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Clostridium difficile toxins or infection induce
upregulation of adenosine receptors and IL-6 with
early pro-inflammatory and late anti-inflammatory
pattern
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Abstract

Clostridium difficile causes intestinal inflammation, which increases adenosine. We compared the expression of adenosine
receptors (AR) subtypes A1, Aoa, Azg, and Az in HCT-8, IEC-6 cells, and isolated intestinal epithelial cells, challenged or not with
Clostridium difficile toxin A and B (TcdA and TcdB) or infection (CDI). In HCT-8, TcdB induced an early A,gR expression at 6 h
and a late AyaR expression at 6 and 24 h. In addition, both TcdA and TcdB increased IL-6 expression at all time-points (peak at
6 h) and PSB603, an AxgR antagonist, decreased IL-6 expression and production. In isolated cecum epithelial cells, TcdA
induced an early expression of A;gR at 2 and 6 h, followed by a late expression of A;aR at 6 and 24 h and of A{R at 24 h. In CDI,
AoaR and AogR expressions were increased at day 3, but not at day 7. ARs play a role in regulating inflammation during CDI by
inducing an early pro-inflammatory and a late anti-inflammatory response. The timing of interventions with AR antagonist or

agonists may be of relevance in treatment of CDI.
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Introduction

Clostridium difficile (C. difficile) is a major cause of
antibiotic-associated diarrhea in hospitalized patients (1).
Since the early 2000’s, considerable changes in the
epidemiology and severity of C. difficile infection (CDI)
have been observed worldwide, which has been related
to the rise of more virulent strains such as NAP1/B1/027
(2-4).

This anaerobic bacterium produces two major exotox-
ins, toxin A (TcdA) and toxin B (TcdB), both with glucosyl-
transferase activity, which permanently inactivates Rho
GTPases causing disaggregation of actin cytoskeleton,
activation of caspases, and intestinal cell damage (5,6).
In vitro, both TcdA and TcdB decrease intestinal cell
migration and proliferation and induce apoptosis by
activation of extrinsic and intrinsic apoptosis pathways
(7-9). We have previously demonstrated that TcdA
attenuates Wnt/-catenin signaling in intestinal epithelial
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cells, which is associated with anti-proliferative effects
(10). In animal models, these toxins also cause intestinal
secretion, intense destruction of the mucosa, hemorrhage,
and accentuated tissue inflammation with neutrophil
infiltration and production of cyclooxygenase-2, prosta-
glandin E2, and inflammatory cytokines such as tumor
necrosis factor (TNF)-a and interleukin (IL)-1pB, IL-6, and
IL-8 (11,12). Treatment of CDI still relies on antimicrobial
agents such as vancomycin or fidaxomycin (13). Unfortu-
nately, antimicrobial therapy may create a susceptible
environment for reinfection or relapse by disrupting the gut
microbial flora (14). Furthermore, a subset of patients can
be refractory to available medical therapy, including fecal
transplant, highlighting the need for novel treatment options.

Adenosine, an endogenous purine nucleoside, accu-
mulates in the extracellular space during stressful condi-
tions, such as ischemia, hypoxia, and inflammation, and
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modulates the immune and inflammatory responses (15).
Adenosine elicits its effects through four transmembrane
adenosine receptors: A4, Aoa, Aog, and Az, which all act
on mitogen-activated protein kinase pathways (MAPK)
(16). Receptors A; and Aj; increase concentration of
calcium, while receptors Aop and A,g increase cyclic AMP.
While activation of receptor A,a induces an anti-inflam-
matory response, activation of receptor A,g is associated
with a pro-inflammatory response (17,18). Indeed, we
have demonstrated in vitro and in vivo that A, agonists or
Aog antagonist can ameliorate C. difficile colitis (19,20).
Interestingly, the expression, distribution, and co-localiza-
tion of these receptors in the gastrointestinal tract intestine
varies between cell types (21), highlighting the importance
of investigation of the cell-specific roles of A,aR and AxgR.

In this study, we evaluated the expression of AR
specifically in isolated cecum epithelial cells following
CDI or exposure to TcdA and found a time-dependent
expression pattern of Aog and A,a. Similar results were
observed in vitro following exposure to TcdA and TcdB and
correlated with expression of IL-6, a pro-inflammatory
cytokine.

