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Abstract

This study aimed to explore attentional patterns among children with inattentive attention-deficit/hyperactivity disorder (ADHD-I)
and children with typical development (TD), using a latent class analysis (LCA). Patterns of brain connectivity were also explored.
The sample comprised 29 ADHD-I and 29 TD matched children. An LCA was conducted to reclassify subjects according to their
attentional performance, considering cognitive measures of attention and behavioral symptoms, regardless of group of origin. The
new clusters were then compared in respect to brain white matter measurements (extracted from diffusion tensor imaging).
Participants were rearranged in 2 new latent classes, according to their performance in an attention task and the results of
behavioral scales, resulting in groups with more homogeneous attentional profiles. A comparison of the 2 new classes using the
white matter measurements revealed increased fractional anisotropy in the left inferior fronto-occipital fasciculus and left inferior
longitudinal fasciculus for the class composed by participants with a higher risk of attentional problems. The findings indicated
that it was possible to observe variability regarding neuropsychological profile, accompanied by underpinning neurobiological
differences, even among individuals with the same disorder subtype – inattentive ADHD. This specific data-driven clustering
analysis may help to enhance understanding of the pathophysiology of the disorder’s phenotypes.
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Introduction

Studies exploring cognitive, behavioral, or emotional
patterns, as well as neurobiological or genetic traits among
diagnostic conditions and typically developing individuals
are becoming a trend in neuropsychiatry (1–4). In 2009,
the National Institute of Mental Health (NIMH) launched
the Research Domain Criteria (RDoC) project, to develop,
for research purposes, new ways of classifying mental
disorders based on dimensions of observable behavior
and neurobiological measures. This research framework
is a step towards a dimensional and integrative view of
psychopathologies, linking behavior and cognitive variables
to underlying neurobiological or genetic systems, cutting
across diagnostic categories and improving understand-
ing of the complex relationships between these factors (5).

Growing evidence has established that attention-deficit/
hyperactivity disorder (ADHD) is a highly heterogeneous
condition, with a diverse presentation and multiple vari-
ables pointing to its determination, being classified as a
dimensional diagnosis (6).

In order to investigate this heterogeneity, van Hulst
et al. (4) investigated neuropsychological subtypes in indi-
viduals with ADHD and typically developing (TD) controls.
Three subgroups with differing cognitive profiles were
identified, based on their performance in a battery of tests
related to cognitive control, timing, and reward systems,
supporting a multiple pathway model of ADHD.

Fair et al. (1) also evaluated a large dataset of ADHD
and TD individuals in respect to working memory, temporal
information processing, response speed, variability and inhi-
bition, interference control, arousal, and activation. Several
cognitive tests were adopted, among them a version of the
Continuous Performance test (CPT). Four different neuro-
psychological profiles were found among ADHD partici-
pants and, analogously, among controls.

Similarly, the CPT, more specifically Conners’ Contin-
uous Performance test (CCPT-II) (7), was used in a pattern
recognition study conducted with healthy controls, indivi-
duals with ADHD, bipolar disorder (BD) and ADHD+BD.
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Based on CCPT performance, the sample was clustered
into two new groups, regardless of the original diagnosis,
demonstrating that CCPT-II variables may be accurate
and useful measures to classify subjects according to their
cognitive performance (2).

Indeed, the CPT is a common and reliable neuropsy-
chological instrument for the evaluation of sustained atten-
tion and other attention subcomponents (8). Attention is a
complex cognitive ability and encompasses multiple inter-
connected brain regions (9), with many different white
matter fibers connecting these regions.

Diffusion tensor imaging (DTI) seems to be a very
promising method of investigating white matter micro-
structural abnormalities that could underpin mechanisms
of inattention as it allows a shift in perspective in the investi-
gation of the pathophysiology of ADHD, with less focus
on brain regions and more emphasis on brain network
organization (10).

The sensitivity of DTI – and of its measurements, such
as fractional anisotropy (FA) – in identifying microstructural
tissue characteristics makes this technique a powerful and
sensitive instrument to investigate changes in white matter
microstructure in clinical conditions such as ADHD (10,11).
FA represents the amount of hindrance/restriction experi-
enced by water molecules along the direction of white
fibers (11) and has been the DTI measurement most
frequently adopted in studies of ADHD subjects (12).
FA values are modulated by many factors of functional
relevance, including, but not limited to fiber diameter, fiber
density, myelination, and membrane permeability (11).

Previous studies have found that individuals with
ADHD present either higher or lower FA values, indicat-
ing fiber abnormalities that might negatively impact their
cognitive functioning (10,13). As pointed out by Thomason
and Thompson (10), ADHD is a rare example where higher
FA is indicative of pathology, possibly representing either
less branching (i.e., more net coherence in a singular direc-
tion) or compensatory mechanisms. However, the high hetero-
geneity observed in the disorder has resulted in inconsistent
findings among different studies. Indeed, a previous analysis
conducted with the same sample used in the present study did
not reveal any differences in FA measurements when ADHD
and TD individuals were compared (14).

