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Abstract

The interactions between the median raphe nucleus (MRN) serotoner-
gic system and the septohippocampal muscarinic cholinergic system
in the modulation of immediate working memory storage performance
were investigated. Rats with sham or ibotenic acid lesions of the MRN
were bilaterally implanted with cannulae in the dentate gyrus of the
hippocampus and tested in a light/dark step-through inhibitory avoid-
ance task in which response latency to enter the dark compartment
immediately after the shock served as a measure of immediate working
memory storage. MRN lesion per se did not alter response latency.
Post-training intrahippocampal scopolamine infusion (2 and 4 pg/
side) produced a more marked reduction in response latencies in the
lesioned animals compared to the sham-lesioned rats. Results suggest
that the immediate working memory storage performance is modu-
lated by synergistic interactions between serotonergic projections of
the MRN and the muscarinic cholinergic system of the hippocampus.
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Introduction

There is considerable evidence suggest-
ing that the interactive processes between
the serotonin (5-HT) and acetylcholine (ACh)
systems are severely affected in a majority of
Alzheimer’s disease cases (1-3). The abnor-
malities in interactive neurotransmitter pro-
cesses may be a factor causing cognitive
impairments such as working memory defi-
cits in this disease (4,5). Behavioral studies

have provided strong evidence for the in-
volvement of the 5-HT and ACh systems in
working memory (6,7). It is well known that
the hippocampus is a critical structure for the
interaction of 5-HT and ACh systems and for
the mediation of working memory (8-12).
However, the nature of the interactions be-
tween these systems in the hippocampus re-
mains unclear (7,9,10,13).

The hippocampus receives extensive in-
nervations from polygonal serotonergic cell
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bodies (14) in the dorsal and median raphe
nuclei (MRN) (15,16) and contains multiple
5-HT receptor subtypes (17). Therefore, it
has been proposed that the interactions be-
tween the septohippocampal 5-HT and ACh
in the modulation of learning and memory
may depend on serotonergic origins (18,19)
and specification of 5-HT receptors (17). It
is believed that tasks assessing working
memory should be able to distinguish the
non-mnemonic changes from mnemonic pro-
cesses within one session (10,20) and also
distinguish the formation and storage of im-
mediate memory lasting seconds or a few
minutes (8,21). The immediate memory in a
single-trial inhibitory avoidance test is now
identified as working memory (21-23).

In the present study, using a single-trial
step-through inhibitory avoidance task, we
examined the effects of neurotoxic lesions
of the MRN on immediate memory deficits
resulting from post-training scopolamine in-
fusion into the dentate gyrus of the dorsal
hippocampus which is a MRN-innervated
area (24), and thereby tried to determine if
the MRN-serotonergic system regulates im-
mediate working memory storage perfor-
mance by interacting with the septohippo-
campal muscarinic cholinergic system.

Material and Methods
Animals

Adult male Wistar rats weighing 220-
250 g were maintained under a 12-h light-
dark (lights on at 7:00 h) illumination cycle
with free access to food and water. The
animals were handled and allowed to adapt
to the experimental room and were habitu-
ated to the infusion procedure for 5 days.

Inhibitory avoidance testing
Behavioral tests were carried out using a

step-through inhibitory avoidance apparatus
as described previously (25). In the training
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trial, when the rats were placed in the testing
illuminated compartment, they escaped to
the dark compartment. The initial escape
from the illuminated compartment to the
dark box was considered as escape latency
and was taken as a measure of non-mne-
monic behaviors in a new context. When all
four paws were on the shock grid floor of the
dark compartment, the door was lowered
and after a 3-s delay, a 1.0-mA scrambled
footshock was applied to the grid floor for
2 s. The rat then was immediately removed
from the dark compartment and 10 min after
the shock, again placed in the testing com-
partment without shock and allowed access
to the dark compartment for a maximum of
300 s. The time to step into the dark compart-
ment (response latency) was used as a meas-
ure of working memory. The response la-
tency value of 300 s was assigned when the
ratdid notenter the dark compartment within
300 s. The chamber was cleaned with 5%
alcohol and tap water between rats. Inhibito-
ry avoidance training and testing were per-
formed from 9:00 to 12:00 h.

