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Abstract

Temporal organization is an important feature of biological systerkey words

and its main function is to facilitate adaptation of the organism to théeeding
environment. The daily variation of biological variables arises from arf>lucocorticoids
internal time-keeping system. The major action of the environment iR

to synchronize the internal clock to a period of exactly 24 h. The light?¢TH

dark cycle, food ingestion, barometric pressure, acoustic stimali“i"cadian rhythm
scents and social cues have been mentioned as synchronizers or =~ T
“zeitgebers”. The circadian rhythmicity of plasma corticosteroids has

been well characterized in man and in rats and evidence has been
accumulated showing daily rhythmicity at every level of the hypotha-
lamic-pituitary-adrenal (HPA) axis. Studies of restricted feeding in

rats are of considerable importance because they reveal feeding as a

major synchronizer of rhythms in HPA axis activity. The daily varia-

tion of the HPA axis stress response appears to be closely related to

food intake as well as to basal activity. In humans, the association of

feeding and HPA axis activity has been studied under physiological

and pathological conditions such as anorexia nervosa, bulimia, malnu-

trition, obesity, diabetes mellitus and Cushing’s syndrome. Complex
neuroanatomical pathways and neurochemical circuitry are involved

in feeding-associated HPA axis modulation. In the present review we

focus on the interaction among HPA axis rhythmicity, food ingestion,

and different nutritional and endocrine states.

Introduction Daily variations in plasma corticosteroid
levels may be considered a paradigm of cir-
Circadian rhythmicity is present in mostcadian rhythms and evidence has been accu-

organisms living under natural conditionsmulated showing the close relationship be-
and its most important role is to facilitatetween the hypothalamic-pituitary-adrenal
adaptation of the organism to periodic fluc{HPA) axis and the nutritional status of mam-
tuations in the external environment (1). Irmals, including humans (3).

particular, the food-seeking behavior might In this review we focus on the interaction
have forced the development of specializedmong HPA axis rhythmicity under basal
functions of the circadian timing system thatand stress conditions, food ingestion, and
enable the organism to be prepared for foodifferent nutritional and endocrine states. In
seeking, digestion and metabolism (2).  the first part of this paper we introduce the
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reader to basic concepts of chronobiologiators present in various organs and tissues
(for extensive reviews, see Refs. 1,4-6). (12). In addition to the pacemaker hypoth-
esis, the network hypothesis was recently

Circadian rhythms proposed: the interaction between the pace-

maker and non-pacemaker cells may be the
General features: anatomical pathways and key factor in the generation of a precise
rhythm synchronizers circadian rhythm within the SCN (13).

In mammals the SCN receives entraining

Biological rhythms range extensively ininformation from the light-dark cycle via
periodicity from a fraction of a second topathways separated from the visual system.
several years; however, the circadian rhythmhese pathways include the retinohypotha-
(from the Latin circadian meaning “around damic tract and the geniculohypothalamic
day”) have a predominant role and can b&act which arises from a subdivision of the
demonstrated not only in physiological statekateral geniculate nucleus (4). The neurotrans-
but also in pathological processes whictmitters and photoreceptors involved in the
fluctuate during the course of a day (7).  circadian rhythms of mammals have not been

The daily variations of biological vari- completely established. There are some data
ables are not simply a response to 24-guggesting the presence of neurons contain-
changes in the environment due to the rotang glutamate, gamma-aminobutyric acid, va-
tion of the earth on its axis, but rather arissoactive intestinal peptide and neuropeptide
from an internal time-keeping system (4)Y (NPY)in the circadian timing system (13).
and persist under constant environmental The output pathways leaving the SCN
conditions (“free-running”). The major ac- project mainly to the medial hypothalamus
tion of the environment is to synchronize th€14,15) and the localization of the SCN sug-
internal system to a period of exactly 24 h.gests that this nucleus has an important inte-

