac-
tion of negative wells (Qob). The estimators
given as adequate (maximum likelihood
and its jackknife version; 3) or inadequate
(e.g., linear regression) result in symmetrical
limits (confidence interval). Therefore, one
can predict some level of bias to be present
in these estimators. However, the large
number of wells observed (i.e., N) tends to
result in more symmetrical limits in relation
to Qob (see below). It is not the aim of
this study to address the adequacy of estima-
tors, but it is worth calling attention to this
point.

Taking the ratio between the difference
Qhigh - Qlow and Qob one obtains the relative
error of the estimated Q. In its logarithmic
transformed version, ln(Qhigh/Qlow)/ - ln(Qob),
one obtains the relative error of the esti-
mated p (or of the estimated frequency f).
Figure 1 shows this relative error of f in
relation to values of Qob for a given N. Notice
that the logarithmic transformed version of
the relative error has a nadir around Qob =
0.21. The relative error is the quantitative
version of the heuristic “most informative
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range” found in studies concerning the esti-
mators of LDA (2,3).

Let us define trivial cases such as those
outcomes that generate only one limit by equa-
tions 6a and b. There are two possible trivial
outcomes: zero positive events (Qob = 1)
and all positive events (Qob= 0)2. Due to the
indetermination of the trivial outcomes they
should be disregarded as valuable in the
estimation of f (and they regularly are, im-
plicitly or explicitly). So, when one observes
N events, the non-trivial outcomes go from
1/N to (N - 1)/N. This limits, on an a priori

basis, the range of possible Q (or f) to be
estimated by a given N. At the same time, the
more distant Qob falls from 0.21 as the rela-
tive error increases (Figure 1).

From a single dilution assay to a limiting
dilution one. Up to now we were considering
N events observed under the same Q (i.e., the
same f.yk product). Basically, what limits the
estimation of f in a single dilution assay is
the increase of the relative error and the
possibility of trivial outcomes. Dividing N
observable events with the same Q into d
subsets of η observable events of different
values of Q expands the estimation range of
f. This occurs when one can be sure that at
least some of the subsets will have non-
trivial outcomes. For the sake of simplicity,
let us consider that each subset di comprises
the same number of observable events as the
other subsets (i.e., there is the same number
of wells, η, at each dilution i, in a total of d
dilutions), and, therefore, d.η = N. Each
dilution di has a range of non-trivial results
and every Qobi coming from each di has a
relative error much greater than a putative
error that would be obtained by observing a
single Qob in N events. As stated before, an
estimator of f should not result in a range
greater than Qlow to Qhigh in order to have the
best accuracy allowed by N observations
and no estimator can result in a range smaller
than those limits, in order to be fair. There-
fore, a map from the Qobi outcomes (subset
level) is to be tracked down to a single
putative Qpu at the N level by an adequate
estimator in order to reduce uncertainty to
the minimum allowed by the number of
events observed (remember that N is the
total number of wells employed). This is
illustrated in Figure 2. Therefore, the prob-
lem that now remains is to evaluate the pos-
sibility of knowing, on an a priori basis, the
value of Qpu that would be obtained from the
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Figure 1 - Relative error of p (or f)
in relation to values of Qob for a
given N. The graph is obtained
by numerically solving equations
6a and b for Qob ranging from 1/N
to (N -1)/N at 1/N steps (i.e., a
numerical search for values of
Qlow and Qhigh for each Qob in
the range) and then computing
the relative error (equation 9, see
text). Notice that the relative er-
ror function has a nadir around
Qob = 0.21.
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Figure 2 - Graphic representa-
tion of a map from η to N. In this
example, 4 subsets with Qobi
outcomes obtained at the η = 50
level result in a single putative
Qpu at the N = 200 level. Such a
Qpu is best represented by the
mean of the observed Qobi at
the η level (see text and Appen-
dix A, page 947). Notice the re-
duction in the relative error from
each of the independent Qobi
that occurs when the set is
evaluated as a single putative
fraction of events.

2Notice that if Qob = 0, the best one can do is to state “f≥z”, thereby defining just one boundary. This implies the
need to observe the whole population in order to accept the limit included by such an outcome. Mutatis mutandis,
the same applies to Qob = 1.