Material and Methods

Cell culture

A human ileocecal epithelial cell line, HCT-8 cells
(passages 20-30), were grown in filtered RPMI medium
1640 in the presence of 10% fetal bovine serum, 1 mM
sodium pyruvate, and 0.1 unit/mL of penicillin/streptomycin
(Gibco, cat #15140, USA). Rat intestinal jejunal crypt cells,
IEC-6 cells (passages 17-30), were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (Gibco), 1 mM sodium pyruvate, 95%
bovine insulin, and 0.1 unit of pen/strep. All cells were
maintained in a humidified incubator at 37°C and 5% CO..
Trypsin-EDTA-dissociated HCT-8 cells, in 200 pL of
the medium, were seeded in a 6-well plate. Upon 80%
confluence, the cells were treated with TcdA or TcdB
(0.01, 0.1, 1, 10, and 100 ng/mL) and were incubated for
2,6, and 24 h.

Murine cecal injection model

We performed the murine cecal injection as previously
described (22). This protocol was approved by the Center
for Comparative Medicine at the University of Virginia
(USA). C57BL/6 male mice, weighing 23-25 g each,
were fasted overnight. The mice were anesthetized with
ketamine (60-80 mg/kg) and xylazine (5-10 mg/kg),
administered intramuscularly. A midline abdominal inci-
sion was made to expose the cecum. After flushing with
PBS, 20 pg of toxin A in 100 pL of 0.9% normal saline
was injected into the distal tip. Incisions were sutured
(nylon 3-0, Procare, Brazil) (time 0) for 2, 6, or 24 h and
animals were monitored during recovery. Sham-injected
animals received only 100 pL of saline and animals were
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monitored during recovery. Any moribund (i.e., hunched
posture, ruffled coat, or little to no movement) mouse was
immediately euthanized. In animal studies, TcdA appears
to be the dominant virulence factor compared to TcdB
(23,24). Therefore, we chose to use TcdA, not TcdB, in the
murine model.

Isolation of cells from cecal tissue

The cecum epithelial cells isolation protocol was fol-
lowed according D’Auria et al. (22). A cross-section from
the middle of each cecum was dissected and opened
longitudinally, rinsed with Hank’s balanced salt solution
(HBSS; Gibco), and shaken at 250 rpm for 30 min at 37°C
in HBSS containing 50 mM EDTA and 1 mM dithiothreitol
(DTT) in order to remove epithelial-layer cells. The digest-
ed tissue was strained with a 100-pum cell strainer and the
filtrate was centrifuged (1,000 g, 4°C, 10 min). Cells were
resuspended in red-cell lysis buffer (150 mM NH4CI,
10 mM NaHCO3, 0.1 mM EDTA) and centrifuged again.
The pelleted cells were stored at — 80°C for further RNA
isolation and cytokine quantification.

Murine model of C. difficile infection

The infection model was a modification of a previously
described protocol (25). This protocol has been approved
by the Center for Comparative Medicine at the University
of Virginia. From 6 to 4 days prior to infection, C57BL/
6 mice were given an antibiotic cocktail containing
vancomycin (0.0045 mg/g), colistin (0.0042 mg/g), genta-
micin (0.0035 mg/g), and metronidazole (0.0215 mg/g)
in drinking water. One day prior to infection, clindamycin
(32 mg/kg) was injected subcutaneously. Infection was
performed with strain VPl 10463 at an inoculum of
10° cells administered by oral gavage. The uninfected
control group received only the vehicle. A group of
infected and uninfected mice were sacrificed by cervical
dislocation under sedation (ketamine-xylazine) on day 3
and at the end of the experiment (day 7). Cecal tissues
were harvested and frozen until mMRNA extraction and
AR gene expression assay were performed.