We believed that if these same subjects were analyzed
through a dimensional analysis, considering their cogni-
tive profile rather than their original diagnosis, the results
in respect to underlying white matter measurements could
be different. Thus, we aimed to investigate attentional pat-
terns among the ADHD-I and TD children in order to
identify more homogeneous groups in regard to atten-
tional performance through an LCA. Moreover, based on
the identified groups, we intended to investigate possible
differences regarding underlying brain characteristics, as
recommended by Fair et al. (1).

To the best of our knowledge, very few studies have
compared and analyzed the relationship between behavioral

or emotional measures and physiological or neuroimag-
ing data through a dimensional analysis in respect to
ADHD (3,15). The present study is the first to integrate
both cognitive and behavioral measures with neuroimag-
ing data through an LCA.

We hypothesized that individuals would be rearranged
regarding attentional functioning patterns and that the new
groups would be associated to differences in the FA meas-
ure of their brain tracts. Attentional performance, measured
by some indexes of the CCPT-II, digit span test, and by behav-
ioral measures, was established as an independent variable,
while FA values were considered dependent variables.

Material and Methods

Participants
Recruited participants included 29 ADHD-I (ADHD of

inattentive type) children aged 7–15 years and 29 TD chil-
dren matched by age, sex, and type of high school attended
(public or private), recruited using a purposive sampling
method. ADHD-I patients were referred from public and
private centers, where they had been diagnosed by an
expert ADHD clinician based on the best estimate diag-
nostic procedure. A clinical examination, personal interview,
family history from family informants, and the DSM-IV
criteria were considered, as well as the results from a
neuropsychological assessment, which was also part of the
diagnosis protocol of these centers. ADHD participants,
at the time of diagnosis, presented six or more inattention
symptoms, and up to five hyperactivity/impulsivity symp-
toms, characterizing the predominantly inattentive type. All
of the TD children were recruited from the community.

Eligibility criteria were an estimated intelligence quotient
(IQ) of at least 85 on the Wechsler Intelligence Scale for
Children, third edition (WISC-III) (16), measured by Block
Design and Vocabulary subtests, and no previous history of
neurological diseases. Seven children from the TD group
and nine from the ADHD-I group were excluded from
imaging analysis due to excessive motion during imaging
or due to artifacts. Thus, 22 TD and 20 ADHD-I images
met the quality criteria for processing, and comprised the
sample used in the neuroimaging stage of analysis.

Three of the ADHD-I children had been taking methyl-
phenidate for a few months, but stopped the medication at
least 24 hours before testing. This research was approved
by the Ethics Committee of the Universidade Federal de
São Paulo and was carried out in accordance with the ethical
standards as laid down in the 1964 Declaration of Helsinki
and its later amendments or comparable ethical standards.
The parents provided written informed consent for all of the
participants. The children provided verbal or written informed
assent.

Instruments
Participants were submitted to a broad neuropsycho-

logical evaluation, which included an examination of the

Braz J Med Biol Res | doi: 10.1590/1414-431X20187653

LCA of attention and white matter correlation in ADHD 2/10

http://dx.doi.org/10.1590/1414-431X20187653


subject’s intellectual level, a computerized attention test, a
working memory test, and other tests to assess other cogni-
tive functions not analyzed in this study, such as visual
constructive functions, visual memory, verbal fluency,
decision making, and academic performance. This eval-
uation was used to better delineate their cognitive profile
and to identify other diagnostic conditions, such as
dyslexia.

As measures of interest, variables extracted from a
computerized attention test – CCPT-II (7) – and from a
working memory performance test – digit span (16) – were
selected. Primary caretakers completed a sociodemo-
graphic questionnaire, the Child Behavioral Checklist
(CBCL) (17) and the SNAP-IV Teacher and Parent Rating
scale (18). The measures of interest used in the LCA
were chosen based on accumulated evidence in respect
to measures that have been consistently found to be
impaired in subjects with ADHD. Thus, as CPT’s and
working memory measures have assumed a prominent
role as potential endophenotype indicators of the disorder
and are correlated to biological markers, these measures
were selected as variables to compose the LCA models.
Moreover, as behavioral measures of attentional function-
ing, CBCL scales were also included since they have
been shown to be a highly discriminative instrument in
ADHD evaluation. Thus, the following measures were
adopted to conduct the LCA.