η = 50

N = 200
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set of Qobi. In Appendix A (see page 947) we
show that the value of Qpu at N is the con-
junction of the independent values of Qobi.
Such a conjunction of independent events
results in:

Qpu = mean(Qobi)

in a straightforward computation (see Ap-
pendix A, page 947). An adequate estimator
should yield, for a set of d different (and non-
trivial) Qobi, a relative error related to a
putative Qpu = mean(Qobi) that would be
obtained if the experimental setup consisted
of a single dilution assay with N observable
events. This is what happens, as shown in the
present study.

Equations 6a and b are the best estimates
of the possible values of a true Q resulting in
an observed Qob in N events at a given confi-
dence level. As stated before, the solution is
an iterative numerical procedure. However,
as N increases, the approximate estimation
would become close to the best one. There-
fore, equations 6a and b could be approxi-
mated by equation 8 for a large N:

ob ob
(low or high) ob

Q (1 Q )
Q Q t

N

⋅ −
= ± ⋅    (8)

where the limits Qlow and Qhigh are taken as
the subtractive and the additive operations,
respectively (t has the same meaning as in
equations 6a and b). Notice that the limits
are now (wrongly) symmetrical. Also, equa-
tion 8 allows a direct a priori computation of
the expected limits for a Q to be observed.
Thus, equations 8 and 7 can be used to
estimate, on an a priori basis, the accuracy
expected to be obtained by a given LDA
experimental setup.

Methods

In machina experiments were performed
with a PC with a Pentium® processor using
the MatLab 4.2b software (The MathWorks

Inc., Natick, MA, USA). Data were obtained
using a built-in function of random uniformly
distributed variables generating a binomial
distribution with a desired probability Q re-
lated to f (equation 5). A maximum likeli-
hood estimator (φML) was employed to esti-
mate f in the in machina experiments (nu-
merical procedure given in Ref. 1). The rela-
tive error of a particular result k is 2.SE(k)/
φML(k), where SE stands for the standard error
given by the maximum likelihood proce-
dure. The (“real”) relative error for a given f
within a given experimental setup was taken
as the mean of the relative errors obtained.

The estimated relative error for a given f
within a given experimental setup is ob-
tained as follows: 1) the exact expected value
of Qobi for each dilution di is computed; 2) all
expected trivial results (steps in which Qobi<1/
η or Qobi>(η - 1)/η) are discarded; 3) the
mean value of the remaining non-trivial ex-
pected Qobi is computed (equation 7), and
this is the putative Qpu; 4) Nnt as the sum of η
in the non-trivial steps is computed; 5a) the
exact limits Qlow and Qhigh are numerically
computed (equations 6a and b with N = Nnt

and Qob = Qpu) or 5b) the approximate limits
Qlow and Qhigh are directly computed (equa-
tion 8 with N = Nnt and Qob = Qpu); 6) the
expected relative error of f in the given ex-
perimental setup is then:

( )

high

low

(f)

pu

Q
ln Q

expected relative error
-ln Q

 
  

=     
 (9)

Example 1 in the Discussion gives the
complete, step-by-step, procedure described
above to compute the expected relative er-
ror. From now on, e.r.e. stands for expected
relative error, the relative error computed by
the best or by the approximate procedure.

Results

Several different experimental setups
were simulated and the estimation of the

(7)



942

Braz J Med Biol Res 33(8) 2000

J.G. Chaui-Berlinck and J.A.M. Barbuto

relative error evaluated. The Strijbosch et al.
(3) procedure for experimental designs was
employed (see Appendix B, page 947). In
this procedure, the number of cells per dilu-
tion is computed by means of an algorithm
concerned with the range of possible fre-
quencies to be covered, a high (P2) and a low
(P1) value of P0(C), and the number d’ of
dilutions falling between P1 and P2.

The best estimation of the relative error.
Using the procedure of equations 6a and b
one can numerically construct exclusion
tables for different values of N and obtain
the relative error of each non-trivial observ-
able Q (equation 9), as Figure 1 graphically
shows. Table 1 shows the e.r.e. obtained by
this procedure for some experimental setups
and the “real” mean relative error coming
from the maximum likelihood estimator of

data generated under these different settings.
The agreement between the two errors (esti-
mated and obtained) is as exact as can be
expected for numerical processes. Obviously,
such an agreement is independent of Nnt, as
also expected.