Adenosine receptor subtype assay

Adenosine receptor subtype (A4, Aza, Agg, and Aj),
was assayed by quantitative PCR (qPCR) in IEC-6, HCT-
8, or in mouse cecum epithelial cells. Purified TcdA
and TcdB were provided by David Lyerly from TECHLAB,
Inc. (USA). Each sample was suspended in 350 pL of
RLT lysis buffer and the RNA was extracted using Qiagen
RNeasy mini kit (USA), according to manufacturer’s
instructions. RNA was quantified by standard spectro-
photometry (Biophotometer, Eppendorf, Germany). In order
to remove the genomic DNA carried over from RNA
extraction, DNase | (Ambion, USA) treatment was per-
formed following the manufacturer’s instructions. Synthesis
of cDNA by reverse transcriptase PCR was performed
using SuperScript 1l First-Strand Synthesis System
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SuperMix (Invitrogen, USA) with the use of oligo (dT)
as primers. cDNA was used in quantitative PCR for
measuring A4, Aoa, Ao, and A3 expression compared to
GAPDH expression. The Invitrogen Fast SYBR green
cells-to-CT one-step kit was used according to the man-
ufacturer’s instructions, as previously described (26).
The relative gene expression was determined using the
2—-AACt (25) method using GAPDH as the housekeeping
gene.

Cytokine gene assay

Total cellular RNA extraction from each intestinal
tissue, analysis, cDNA conversion, and gPCR protocol
are described above (26,27). The primers used for both
adenosine subtype and cytokine gene expression are
listed on Table 1.

Cytokine quantification by ELISA

IL-6 concentrations in cecum tissue were measured by
enzyme-linked immunosorbent assay (ELISA) as described
previously (28).

Immunohistochemical reaction for IL-6
Immunohistochemistry (IHC) for IL-6 was performed
in cecum tissue using the streptavidin-biotin-peroxidase
method (29) in formalin-fixed, paraffin-embedded tissue
sections (4-um thick) mounted on poly(l)-lysine-coated
microscope slides. Sections were incubated overnight
(4°C) with primary rabbit anti-mouse IL-6 (Santa Cruz
Biotechnology, USA) in PBS plus bovine serum albumin
(PBS-BSA). The slides were then incubated with biotiny-
lated goat anti-rabbit IgG and diluted in PBS-BSA. After
being washed, the slides were incubated with avidin-
biotin-horseradish peroxidase conjugate (ABC complex;
Santa Cruz Biotechnology) for 30 min according to the
manufacturer’s protocol. IL-6 was visualized with chromo-
gen 3,3’diaminobenzidine (DAB). Negative-control sections
were processed simultaneously as described above but

Table 1. List of primer sequences for reverse transcription-qPCR
analyses.

Gene Primers Sequence
A; AR Forward GCGGTGAAGGTGAAC
Reverse =~ AGGCAGGTGTGGAAG
Aoa AR Forward AGTTCCGCCAGACCTTCC
Reverse =~ AGTTCCGCCAGACCTTCC
Ass AR Forward GGTCATTGCTGTCCTCTG
Reverse CAGGTGAGCCAGCAAGATC
Az AR Forward AGGGTAGGAATGAGCAAGTTG
Reverse CAGGTGAGCCAGCAAGATC
GAPDH Forward AGGTCGGAGTCAACGGATTTGGT
Reverse CATGTGGGCCATGAGGTCCACCAC
IL-6 Forward ACAAGTCGGAGGCTTAATTACACAT
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with the first antibody being replaced by PBS-5% BSA.
Slides were counterstained with Harris hematoxylin (Dina-
mica, Brazil).

Statistical analysis

Data are reported as means = SE, as generated
by GraphPad Prism version 5.0 (GraphPad Software,
USA). The differences between experimental groups were
evaluated using one-way analysis of variance (ANOVA)
with Bonferroni’s multiple comparison test. Student’s t-test
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Figure 1. Adenosine receptor (AR) gene expression in intestinal
human (HCT-8) and rat (IEC-6) cells and isolated cecal epithelial
cells. HCT-8 (A) and IEC-6 (B) cells were incubated with specific
media and, after achieving confluence, cells were harvested and
mRNA were extracted and analyzed by qPCR. C, The cecum
epithelial cells from mice (n=6 per group) were isolated and the
mRNA was extracted for AjAR, A>pAR, AsgAR, and AzAR
analysis by qPCR. Each assay was performed in triplicate per
time-point. *P <0.05, compared with AjAR, A25AR, and AzAR;
**P <0.05, compared with AJAR and AzAR (one-way ANOVA with
Bonferroni post-test). Vertical lines indicate mean + SE.
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was performed to analyze differences between 2 groups.
Statistical significance was set at P<0.05.