Five CCPT-II measures were selected following a non-
structured review of CCPT studies with ADHD participants,
as they were found to be very sensitive in identifying nuances
in attentional profiles (7). The indexes were: Omissions,
Variability, Hit Reaction Time Interstimulus Interval (Hit RT ISI),
Hit Reaction Time (Hit RT), and Hit Reaction Time Block
Change (Hit RT BC). Raw values provided by the test for
each of these indexes were considered in order to com-
pare participants’ performances.

Backward digit span test from the WISC-III (16) was
applied as another measure of attentional control (19).
Two trials were administered for each span (sequence
length ranging from 2 to 8), in reverse order. Two errors
in the same span prompted interruption of the task and,
thus, the higher span achieved was considered. The
span achieved was standardized into z-score meas-
ures, adopting Brazilian norms, as described in data
analysis.

Attention Problems subscale and the Emotional Self-
Regulation Index (20) of the CBCL were both included
as indicative of attentional performance and self-regulation
in daily situations (17). Caretakers’ responses to items
related to these scales were scored by summing 0-1-2
ratings. Raw scores were transformed into T-scores by
the CBCL software, based on normative data. T-scores
less than 65 were considered in the normal range,
T-scores ranging from 65–70 were considered to be
borderline clinical, and T-scores above 70 were in the
clinical range (17).

DTI image acquisition protocol
A 2-D MR-DTI sequence (TR=6500 ms, TE=95 ms, flip

angle=90 degrees, matrix size=128 � 128, NEX=1,
FOV=230 mm, 12 directions, b=1000 m/s2, thickness=4
mm with space gap between slices =0.8 mm, yielding 30
slices) was acquired using a 3.0 -T, 43 mT/m gradient MR
system (Magnetom Verio, Siemens Medical Systems,
Germany) for all subjects. All images had their quality
verified, rated based on an initial visual inspection, and
followed by the inspection and detection of artifacts such
as geometrical distortions and susceptibility effects, such
as motion.

DTI images post-processing
NifTi images were processed using the FSL platform (21)

using the following the steps: correction of eddy currents,
skull extraction using BET tool, and a FDT tool to generate
FA maps. All the FA maps were then merged into a 4-D
image using tract-based spatial statistics (TBSS) (21).
Since the sample was composed of children, the most
appropriate choice for registration was to align each FA
image to every other, identifying the most representative
FA map, to use it as a reference image of the group.
A mean FA skeleton was generated and the FA values
of the most relevant tracts from the spatially normalized
FA map of each subject were then projected onto this
skeleton using a threshold of 0.3. Permutation-based non-
parametric inference was applied to unsmoothed statis-
tical maps using 10,000 permutations and the cluster-like
structures were enhanced using the threshold-free cluster
enhancement (TFCE) algorithm at P level o0.05 (family-
wise error (FWE) correction).

A 4-D FA skeletonized image was used, with all mean
skeletons of each subject projected and the skeleton
mask of the group, to run an automated region of interest
(ROI) extraction, using R project 3.0.3. The extraction of
the tracts was based on the 20 tracts of the Johns Hopkins
University DTI white-matter tractography atlas (22), result-
ing in a mean FA value for each tract of each subject.

Data analysis
Demographic characteristics and the intellectual level

of the sample were statistically analyzed using a Student’s
t-test and chi-squared test (statistical software SPSS
version 19.0; IBM, USA). Raw neuropsychological meas-
ures were standardized into z-score measures, adopting
Brazilian norms (23,24). The CBCL Attention Problem
subscale was incorporated utilizing a t-score measure,
generated by CBCL rating software (17).

LCA was used to identify a latent organizing principle
(i.e., classes) for a complex set of empirically observed con-
tinuous data. Categorical latent variables are not directly
observed and are defined as those in which qualitative
differences exist between groups of people or objects (25).
Three different models were built to reorganize the partici-
pants, considering six different continuously observed
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performance indicators, extracted from the CCPT-II, back-
ward digit span task, and the CBCL.

Three LCA models were established to estimate
how many classes underlaid the six indicators selected.
Clinical issues and the following statistical indexes were
used to guide the decision on the best number of classes:
Akaike information criterion (AIC), Bayesian information
criterion (BIC), sample size-adjusted BIC (ssaBIC), Vuong-
Lo-Mendell-Rubin (VLMR) test (using TECH 11 in Mplus)
and the parametric bootstrapped likelihood ratio test
(using TECH 14 in Mplus). The last two tests compared
the fit of the model with the currently chosen number of
classes (K) to the fit of a model with K-1 classes. Addi-
tionally, the quality of individual items (variable-specific
entropy contribution) was calculated (26). Convergence
validity of the best model/class-solution was calculated,
testing some covariates (ADHD clinical diagnosis by
a trained specialist, type of school [public vs private],
gender, and age), as possible predictors of latent classes
via the three-step approach, developed by Vermunt (27),
and entered in Mplus.