Next, we will focus on the approxi-
mate direct estimation procedure (step 5b,
equation 8). This is because a) we are
mainly concerned with an a priori estima-
tion of the approximate accuracy a given
experimental setup is expected to yield, b)
most of the time N is large (N>100) in an
LDA, and c) directly solving equation 8 is
easier than numerically solving equations
6a and b.

The approximate estimation of the rela-
tive error. Table 1 presents relative errors
estimated by the approximate procedure

Table 1 - Comparison between the relative error obtained and those predicted both by the best procedure
(equations 6a and b) and by the approximate procedure (equation 8) for a series of different experimental designs.

The experimental designs were generated by the Strijbosch procedure (Ref. 3; Appendix B, page 947). The
number of wells per dilution, η, varied within each experimental setup. Each sub-table also presents the expected
number of non-trivial results for each value of η within the experimental setup under analysis. The experimental
designs analyzed were:
C1 = [3, 0.15, 0.65, (1:300 to 1:4000)]
C2 = [4, 0.10, 0.30, (1:500 to 1:1000)]
C3 = [3, 0.70, 0.90, (1:400 to 1:40000)]
C4 = [2, 0.10, 0.90, (1:600 to 1:120000)]
C5 = [5, 0.35, 0.85, (1:300 to 1:4000)]
C6 = [5, 0.15, 0.65, (1:300 to 1:4000)]
where 1) d’, the number of dilutions between P1 and P2; 2) P1; 3) P2, and 4) the upper and the lower boundaries
of a frequency range are given within brackets. Thus, [d’, P1, P2, (φ2 to φ1)]. The letters U and L after an
experimental setup stand for the results obtained at the upper and at the lower boundaries of the frequency range,
respectively. Notice the fine agreement between the obtained relative error and the predicted ones. On the one
hand, such an agreement is independent of the experimental design and the frequency range. On the other hand,
such an agreement is jeopardized when the expected non-trivial dilutions comprise a low number of events to be
observed. The cases of non-agreement between the predicted and the obtained errors are given in bold (on the
“predicted best” lines). This non-agreement is explained by spurious experimental designs resulting in extreme
low numbers of non-trivial dilutions associated with high numbers of expected trivial steps. Such a conjunction
leads to the emergence of unexpected non-trivial results in putative trivial steps. As an example, consider the
experimental setup C3L. The obtained error was 1.529 (italics underlined). This setup comprises 14 dilutions with
a putative fraction of negative wells at the lower boundary of the frequency range of Qob(%) = [99.9 99.8 99.7 99.5
99.3 99 98.4 97.7 96.5 94.8 92.3 88.6 83.4 76.2]. Such a Qob leads to only 3 dilutions (underlined) with non-trivial
results when η = 10 wells per dilution (therefore, Nnt = 30). However, there are 110 wells comprising fractions
above 90%, and thus non-trivial results are now expected to emerge within this set of wells (and this is what
occurs). When the results are reevaluated after eliminating those 11 trivial steps, the error obtained goes to 1.903,
which is now within 5% of the predicted ones. Another problem that emerges at those extremely low numbers of
wells comprising the results of an LDA is related to the loss of the nominal confidence interval of the estimator
(Chaui-Berlinck JG, unpublished results). However, this is not the subject of this study.

Continued on the next page
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Experimental setup C1U η Experimental setup C1L η

12 24 36 12 24 36

Relative error Relative error
Obtained 0.719 0.507 0.414 Obtained 0.762 0.536 0.436
Predicted Predicted

best 0.8680.8680.8680.8680.868 0.508 0.412 best 0.76 0.521 0.424

approximate 0.952 0.531 0.424 approximate 0.772 0.521 0.425
Expected non-trivial N 36 96 144 Expected non-trivial N 72 192 288

Experimental setup C2U η Experimental setup C2L η

10 20 50 90 10 20 50 90

Relative error Relative error
Obtained 0.614 0.431 0.271 0.202 Obtained 0.574 0.406 0.256 0.191

Predicted Predicted
best 0.7650.7650.7650.7650.765 0.487 0.265 0.188 best 0.557 0.393 0.25 0.186
approximate 0.962 0.532 0.273 0.19 approximate 0.586 0.402 0.252 0.187