Results

A2gR was the predominant AR expressed in intestinal
epithelial cells

The mean of A,g MRNA expression was 10-fold higher
(P <0.05) than that of A; and > 150-fold higher (P <0.05)
than those of A,n and Aj transcripts in HCT8 cells at
baseline (Figure 1A). However, in IEC-6 cells, both Aoa
and Ao,g mRNAs were significantly more expressed than
A and A; (Figure 1B). In cecum epithelial cells isolated
from healthy mice, mRNA levels of Ayg were significantly
higher than all other ARs followed by A,a, as shown in
Figure 1C. Therefore, for our in vitro experiments of TcdA
and TcdB intoxication, HCT-8 cells were used, as its
adenosine receptor pattern more closely resembled cecal
epithelial cells compared to IEC-6 cells.

TcdA and TcdB upregulated AR expression in HCT-8
cells

To test whether C. difficile toxins affect AR expression
in vitro, we incubated HCT-8 cells with TcdA or TcdB. Asg
mRNA significantly increased after 2 and 6 h of exposure
to 10 ng/mL TcdB (Figure 2C). A, mRNA significantly
increased after 6 and 24 h of exposure to TcdB (Figure 2B).
TcdA at 10 ng/mL significantly increased Ao,g and Aoa

1200+
800-
600-
2001
-
100 - el [C A S
- -

w
o

-
o

>

4/10

transcript expression after 6 h and 24 h of exposure,
respectively. There was no significant difference in A1
or A3 mRNA expression in response to TcdA and TcdB
(Figure 2A and D).

C. difficile toxin-induced IL-6 secretion was mediated
by AZBR

Because both TcdB and TcdA predominantly induced
the expression of A,g in HCT-8, we investigated whether
this was associated with IL-6 gene expression by using
PSB603, a specific Aog antagonist. TcdB increased IL-6
gene expression by 1.6-, 7.4-, and 1.6-fold at 2, 6, and
24 h, respectively (Figure 3).

Incubation with A,g antagonist, PSB603, significantly
decreased IL-6 secretion at 2, 6, and 24 h. Consistent with
the timing of peak Ayg expression, IL-6 gene expression
also peaked at 6 h with TcdB stimulation.

TcdA and C. difficile infection induced AR expression
in isolated cecum epithelial cells

To test the effect of C. difficile toxins in AR expression
in vivo, we injected mouse cecal loops with TcdA as we
had previously demonstrated that TcdA, and not TcdB,
induced consistent histopathological findings in both
mouse and rabbit intestinal tissues (28,29). After 2, 6,
and 24 h of exposure, epithelial cells isolated from cecal
tissues challenged with TcdA had significantly higher
mMRNA levels of A4, Aza, and Agg subtypes compared to
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Figure 2. Effect of C. difficile toxins on adenosine receptor (AR) expression in vitro. HCT-8 cells were intoxicated with TcdA or TcdB
(10 ng/mL) for 2, 6, and 24 h. Analyses of A1AR (A), A2aAR (B), A2gAR (C), and AzAR (D) mRNA expression were performed by gPCR.
Each assay was performed in triplicate per time-point. *P <0.05 compared with control (Ctrl) (one-way ANOVA with Bonferroni post-

test). Vertical lines indicate mean + SE.
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Figure 3. Effect of A,gAR antagonist (PSB603) on C. difficile-
induced interleukin (IL)-6 gene expression in vitro. HCT-8 cells
were incubated with TcdA and TcdB at 10 ng/mL with or without
PSB603. Analyses of IL-6 mRNA expression at 2 (A), 6 (B),
and 24 (C) h were performed by qPCR. Each treatment was
done in triplicate per time-point. *P<0.05, **P<0.05 (one-
way ANOVA with Bonferroni post-test). Vertical lines indicate
mean = SE.