The best solution found was used to predict the 20 FA
mean values, via Lanza’s method (28), which was adopted
as an approach to calculate differences in FA means
between the classes. Since there was a P value asso-
ciated with each FA (resulting in 20 P values), and being
an exploratory procedure, the Benjamini-Hochberg proce-
dure for false discovery rate was applied in respect to the
20 P values (29). As not all 58 subjects had neuroimag-
ing FA outcomes, Lanza’s method was employed with
42 subjects, using Bayes theorem, where the joint distri-
bution of the latent class variable and the distal variable
were represented as a regression of the latent class vari-
able, conditional on the distal variable, combined with the
marginal distribution of the distal variable (the 20 DTI
parameters). The smaller size of the sample at this analysis
reduced the statistical power of the estimation of likely
difference in FA means, but it did not impact the previously
achieved best class solution because Lanza’s method
does not allow for the distal outcome to dramatically
change the class membership for individual observations.
The idea behind the method is that after the LCA model
is estimated, an auxiliary model is estimated where the
20 distal outcomes are used as a latent class predictor

within a multinomial logistic regression in addition to the
original measurement LCA model. As implemented in
Mplus, Lanza’s method used approximate standard errors
for continuous distal outcomes by estimating the mean
and variance within each group as well as the within class
sample size. Standard errors were then computed as if the
mean estimate was the sample mean. For both contin-
uous and categorical distal outcomes, Mplus computed
an overall test of association using Wald’s test, as well
as pairwise class comparisons between the auxiliary vari-
able means and probabilities. These analyses adopted a
significance level of 0.05.

Results

The TD and ADHD-I groups did not differ significantly
regarding age, gender, or type of school attended (Table 1).
The TD participants had significantly higher intellectual
functioning (t(55)=–2,47; P=0.02), but mean IQs were
above average score of IQ scale for both groups (i.e.,
above 110).

Latent class analysis - the best model and best class
solution

The whole sample (n=58) was submitted to LCA,
regardless of the origin group, in order to identify sub-
sets of individuals with more similar attentional patterns.
Three different models were built, each one comprising six
continuously observed performance variables. Model 1
comprised three CCPT-II indexes (omission, Hit RT, and
Hit RT ISI), backward digit span, the attention problems
subscale and emotional self-regulation index from the
CBCL, balancing cognitive measures extracted from dif-
ferent tasks, and a behavioral variable. Model 2 consisted
of four CCPT-II indexes (Omission, Hit RT, Hit RT ISI, and
Hit RT Block Change) and the two CBCL behavioral meas-
ures, associating only CCPT-II variables with behavioral
indicators. Finally, Model 3 was composed exclusively
of direct attentional variables, namely the five cognitive
ones extracted using CCPT-II (Omission, Hit RT, Hit RT
ISI, Hit RT Block Change, and Variability) and a behavioral
measure related to attention performance in daily situa-
tions (the CBCL attention problems subscale). The fit
indices for the three models and the class solutions are

Table 1. Sociodemographic characteristics of the sample groups.

Characteristics TD group (n = 29) ADHD-I group (n = 29) Test statistics P

Age (years, mean ± SD) 10.1±1.6 10.1±1.9 T = –0.73 0.94
Gender (% male) 65.5% 69.0% w2 = 0.78 0.78
Type of school (% public) 62.1% 50.0% w2 = 0.84 0.36

Estimated IQ (mean±SD) 120.2±14.9 110.6±14.9 T = –3.26 0.02

TD: typical development; ADHD-I: attention-deficit/hyperactivity disorder of inattentive type; IQ: intelligence quotient; T: t-test;
w2: chi-squared test.
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shown in Table 2. Regarding statistical criteria, the lower
the AIC, BIC, and ssaBIC values, the better the model.
Not only the fit indices, but also the clinical reasoning is
equally important in the selection of the best model to
regroup participants.

Model 3, with a three- and a two-class solution, pre-
sented the lowest AIC, BIC, and ssaBIC. The three-class
solution was not a suitable distribution for the current
study due to the small number of participants in one of the
classes (n=5), which would not allow the white matter
analysis to be carried out appropriately. Therefore, the
Model 3/two-class solution was selected as the most
appropriate to reorganize the subjects according to their
attentional profiles.

This model/class solution comprised two groups, which
were called: the ultra-high risk for attentional problems

group (HR-class) (33.1% of the sample; ADHD-I n=19;
TD n=0), shown in Figure 1 as Class 1 (red line), and the
normal development of attentional functions group (ND-
class) (66.9% of the sample, ADHD-I n=11; TD n=28),
shown in Figure 1 as Class 2 (blue line). The groups did
not differ in respect to age (t(56)=0.89, P=0.14), gender
(w2(1)=0.02, P=0.89), or estimated IQ (t(55)=-1.68, P=0.10),
avoiding the possibility of attentional differences being due to
IQ differences (see more details in Supplementary Table S1).
About 36.6% of the ADHD-I individuals showed probability to
be classified as belonging to the ND-class.