Surgery

Before the behavioral experiments, all
rats (N = 54) were randomly divided into
sham- and MRN-lesioned groups. Each rat
was placed in a stereotaxic frame under so-
dium pentobarbital anesthesia (45 mg/kg, ip)
and 2 pl of ibotenic acid (1 pg/pl, Sigma
12765, St. Louis, MO, USA) or artificial
cerebrospinal fluid (aCSF) (in sham-lesioned
rats) was infused through a stainless steel
infusion cannula (24 gauge) into the MRN
region, as described previously (26). In the
same rats, guide cannulae (21 gauge) were
implanted bilaterally into the dorsal hippo-
campus 1 mm above the dentate gyrus for
microinfusion of the drug. The following
stereotaxic coordinates were used: 3.8 mm
posterior to bregma, 2.0 mm lateral to mid-
line and 2.0 mm ventral to the bone surface
of the skull according to the brain atlas of
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Paxinos and Watson (27). The hippocampal
guide cannulae were fixed to the skull with
two stainless steel screws and dental cement
and closed with removable silicon plugs.
Animals were allowed to recover for 20 days
before being tested in the inhibitory avoid-
ance task.

Drug and intrahippocampal infusion

The cholinergic muscarinic antagonist
(-)-scopolamine hydrobromide (Sigma) was
used and prepared fresh on each trial day in
aCSF. Vehicle (aCSF) infusion was used as
control treatment.

Immediately after the shock (one minute
delay), sham- and MRN-lesioned rats were
restrained by hand and an infusion cannula
was fitted into the guide cannula. The tip of
the infusion cannula protruded 1 mm be-
yond the guide cannula and was aimed at the
granular layer of the dentate gyrus. Animals
received a bilateral 1-pl infusion of vehicle
or scopolamine (2 or 4 pg/side) through the
infusion cannula. The drug was used in a
dose range previously shown to produce a
marked working memory deficit in the in-
hibitory avoidance task (23). Infusion was
performed with a pump (Cole Palmer, Mo-
del 210) at a rate of 0.5 pul/min. The infusion
cannula was left in place for another 30 s
after completion of the infusion. The entire
infusion procedure took about 5 min. After
infusion, all rats were placed in their home
cages for 5 min in order to minimize stress.

Histology

Shortly after the behavioral tests, rats
were deeply anesthetized with sodium pen-
tobarbital, and perfused intracardially with
0.9% NacCl followed by 10% formalin. The
brains were further fixed in 10% formalin
and sectioned along the coronal plane (5-50
pum). These sections were assessed for tissue
lesion in the MRN and for location of the tip
of the guide cannulae in the dorsal hippo-

*x as
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[ Scopolamine 4 pg/side

campus. As shown previously, ibotenic acid
at the dose used resulted in marked polygo-
nal cell body loss in the MRN regions (26).
The ventral positions of the tips of the guide
cannulae ranged approximately from 2.0 to
2.3 mm (Figure 1), indicating that the infu-
sion cannulae were positioned between 3.0-
3.3 mm, i.e., in the dentate gyrus at the time
of infusion. Data from no animal had to be
discarded due to poor placement.

Statistical analysis

Results are reported as medians and in-
terquartile ranges. Data were analyzed sta-
tistically by Kruskal-Wallis analysis of vari-
ance followed by the Mann-Whitney U-test.
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Figure 1. Brain sections in the
coronal plane showing the tips
of the guide cannulae in rats in-
fused with 2 pg scopolamine
(open circles) and 4 pg scopola-
mine (filled circles). Plates adapt-
ed from the rat brain atlas of
Paxinos and Watson (27).

Figure 2. Effects of post-training
intrahippocampal infusion of
scopolamine on response laten-
cies in sham- and median raphe
nucleus (MRN)-lesioned rats.
Each column represents the me-
dian (interquartile ranges).
Kruskal-Wallis analysis of vari-
ance for post-training scopola-
mine infusion in sham-lesioned
groups [H (2, N = 27) = 18.4,
P<0.001] and in MRN-lesioned
groups [H (2, N = 27) = 23.1,
P<0.0001]. *P<0.05, **P<0.001
compared to vehicle control;
*P<0.001 compared to sham
control (Mann-Whitney U-test).
N =9 animals in all groups.
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P<0.05 was used as the criterion for statisti-
cal significance.