their respective controls (Figure 4). A,gR subtype expres-
sion significantly increased at 2 and 6 h (Figure 4C), A2aR
at 6 and 24 (Figure 4B), and A only at 24 h (Figure 4A).
No significant difference in AzR mMRNA expression levels
was observed (Figure 4D). Again, A,g levels were the
most highly expressed amongst the AR subtypes, with
peak expression at 6 h of incubation. To evaluate the
effect of C. difficile infection on AR subtype expression,
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we harvested cecal tissues from infected mice at days
3 (infection peak) and 7 (recovery period) post-infection.
Cecal tissues harvested at day 3 post-infection with
C. difficile had higher A;p and Ay mMRNA expressions
compared to their respective uninfected controls (Figure
5A-D). At day 7 post-infection, no significant differences in
Ao and Aog MRNA expressions were observed compared
to uninfected controls but there was a significant decrease
in both Ao, and A,z mRNA expressions at day 7 com-
pared to infected mice at day 3. No significant differences
regarding mRNA levels of A; were observed among the
groups (Figure 5D)

C. difficile toxin-induced IL-6 secretion decreased with
the A,gR blockage in vivo

IL-6 concentration in murine cecal epithelial cells
intoxicated with TcdA was evaluated by ELISA and IHC.
After 2 h of exposure, there was no difference in IL-6
production. However, 6 hours after TcdA incubation, IL-6
production and immunoreactivity increased significantly in
cecal enterocytes compared to the control group (Figure
6A and B). The animals intoxicated with TcdA and treated
with the A,g antagonist PSB603 had significantly lower IL-
6 levels and immunoreactivity than untreated mice.

Discussion

In this study, we demonstrated for the first time
the expression of AR subtypes specifically in isolated
cecal epithelial cells in a murine model of CDI or TcdA
intoxication and identified a distinct expression pattern
during early and late infection, contributing to the under-
standing of the cell-specific pathogenesis of CDI. Indeed,
we also confirmed in vitro using a human intestinal cell
line, HCT-8, that Ayg expression increased at earlier time-
points of intoxication while A, increased at later time-
points.

Previously, we have demonstrated the effect of TcdA
and TcdB on the expression of adenosine receptors after
2 and 4 h of intoxication in HCT-8 cells (19). The present
work used short-term (2 and 6 h) and, importantly, long-
term incubation with TcdA or TcdB (24 h), demonstrating
the effect on adenosine receptors both in vitro (HCT-8
cells) and in vivo (cecal epithelial cells), and the effect of
infection with the microorganism on adenosine receptors.
The short-term effects of toxins A and B on the expression
of adenosine receptors in HCT-8 cells demonstrated in the
current study corroborated previously published findings,
suggesting that intestinal epithelial cells upregulate A,g AR
mRNA expression in response to C. difficile toxins (19).

We have previously shown that the A,oR agonist,
ATL313, significantly decreased intestinal damage and
TNF-a production induced by C. difficile TcdA in mice (20).
A subsequent study combining ApR agonist therapy
(ATL370) with alanlyl-glutamine supplementation demon-
strated improvement of intestinal damage and increased
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Figure 4. Effects of C. difficile TcdA on the adenosine receptors (AR) gene expression in cecal epithelial cells. The murine cecum (n=6/
group) was injected with TcdA (20 pg/loop) and incubated for 2, 6, and 24 h. The cecal epithelial cells were isolated and mRNA was
extracted for A1AR (A), A2aAR (B), A2gAR (C), andA3;AR (D) analysis by qPCR. *P <0.05 compared with control (Ctrl) (one-way ANOVA

with Bonferroni post-test). Vertical lines indicate mean + SE.

IL-10 levels during TcdA intoxication (19). In the present
study, by isolating the cecal epithelial, cells in vivo, we
were able to evaluate separately the effect of TcdA on
adenosine receptor expression and have found that Ag
is the most highly expressed amongst the AR subtypes.
In fact, according to the literature, A,p may be more
localized in immune rather than epithelial cells in the
intestinal tract (30). In accordance, in macrophages, Aoa
receptor activation decreases secretion of inflammatory
cytokines, such as TNF-o and IL-6 and increases IL-10
(31,32).