Figure 1 shows how participants were grouped accord-
ing to their performance in the five CCPT-II variables
adopted. The ND-class presented an average perform-
ance in all the cognitive measures adopted (Z-scores
varying between –0.35 and +0.5), while the HR-class

Figure 1. Z-score means for the five Conners’ Continuous Performance test (CCPT-II) indexes within each latent class for Model 3/
Two-class solution. Child Behavioral Checklist attention problems subscale revealed T-score values of 56.82 for the normal develop-
ment class (blue line) and of 72.19 for the ultra-high risk class (red line). Hit RT: Hit Reaction Time; Hit RT ISI: Hit Reaction Time
Interstimulus Interval.

Table 2. Model fit indexes.

Model Number of classes AIC BIC ssaBIC Entropy Class 1 Class 2 Class 3 Class 4 VLMRLR PBLRT

M1 2 classes 1650.0 1689.1 1629.4 0.92 33 25 0.02 o0.001
3 classes 1604.3 1657.9 1576.1 0.95 22 29 7 0.21 o0.001
4 classes 1579.9 1647.9 1544.1 0.96 28 17 5 8 0.33 o0.001

M2 2 classes 1615.8 1654.9 1595.2 0.92 35 23 0.18 o0.001
3 classes 1576.5 1630.1 1548.4 0.95 8 15 35 0.14 o0.001
4 classes * * * *

M3 2 classes 1363.4 1402.5 13.8 0.93 19 39 0.11 o0.001

3 classes 1304.4 1357.9 1276.2 0.95 15 38 5 0.06 o0.001
4 classes * * * *

AIC: Akaike information criterion; BIC: Bayesian information criterion; ssaBIC: Sample size-adjusted BIC; VLMRLR: Vuong-Lo-Mendell-
Rubin likelihood ratio; PBLRT: parametric bootstrapped likelihood ratio test. *Model did not converge.
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was characterized by presenting a deficient performance
in all the cognitive indexes. Z-scores obtained for each
class varied as follows: Omissions (ND=–0.21; HR=
–3.78); Hit RT (ND=0.51; HR=–1.02); Hit RT ISI (ND=
–0.31; HR=–1.51); Hit RT BC (ND=0.11; HR=–0.66), and
Variability (ND=–0.30; HR=–4.43).

Similarly, responses to the CBCL attention problem
subscale revealed a score suggestive of an absence
of attentional problems for the ND-class (T-score=56.82,
SD=2.15), while they were suggestive of attentional prob-
lems at a clinical level for the HR-class (T-score=72.19,
SD=1.21).

Moreover, in the latent classes, in regard to the
severity of the symptoms of inattention and hyperactivity/
impulsivity of the subjects of each class (that is, the
members who were likely to be in each of the classes),
it was noted that 77% of those in the HR-class presented
6 or more symptoms of inattention at considerable levels
(quite a bit or very much), according to responses given
on the SNAP scale. Approximately 32% of those in the
ND-class also presented 6 or more symptoms of inatten-
tion at the same levels. Thus, although there was a
predominance of symptoms of inattention among the HR-
class, these symptoms were also observed at significant
levels among the ND-class.

In respect to comorbidities, before the LCA analysis,
four ADHD participants presented dyslexia and one anxiety
disorder. No comorbidities were found among the TD
subjects. After the LCA division, two of the participants
with dyslexia and the one with anxiety were placed in the
HR-class. The remaining dyslexic patients were placed in
the ND-class. Only one of these latter participants had his
neuroimaging excluded due to poor quality.

Entropy contribution
All six continuous indicators of Model 3 (the five CCPT-

II indexes and the CBCL attention problem subscale) were
compared regarding their capacity to discriminate the new
subgroups. The indicator with the highest entropy was
the CCPT-II omission index (entropy=0.674), being the
one with the best discriminating ability for both classes.
The Hit RT Block Change indicator had the lowest entropy
(entropy=0.199), thus with the lowest power to discrimi-
nate groups. The other indexes presented the following
entropy contributions: Variability=0.622; Hit RT ISI=0.52;
CBCL attention problems=0.481; Hit RT=0.414.

Best class solution and convergent/divergent validity
A regression analysis was performed to identify if

some variables could be powerful predictors of classes
in Model 3. Age, gender, type of school, and a clinical
diagnosis of ADHD were used in this analysis. Only a
clinical diagnosis of ADHD was found to be a strong
predictor of the HR-class, (logit=20.87, Po0.001), pro-
viding convergent evidence for predicting the classes.
The other variables - age (logit=0.08, P=0.89), gender

(logit=–0.04, P=0.95), and type of school (logit=0.15, P=
0.32) - were not statistically significant, revealing divergent
validity.