Expected non-trivial N 40 100 350 720 Expected non-trivial N 80 160 400 720

Experimental setup C3U η Experimental setup C3L η

10 25 40 75 10 25 40 75

Relative error Relative error
Obtained 0.642 0.405 0.32 0.234 Obtained 1.529 0.926 0.725 0.526

Predicted Predicted
best 0.7390.7390.7390.7390.739 0.408 0.29 0.212 best 2.0512.0512.0512.0512.051 0.9930.9930.9930.9930.993 0.76 0.538
approximate 0.753 0.411 0.291 0.212 approximate 1.984 0.977 0.751 0.533

Expected non-trivial N 70 200 360 675 Expected non-trivial N 30 125 240 600

Experimental setup C4U η Experimental setup C4L η

10 20 40 80 10 20 40 80

Relative error Relative error
Obtained 1.274 0.895 0.632 0.447 Obtained 1.514 1.065 0.75 0.523
Predicted Predicted

best 1.3521.3521.3521.3521.352 0.888 0.621 0.437 best 1.7011.7011.7011.7011.701 1.098 0.745 0.521
approximate 1.563 0.94 0.638 0.442 approximate 1.797 1.122 0.744 0.52

Expected non-trivial N 20 40 80 160 Expected non-trivial N 20 40 120 240

Experimental setup C5U η Experimental setup C5L η

10 20 40 80 10 20 40 80

Relative error Relative error
Obtained 0.629 0.444 0.313 0.221 Obtained 0.953 0.649 0.457 0.323
Predicted Predicted

best 0.659 0.464 0.296 0.209 best 0.9850.9850.9850.9850.985 0.657 0.456 0.321
approximate 0.68 0.471 0.298 0.21 approximate 0.99 0.656 0.455 0.32

Expected non-trivial N 70 140 320 640 Expected non-trivial N 60 160 400 880

Experimental setup C6U η Experimental setup C6L η

10 20 40 10 20 40

Relative error Relative error
Obtained 0.617 0.434 0.307 Obtained 0.655 0.462 0.323
Predicted Predicted

best 0.730.730.730.730.73 0.458 0.294 best 0.665 0.452 0.317
approximate 0.782 0.474 0.3 approximate 0.674 0.452 0.317

Expected non-trivial N 50 120 280 Expected non-trivial N 90 240 520

Table 1 - Continued.
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(equation 8) for different experimental set-
ups, as well as the mean relative errors
coming from the maximum likelihood es-
timator of data generated under these dif-
ferent settings. Notice that the agreement
between the two errors is warranted only
when the total non-trivial dilution, Nnt, is
greater than 100. Otherwise, the e.r.e. by
the approximate procedure shall overesti-
mate such a parameter.

Discussion

Despite the intense use of LDA by immu-
nologists in general, its proper employment
seems to escape most of them. Two striking
problems are the absence of references to
how an experimental design is set up (i.e.,
the range of frequencies that the given setup
is prepared to adequately cover) and the use
of linear regression by least squares3 as the
estimator of the frequency (in circa 40 to
50% of published studies, our personal ob-
servation). Thus, see below five basic state-
ments about constraints of the estimation of
frequencies in an LDA: 1) in an LDA there is
a fixed range of frequencies that can be
estimated in a given experimental setup; 2)
prior knowledge about a putative range of
frequencies to be estimated is a sine qua non
condition in an LDA with the aim of truly
determining a certain frequency; 3) such a
range should be determined previously, when
setting up the experimental design; 4) when
the outcome of an experiment falls outside
the prior expected range, loss of confidence
and power of the estimate occurs, and 5)
analysis of the outcome of a particular ex-
periment requires programming because
there is no good direct analytical LDA esti-
mator (e.g., linear regression) and the ad-
equate ones are not found in common com-
mercial packages.

These features can be found in published

papers about the subject (e.g., 2-4). The
empiricist must be aware of these constraints
when planning an LDA. Closely related to
these problems is the absence of knowledge
of what should be expected from a given
experimental setup in terms of accuracy. No
quantitative prescriptions about the number
of wells per dilution (i.e., the number of
events to be observed) are found among
these constraints (see Introduction). The pres-
ent study provides such a quantitative pre-
scription, which is based on the relative error
of a measure and is thus related to the desired
accuracy of such measure. The prescription
can be presented as follows: 6) the number
of wells in non-trivial steps must be set to
match the desired level of accuracy deter-
mined a priori.