Several studies have confirmed the A,gR pro-inflam-
matory role by demonstrating that A,gR blockade with
selective antagonists decreases IL-6 levels and neutrophil
activation, resulting in decreased intestinal damage in mice
suffering from colitis (33,34 ) or infected with C. difficile (19).
In HCT-8 cells and cecum epithelial cells, TcdA- or TcdB-
induced IL-6 secretion is significantly decreased by A,gR
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blockade. Additionally, it was seen that blocking or knock-
down of A,gR caused a significant decrease in IL-6
secretion by the enterocytes and submucosal cells in
infected animals, suggesting that the expression of pro-
inflammatory cytokines such as IL-6 by intestinal epithelial
cells are induced via AsgR stimulation and activation of its
intracellular signaling pathway (19).

In this study, we evaluated the effect of TcdA on AR
subtype expression specifically in isolated mouse cecal
epithelial cells. Although both TcdA and TcdB are impor-
tant for pathogenesis, we did not use TcdB in our murine
model experiments since it has been previously shown
that rabbits, hamsters, and mice are more responsive
to TcdA, compared with TcdB (35-37). TcdA increased
the expression of all AR subtypes. Specifically, TcdA
induced an early peak (2 and 6 h) of A,g and a late peak
(6 and 24 h) of A,a. We also found that Ajr expression
was increased at 24 h. Adenosine A, is known to have
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predominantly a pro-inflammatory effect. However, since
Aog was shown to be the predominant AR expressed
in cecal epithelial cells, we believe that the overall
inflammatory state was more closely linked to A,g
expression.

Using a murine model of CDI, we isolated the intestinal
cecum epithelial cells in mice at days 3 and 7 post-
infection with C. difficile and assessed the AR subtype
expression pattern. We found that infection increased the
expression of A,p and Ayg at day 3, compared to unin-
fected controls, with a predominance of A,g. During the
infection recovery (day 7), expression of both receptors
was significantly decreased. These findings are consistent
with our previous studies suggesting the potential critical
role of Agg activity in the pathogenesis of CDI (19) and
support the role of Ay, in controlling inflammation-induced
damage.

Considering that HCT8 is a human cell line and more
closely resembled the AR subtype pattern observed in
isolated cecal epithelial cells in vivo compared to rat
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intestinal epithelial cells, we chose this cell line to evaluate
the effect of TcdA and TcdB over time on the expression
of AR subtypes in vitro. Pro-inflammatory cascade likely
predominated at early time points of intoxication as sup-
ported by an early peak of A,gR expression, followed later
by the anti-inflammatory cascade as supported by a late
peak of AaR expression. We hypothesized that, initially,
there is a peak of pro-inflammatory cytokines, such as
IL-6, in the intestinal epithelium that may result in the
activation of macrophages and the recruitment of neu-
trophils to control infection. However, following the massive
release of pro-inflammatory cytokines and production of
free radicals, the intestinal epithelium possibly shifts
towards an anti-inflammatory milieu to limit the tissue
damage induced by exaggerated immune and pro-
inflammatory responses. Similarly, dendritic cells when
mature express higher levels of A,a, switching from a
pro- to an anti-inflammatory response, with increased
levels of IL-10 and lower levels of IL-1 beta, TNF-o, and
IFN-gamma (38—40).
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Figure 6. Effect of A,gAR antagonist (PSB603) on C. difficile-induced interleukin (IL)-6 production in vivo. The murine cecum (n=6/
group) was injected with TcdA (20 pg/loop) with or without PSB603 (5 1M) and incubated for 2 and 6 h. The cecum epithelial cells were
isolated and IL-6 production was detected by ELISA and reported as absorbance (O.D.) units (A). ®P <0.05 compared with Ctrl 2 h;
P <0.05 compared with Ctrl 6 h (one-way ANOVA with Bonferroni post-test). Data are reported as mean = SE. B, The presence of IL-6
in the enterocytes from cecal tissues was detected by immunohistochemistry. Representative tissues shown were harvested at 6 h

(scale bar 25 pm).

In conclusion, we demonstrated that C. difficile toxins
upregulate predominantly A,a and A,g subtypes in the
intestinal epithelium, with an early expression of Ajg and
IL-6, followed by a late A, gene expression. A,g appears
to be critical for IL-6 gene expression and production in
HCT8 and cecum epithelial cells. Similarly, in our infection
model, A,z seemed to be the predominant AR expressed
during acute infection, which may partially explain the
highly inflammatory feature of the C. difficile-associated
diarrhea. Our findings provide insight into the sequence of
events in adenosine receptor subtype expression upon
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