FA as a distal outcome of latent class using Lanza’s
method

After the sample was best rearranged into two new
classes according to their attentional functioning, DTI
images of these individuals were analyzed in order to
explore possible neurobiological differences between the
classes.

Only 42 of the 58 subjects had their DTI images
considered due to quality criteria. These 42 individuals,
when compared respecting the new classes, did not differ
significantly regarding age (t(40)=0.18, P=0.85), gender
(w2(1)=0.06, P=0.81), or IQ (t(40)=–1.97, P=0.06), and,
therefore, did not interfere with the analysis of the DTI
images (see more details in Supplementary Table S2).

The new classes were compared using TFCE statis-
tical analysis in TBSS. Under FWE correction, no results
suggested significant differences between the groups. Sub-
sequently, they were compared with respect to the mean
FA values of the 20 fiber tracts obtained from the ROI
analysis. As presented in Table 3, for each FA mean
value, the mean value for each latent class, its standard
error (SE), chi-squared overall test comparing the latent
classes via Lanza’s method, and its respective P values
were considered. The Benjamini-Hochberg correction
significance level for the 20 P values was 0.00526 and,
under this correction, two FA remained statistically signifi-
cant: the left inferior fronto-occipital fasciculus (IFOF) and
left inferior longitudinal fasciculus (ILF). As can be seen
in Table 3, the HR-class presented increased FA mean
values for these two fiber tracts.

Discussion

The main goal of this study was to reclassify two
groups of ADHD-I and TD individuals into new classes
according to their similar attentional profiles, and then
investigate if there were neurobiological differences between
the new groups in relation to brain white matter.

Three possible models consisting of cognitive and
behavioral attentional measures were built, and Model 3
with a two-class solution was selected as the one that best
reorganized the sample, rearranging subjects into two
new classes: HR and ND. It is worth pointing out that the
sample originally comprised an equal number of individ-
uals from each diagnostic group (i.e., 50.0% ADHD-I;
50.0% TD), but when subjects were reclassified according
to cognitive and behavioral variables, only 33.1% of the
entire sample were classified as part of the class with an
ultra-high risk of attentional problems (HR).

Each class comprised individuals with more similar
attentional profiles. Some of the constructs, such as
Omissions, Variability, and Hit RT ISI, proved to be more
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sensitive than others in discriminating the classes. Accord-
ing to a meta-analysis of many versions of the CPT
paradigm, omission errors are one of the most consist-
ently impaired measures among individuals with atten-
tional deficits (30). Variability and Hit RT ISI are related
to the ability to maintain a consistent response time
throughout tasks. Response time variability is also one
of the most robust ADHD deficits, and is considered a core
feature of the disorder (31). In line with this, individuals
with the most impaired attentional features (HR-class)
differentiated from other individuals (ND-class) in terms of
performance consistency.

Although the classes differed in respect to their atten-
tional profiles, it is noticeable that the ND-class per-
formed better in all measures considered. This effect could
pose some questions about the rearranging criteria of
the classes. At first sight, it could seem that participants
were clustered according to symptom severity. However,
considering that about 36.6% of ADHD-I individuals
showed a higher probability to be classified as belonging
to the ND-class, we assumed that the two-class solution
allowed the identification of different attentional profiles
among ADHD-I subjects. Moreover, approximately 32% of
the ND-class presented 6 or more inattention symptoms
according to SNAP-IV, which suggested that although
they had some inattentive symptoms, they had a normal
attentional profile according to the measures considered
here. Thus, ADHD individuals clustered in different classes

may have differed in respect to their deficit patterns (in some
domains and not in others) and not necessarily in respect
to their deficit severity. Indeed, ADHD individuals can
present typical performance even in measures that are
commonly impaired in the disorder (6).

Many authors have defended the existence of multiple
neuropsychological profiles in the disorder (1,4). It seems
that each of the many neuropsychological dimensions
that have been proposed to be associated to ADHD is
impaired among only a subset of individuals with the
disorder (1), with some of the measures having substantial
distributional overlap between ADHD and TD subjects (6).
As argued by Nigg et al. (6), it is possible that samples
previously classified as the same ADHD subtype actually
consisted of more subgroups of symptomatic children (i.e.,
with different deficit patterns), as seems to be the case
with the ADHD-I sample in the present study.

Neurobiological data
Our findings revealed that individuals with worse perform-

ance in attentional cognitive and behavioral measures
showed increased diffusion of water molecules – higher
FA values – in two fiber tracts, namely the left IFOF and
left ILF. These tracts make up the long association
bundles, being considered white matter’s main neural
pathways, connecting the frontal, temporal, and occipital
lobes, i.e., providing the connection between the anterior
and posterior brain regions.