Results

The escape latencies for sham- and MRN-
lesioned rats were quite similar (overall mean,
24 s; median, 21 s; N = 54); the difference
was not statistically significant [H (5, N =
54) =2.17, P = 0.82], indicating that MRN
lesion per se had no effect on non-mne-
monic behaviors in a new context. As seen in
Figure 2, MRN lesion per se did not alter
response latency [H (1, N=18)=0.048, P =
0.82], indicating that MRN lesion had no
effect on the performance of working memory
in the inhibitory avoidance task. Post-train-
ing scopolamine at both dose levels (2 and 4
pg/side) significantly decreased response
latencies of both sham- and MRN-lesioned
animals, but a more dramatic decrease was
observed in the MRN-lesioned animals (Fig-
ure 2). This indicates that MRN lesions ag-
gravated the post-training scopolamine-in-
duced reduction in the immediate storing
performance of working memory.

Discussion

The present results demonstrate that in
rats with an intact cholinergic system, neuro-
toxic damage to the polygonal serotonergic
cell bodies in the MRN region had no effect
on immediate storage of working memory in
the inhibitory avoidance task per se. These
findings are in agreement with other studies
reporting no changes in the learning and
memory processes following serotonergic
pathway blockade in the midbrain (6,28-30).
The present study also showed that MRN
lesions aggravated working memory deficits
evoked by post-training intrahippocampal
scopolamine infusion. The lack of effect of
MRN lesions on non-mnemonic index such
as escape latency clearly indicated that the
effect of lesions on scopolamine-induced
working memory deficits was not due to the
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increased locomotor activity. Earlier, we
showed that ibotenic MRN lesions had no
effect on innate one-way escape latency (25)
or on immediate freezing conditioning (26).
It is important to note that MRN lesions did
not alter response latencies in the vehicle-
treated animals, an effect that precluded the
alteration in footshock sensitivity as a cause
of deeper working memory deficits seen in
the MRN-lesioned rats under the influence
of the drug.

The demonstration of an aggravating ef-
fect of MRN lesion on post-training scopola-
mine-induced working memory storage defi-
cit is consistent with many reports. For in-
stance, 5,7-dihydroxytryptamine injections
into the fimbria-fornix that prevent 5-HT
influence originating from the MRN, in com-
bination with median septum lesions, pro-
duce deeper memory deficits than those in-
duced by median septum lesion alone (8,9).
Pre-training p-chloroamphetamine adminis-
tration to produce 5-HT depletion in the
midbrain, which by itself has no effect, po-
tentiates the disruptive effects of scopola-
mine when given immediately after training
(31). All arguments presented indicate a clear
synergistic interaction between serotonergic
and muscarinic AChergic systems in the regu-
lation of storing performance of working
memory in the inhibitory avoidance.

There is evidence confirming the view
that the septohippocampal formation is im-
portant for the selection and regulation of
the salience of environmental stimuli (32)
and supporting temporal storage of neuronal
representation of the contextual cues (33,34).
Neuroanatomical studies indicate that sero-
tonergic inputs modulate septohippocampal
muscarinic AChergic networks via direct
connection with the muscarinic-AChergic
cell bodies, and exert indirect modulation on
these networks through the hippocampal
GABAergic interneurons (35,36). Through
hippocampal GABAergic interneurons, sero-
tonergic inputs modulate the activity of glu-
tamate receptors, which is related to memory
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storage (36,37). Izquierdo et al. (23) showed
that hippocampal AMPA receptor-mediated
glutamatergic transmission, which is sus-
ceptible to GABA inhibition, is necessary
for working memory retrieval in the inhibi-
tory avoidance task. Furthermore, Ohno et
al. (38) reported that intrahippocampal infu-
sion of a competitive NMDA-receptor an-
tagonist such as CPP impairs working
memory performance of rats in a tree-panel
runway task. Thus, taken together, these data
suggest that through the GABAergic inter-
neurons in the septohippocampal formation,
MRN-serotonergic projections indirectly
modulate excitation of neuronal networks
related to immediate associations of contex-
tual cues. It has been reported that AChergic
and glutamatergic systems are functionally
linked to the mediation of learning and
memory. Markram and Segal (39) found
that, in hippocampal slices, ACh amplified
NMDA-related excitatory postsynaptic po-
tentials by acting on muscarinic receptors.
Ohno and Watanabe (40) showed that low
doses of scopolamine and of the non-com-
petitive NMDA receptor antagonist MK-801,
each ineffective when administered alone,
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