This putative sixth constraint can be read
in either direction, that is, the necessity of
increasing the number of wells in a given
experiment or the possibility of decreasing
such a number in another setting. Let us
illustrate these points by means of some
“real” problems to be solved. Basically, ac-
curacy is expected to be equal to or greater
than a given value (thus the relative error is
expected to be less than a given value), the
number of wells is limited to some maxi-
mum N, and the true frequency lies within
some range. To these indisputable limits we
will add one more: the lower the number of
different dilutions to be prepared the less
time and energy consuming the experiment
will be.

Example 1. The unknown frequency lies
in a 20-fold range, d’ = 4, P1 = 0.1, P2 = 0.8
(see Methods). What is the error expected in
an experimental setup employing 25 wells
per dilution (i.e., η = 25)? What is the gain if
η = 40 instead of 25? The experimental setup
will comprise 9 dilutions (d = 9) by the
Strijbosch et al. (3) procedure (see Appendix
B, page 947 for computation). For the upper

3A method repeatedly shown to be inadequate for the purpose of frequency estimation in LDA in the last 20 years.
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limit in the frequency range, the expected
Qob (expected P0(C)) in each dilution (di) is,
respectively, Qob expected (in %) = [73.3
57.3 36.9 16.7 4.1 0.3 0 0 0]. For the lower
limit in the frequency range, the expected
Qob for each di is, respectively, Qob expected
(in %) = [98.5 97.3 95.1 91.5 85.2 75
59.8 39.7 19.1]. At the upper limit, the
number of non-trivial steps expected (for η =
25 wells) comprises dilutions 1 to 5. At the
lower limit, the number of non-trivial steps
expected comprises dilutions 3 to 9. These
numbers of non-trivial expected dilutions
are the result of 1/η being equal to 4%, thus
excluding dilutions below 4% and above
96% as possible non-trivial dilutions. There-
fore, for both extremities in the frequency
range, the number of non-trivial dilutions
expected, with η = 25, results in Nnt>100
(125 for the upper limit and 175 for the lower
one). On this basis, the direct approximate
procedure will be employed (equation 8,
step 5b). The e.r.e. at the extremities is 0.470
and 0.517, respectively. This represents,
roughly speaking, 25% plus and 25% minus
around the estimated frequency in a real
experiment (e.g., f = φML ± 0.25.φML). When
η is increased to 40 wells, the e.r.e. de-
creases to 0.369 and 0.405 at the extremities.
One should expect to obtain (approximately)
20% plus and minus around the estimated
frequency, representing a 20% increase in
accuracy from the η = 25 design. This in-
crease is obtained by a 60% increase (15/25)
in the number of wells.

Example 2. The relative error is expected
to be less than 0.45, N is limited to 300 wells,
the expected frequency lies in a 10-fold range.
What is best: to set the experiment as A: (d’
= 2, P1 = 0.15, P2 = 0.30, η = 25) or B: (d’ =
4, P1 = 0.10, P2 = 0.60, η = 30)? Notice that
setup A concentrates results around the na-
dir of the relative error curve (see Figure 1),
the so-called “most informative range”. Setup
A comprises 12 dilutions (d = 12) and setup
B comprises d = 10. As in the above ex-
ample, the expected Q at the upper and at the

lower extremities of the frequency range is
computed. Then, by computing the expected
relative error at the extremities of the fre-
quency range in each experimental setup one
finds e.r.e. = [0.537 0.355] for A and e.r.e. =
[0.412 0.379] for B. Therefore, experimen-
tal design B is more consistent with the
maximum relative error desired in the entire
range of the expected frequencies to be esti-
mated. Coincidentally, it is also the less ex-
pensive in terms of dilutions to be prepared.
All these relevant parameters could be deter-
mined beforehand.