Table 3. Comparison of latent classes in respect to fractional anisotropy (FA) mean values.

FA HR-class
Mean (SE)

ND-class
Mean (SE)

Overall w2 test P value

Anterior thalamic radiation L 0.37 (0.07) 0.44 (0.02) 0.90 0.343
Anterior thalamic radiation R 0.48 (0.01) 0.39 (0.03) 0.01 0.011

Corticospinal tract L 0.43 (0.08) 0.47 (0.06) 0.64 0.637
Corticospinal tract R 0.55 (0.02) 0.52 (0.02) 0.33 0.332
Cingulum (cingulate gyrus) L 0.48 (0.02) 0.47 (0.02) 0.52 0.516
Cingulum (cingulate gyrus) R 0.40 (0.05) 0.43 (0.02) 0.27 0.601

Cingulum (hippocampus) L 0.41 (0.05) 0.49 (0.03) 0.90 0.904
Cingulum (hippocampus) R 0.40 (0.06) 0.42 (0.03) 0.70 0.793
Forceps major 0.54 (0.03) 0.52 (0.03) 0.19 0.662

Forceps minor 0.57 (0.01) 0.50 (0.03) 4.34 0.037
Inferior fronto-occipital fasciculus L 0.50 (0.01) 0.39 (0.04) 9.77 0.002
Inferior fronto-occipital fasciculus R 0.38 (0.07) 0.44 (0.03) 0.51 0.473

Inferior longitudinal fasciculus L 0.46 (0.02) 0.35 (0.03) 8.95 0.003
Inferior longitudinal fasciculus R 0.47 (0.05) 0.45 (0.02) 0.43 0.514
Superior longitudinal fasciculus L 0.32 (0.07) 0.36 (0.03) 0.11 0.738

Superior longitudinal fasciculus R 0.36 (0.06) 0.40 (0.02) 0.36 0.551
Uncinate fasciculus L 0.33 (0.07) 0.40 (0.03) 0.94 0.333
Uncinate fasciculus R 0.49 (0.05) 0.44 (0.02) 0.43 0.513
Superior longitudinal fasciculus (temporal part) L 0.44 (0.03) 0.48 (0.02) 1.28 0.258

Superior longitudinal fasciculus (temporal part) R 0.27 (0.05) 0.29 (0.04) 0.07 0.795

L: left; R: right; HR-class: ultra-high risk class; ND-class: normal development of attentional functions; SE: standard error.
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According to the attentional model proposed by
Petersen and Posner (9), anterior-posterior areas of the
brain are responsible for modulating the vigilance network,
which is related to alertness and sustained attention.
Many studies state that attentional frontoparietal networks
play an important role in selective attention and, thus,
abnormalities in these networks can be responsible for
deficits in this cognitive domain (32).

Although attention relies on a wide network, in their
attentional model, Petersen and Posner (9) indicated that
the right hemisphere underlies the initiation and main-
tenance of arousal. Indeed, growing evidence from neuro-
psychology, neuroanatomy, and neurochemistry supports
the idea that the right hemisphere plays an important role
in attention functioning (33). In line with this finding, Riccio
et al. (34) stated that the role of the right hemisphere
in performance in CPT tasks is evident across multiple
studies, reiterating the important role of this hemisphere
in the maintenance of attention. As the majority of the
attentional measures adopted in our analysis were extracted
from a visual paradigm test – CCPT-II –, which required
both attentional control and implicit visual processing, we
assume that adequate performance in this task would
depend on the unimpaired functioning of the right anterior-
posterior cortical areas.

However, as already mentioned above, in our study
we found that the HR-class presented white matter abnor-
malities in tracts from the left hemisphere. Initially, this
finding might bring our results into question, but it should
be noted that although increased FA values are usually
associated with higher white matter integrity or more myeli-
nation of a fiber tract, when this data is found in patho-
logical samples, it can be the result of a reduction in fiber
branching in regions where more fiber branching should
actually exist, or be due to compensatory mechanisms (11),
as a reduced integrity in locally dominant fiber could result
in an increased net directional preference of water diffu-
sion within white matter in perpendicular tracts (13). In
many studies, these increased FA values are explained
by compensatory mechanism, even though they were not
necessarily accompanied by a reduction in fractional
anisotropy values of other fibers (13). Thus, in our results,
increased FA values in the left hemisphere tracts may be
due to the inappropriate development of the IFOF and ILF
tracts in the right hemisphere.

In their occipital course, these two tracts run together
and are part of the sagittal stratum (SS). Peterson et al.
(13) pointed out that increased FA values in the sagittal
stratum were correlated with inattentive symptomatology,
which is consistent with our results, since the HR-class
showed higher FA values in two of the three tracts that
compose the SS.

The IFOF connects the dorsal, medial occipital, and
parietal regions with the caudodorsal prefrontal cortex
(35). The IFOF conveys reciprocal connections between
these areas, being one of the networks responsible for

vigilance maintenance and visual processing (36). More-
over, the IFOF is concerned with higher top-down spatial
aspects of attention (37), playing an important role in
visual-spatial processing and in attention control (35,38).
Considering the importance of this tract for appropriate
attentional performance, we can infer that the HR-class’
worse performance in attentional measures – drawn from
a visual paradigm attentional task – might be associated
with less effective branching of this tract in the right hemi-
sphere, which may subsequently have resulted in increased
FA values in the left IFOF for these subjects due to
compensatory mechanisms.

The ILF is a ventral associative bundle with long and
short fibers connecting the occipital and temporal lobes (39).
The left ILF is also part of the visual sensory attentional
network, influencing visual search tasks (40). Previous
evidence has identified correlations between DTI meas-
ures (medium diffusivity) of the ILF and reaction time
variability in the CPT, highlighting the role of this tract as
part of the sensory visual attentional network. In line with
this, in our results, subjects with a worse performance in
reaction time variability in the CCPT-II (HR-class partici-
pants) presented abnormalities in the left ILF.

We can, therefore, hypothesize that if the right hemi-
sphere fiber tracts responsible for attention control and
visual-spatial processing are not functioning properly in
the HR-class, the left hemisphere tracts – IFOF and ILF –
may have partially assumed their processing through com-
pensatory mechanisms. This rearrangement may have led
to increased axonal packing of these left hemisphere
fibers, and, thus, help to explain the higher FA mean
values for IFOF and ILF fibers in the HR-class.

Considering the cognitive and behavioral profiles
of individuals as the starting point and relating them to
white matter abnormalities seemed to be a more sensitive
approach to understand anatomo-functional relationships.
As mentioned before, a previous analysis conducted with
the same sample of the current study (14) compared
the FA values of the same 20 fiber tracts, grouping
the subjects according to their original diagnosis group
(ADHD-I vs TD). Contrasting with the current results, in
the previous study no significant differences were found
between the groups. Thus, through this classical cate-
gorical approach, no white matter differences between the
groups were found, even after having selected ADHD
individuals with the same subtype, which would allow a
greater uniformity within the groups (see reference 14 for
more details). However, when a more refined analysis of
the possible pathophysiological mechanisms of dysfunc-
tion was carried out, arranging participants according to
observable cognitive and behavioral measures, neuro-
biological differences were found.

The differences between the findings of the dimen-
sional (current) analysis and the categorical (previous)
analysis gave further support to the idea that brain-
behavior relationships may not respect the arbitrary limits
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imposed by diagnostic classifications, and seemed to vary
in accordance with homogenous phenotypes.

Although the present study restricted the sample
diversity, comprising only ADHD-I and control individuals,
the findings indicated the existence of distinct neuro-
psychological patterns among the participants, consonant
with the conclusions of Fair et al. (1) and van Hulst
et al. (4). Moreover, our investigation went beyond the
identification of neuropsychological and behavioral pro-
files, integrating neurobiological data into the analysis.
White matter abnormalities found in the IFOF and ILF in
the HR-class shed light on neurobiological characteristics
that might be associated with inattention. Of course, these
results cannot be considered as conclusive, and it would
be premature to suggest that these same neurobiological
traits could be found in all individuals with a cognitive
profile similar to the HR-class. Notwithstanding, our results
reiterate the importance of linking cognitive and behavioral
variables to neurobiological systems and going beyond a
categorical diagnosis, as recommended by RDoC frame-
work. Performance in cognitive tasks can be used as a
marker that may contribute to a better identification of
subgroups of a given disorder and its underlying biological
mechanisms, allowing clinicians to better understand indi-
vidual phenotypes.

The limitations of this study involve the use of cognitive
variables extracted from one attentional task only. As no
more indexes could be added to the LCA due to the size of
the sample, the replication of the current analysis with a
larger sample would allow more cognitive and behavioral
indicators to be included. A larger sample would probably
permit participants to be regrouped in more classes, and,

therefore, allow the identification of a greater diversity of
attention profiles among subjects. The small size of our
sample also restricts the generalization of our findings.

Our results do not negate the clinical need for diagnostic
categories or the existence of the categories themselves but
highlight how the heterogeneity of a disorder reflects the
need to produce evidence based on cognitive, behavioral,
brain, and genetic features. The newly established sub-
groups can respond differently to specific interventions and,
in the long term, efforts to identify groups of individuals with
more homogenous characteristics may be helpful in their
treatment and management.

Supplementary material

Click here to view [pdf].
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