Example 3. The relative error is expected
to be ≤0.50, the unknown frequency is within
a 15-fold range, N is limited to 240 wells.
Does a general setting with d’ = 3, P1 = 0.10,
P2 = 0.70 and η adjusted as η = integer(N/d)
fit the expectations? When the number of
cells per dilution is computed under the
Strijbosch et al. (3) procedure, one finds that
d = 7 and, therefore, η = 34. The expected
relative errors for the extremities of the fre-
quency range are 0.434 and 0.466. There-
fore, such a general setting fits well the
expectations of relative errors of less than
0.50 for a 15-fold range of the unknown
frequency.

Example 4. Consider a problem similar
to the above example, but with the unknown
frequency restricted to a 5-fold range. The
experimental setup is now reduced to 5 dilu-
tions, and thus η = 48. Accuracy increases,
as indicated by the e.r.e. of 0.361 and 0.413
at the extremities.

Example 5. Employing the general setup
used in example 3, one needs the relative
error to be less than 0.2, in a 100-fold range
of the unknown frequency. How many wells
per dilution are needed to fulfill the expecta-
tions? The number of dilutions to cover such
a frequency range (in this setting) is d = 10.
Then, at the frequency extremities, e.r.e. =
[0.183 0.199] when η = 183 (and, therefore,
N = 1830 wells). In view of these figures,
one would ask whether the experiment is
feasible or not (either in terms of how many
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of these determinations are to be made or in
terms of relaxing the relative error expected).

The use of dilutions related to each other
by a power rule (e.g., y(n) = Z(n-1) .y(1)) is given
as an inadequate experimental setup proce-
dure by Fazekas de St. Groth (2). When one
computes the relationship between the num-
ber of cells in each dilution of the experimental
setup given in example 5 each step is found to
contain approximately 1.862 times the num-
ber of cells of the preceding one (i.e., the
power scaling factor Z = 1.862). In fact, a
given composition of d’, P1 and P2 under the
Strijbosch et al. (3) procedure generates a
power scaling factor (notice that the frequency
range does not matter for such an underlying
rule). In example 1, the power scaling factor is
1.792. In example 2, the power scaling factor
is 1.255 for setup A and 1.457 for setup B.
Despite an underlying power scaling factor, it
is possible to attain relative errors at a desired
level, contradicting Fazekas de St. Groth’s
statement about the power rule. What this
investigator means must be read as “one should

not employ a fixed power scaling factor for
every frequency determination”. Strijbosch et
al. (3) provide an easy way to find the adequate
power scaling factor. This study provides an
easy way to evaluate the accuracy such a
scaling factor shall yield under empirical con-
ditions.

Conclusion

This study provides an easy way to esti-
mate beforehand the relative error (i.e., the
accuracy) of an LDA experimental setup.
This can be done following steps 1, 2, 3, 4,
5b and 6 in Methods and in equations 7, 8
and 9, when the expected number of non-
trivial dilutions4 is large (i.e., non-trivial di-
lutions comprise, overall, more than 100
wells). When such an expected number is
less than 100, care must be taken because
both the relative error and the nominal con-
fidence level of the estimator can be wrongly
estimated.
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Appendix A

Suppose η (e.g., 100) events were observed and the resulting probability of positive events
(i.e., positive outcomes/η) among these events is p1 (e.g., p1 = 0.1). Suppose another set of η
events resulted in another p2 (e.g., p2 = 0.4). What one should expected if, instead of observing
two separate sets of η events, one had observed one set of 2.η events? These being independent
events, the conjunction of p1 and p2 is the unbiased expectation one should have to obtain at the
2.η level. This means:

Appendix B

The first step in the Strijbosch et al. (3) procedure is to determine the frequency range to
be evaluated, φ1 (the lower boundary) and φ2 (the upper boundary, 0<φ1≤φ2<1). Then, the
two boundaries (P1 and P2) in the fraction of negative wells (i.e., 0<P1<P2<1) and the
number of dilutions d’ to be found between P1 and P2 are set. The computation below (taken
from Ref. 3) shows how many dilutions and what number of cells per dilution are to be
employed to satisfy the conditions established a priori:
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In the numerical example above, the expected number of positive events is 200.(0.04 + 0.03
+ 0.18) = 50. Obviously, this ends up as the mean between p1 and p2, (p1 + p2)/2. The
extension to any number X of subsets of ηi events is straightforward: Prob(X.η) =
mean(Prob(ηi)).
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