In mammals, the suprachiasmatic nucleugrative function.
(SCN) was initially supposed to be the only Little is known about the mechanisms
master circadian pacemaker (4). The SCN ighereby nonphotic stimuli influence the cir-
a complex structure involving two small bi- cadian clock system and how the SCN exerts
laterally paired nuclei situated in the anterioits integrative influence. It is generally ac-
hypothalamus above the optic chiasm andepted that the generation of HPA axis peri-
lateral to the third ventricle (5). The role ofodicity occurs in the central nervous system
the SCN as the circadian clock has bee(CNS) (16). However, specific neuroana-
demonstrated by lesion experiments and stutbmical pathways and neurotransmitters in-
ies involving transplantation of the SCN (8-volved in the expression of pituitary-adrenal
10). Although other neural loci have notcircadian rhythmicity have not been clearly
been identified as sites of the central biologidemonstrated. Numerous investigators have
cal clock, there is evidence demonstratingeported that lesions in various areas of the
resynchronization of corticosteroid circadiarnypothalamus inhibit daily adrenocorticotro-
rhythmicity after SCN destruction. Thesepin (ACTH) and corticosterone variation.
results may indicate the possibility of theThese procedures include anterior hypotha-
presence of other circadian clocks in braitamic deafferentation and SCN lesions
areas outside the SCN (11). Probably a moK8,17,18), lesions of ventromedial and dor-
complex timing circuitry exists and may sup-somedial nuclei (19), anterior hypothalamic
port the existence of a multioscillator systentesions (20) and basal hypothalamic lesions
where a master oscillator could be respor(21). The maintenance of a free-running cir-
sible for synchronization among other oscilcadian rhythm for corticosterone in rats with
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isolation of the medial basal hypothalamusis able to induce the expression of the proto-
including the SCN, from the rest of the cenoncogenes c-fos and jun-B and to influence
tral nervous system (22) indicates that thedeght entrainment and locomotor activity
neural structures are essential for the man{34,35).
festation of a light entrainable corticoster- The role of food presentation as a syn-
one rhythm. In addition, a direct input fromchronizer under natural conditions is not yet
the SCN to the paraventricular nucleus (PVNglear. However, under laboratory conditions,
has been described (14). CatecholaminergKrieger’s first studies (30) showed that peri-
inputs from the brainstem (23,24) and serosdic meal timing could act as an important
tonergic projections from the dorsal raphehythm synchronizer in rats. The adaptive
(25) have also been described as modulatofsature of food synchronization is of obvi-
of HPA axis rhythm. ous importance for the survival of any spe-
There is evidence that circadian rhythmi<cies.
city is an inherited characteristic of diverse
species, including humans (26). In fact, diurnal rhythms of the hypothalamic-
period mutation was described in golderpituitary-adrenal axis and the
hamsters, referred to as the tau mutant, wole of food
which the 24-h free-running periods of the
activity rhythm are shortened to 20 h and to The circadian rhythmicity of the HPA
22 h, in homozygous and heterozygous anéxis is one of the best documented cyclic
mals, respectively (27). However, genetimeuroendocrine activities. Daily variation in
analysis and identification (cloning) of genelasma corticosteroid has been well charac-
responsible for the determination of circaterized in man and in rats, presenting as peak
dian rhythm have been restricted to inverteeoncentrations prior to or at the time of onset
brates (28,29). of activity, with a decline over the remainder
Since the endogenous circadian periodf the 24-h period. After the first description
observed under constant conditions is nasf daily variation in urinary ketosteroid ex-
exactly 24 h, external physical environmeneretion (36), evidence has been accumulated
tal factors must operate to synchronize (ershowing daily rhythmicity at every level of
train) the internal clock system. The light-the HPA axis.
dark cycle is the primary agent that synchro- Even before the corticotropin-releasing
nizes most circadian rhythms. However, otheiiormone (CRH) had been characterized,
agents such as food ingestion (30), baromethythmicity of hypothalamic CRH activity
ric pressure (31), acoustic stimuli (32) andchad been suggested in rats (37-39) by bioas-
scents (33) have been cited as synchronizesays. After CRH characterization, circadian
or “zeitgebers”. The effects of these synperiodicity in hypothalamic CRH content
chronizers on circadian rhythms may differand plasma CRH was described (40-43).
considerably both in quality and strengthMore recently a daily rhythmin CRH mRNA
between nocturnal and diurnal mammals. lexpression was demonstrated by different
humans, social cues seem to be even strofechniques (44,45). However, these studies
ger stimuli than the light-dark cycle, as clearlyshowed no consensus about nadirs of the
observed in experiments with night workersiaily CRH pattern and others did not detect
and travelers across time zones (jet lag eflaily variation of hypothalamic or plasma
fect). CRH (46-48). These controversies may be
Molecular and cellular mechanisms un+elated to different time sampling and sensi-
derlying entrainment are poorly definedtivities of assay methods. In spite of these
However, some studies have shown that liglttontroversies, the blockade of plasma ACTH
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rhythm by passive immunization with CRHindependence at every level of HPA axis
antiserum and the restoration of the rhythnorganization, including the adrenals. Al-
by pulsatile administration of CRH indicatethough the rhythmic secretion of corticoster-
the participation of CRH in the determina-one in adrenal organ cultures is controver-
tion of ACTH rhythm (49,50). The possibil- sial (47,65,66), the periodicity of corticos-
ity remains that this influence occurs at théerone in hypophysectomized rats implanted
pituitary level; however, the data about thevith ACTH has been described (67). In addi-
daily variation in pituitary responsiveness tdion, it was demonstrated that the rhythm in
CRH are also contradictory (46,47,51-53)ACTH, CRH and CRH mRNA persists after
In addition, the finding of a persistent dailyadrenalectomy in rats (38,39,68,69). The
rhythm of ACTH during continuous admin- daily ACTH variation was also maintained
istration of CRH (54) suggests that othein patients with ACTH hypersecretion due to
factors are also involved in the ACTH rhythm different degrees of cortisol production defi-
Among these factors, the role of vasopressiciency as found in Addison’s disease (70) or
was investigated but not well defined (55). different types of congenital adrenal hyper-
Many studies have confirmed a pattern oplasia (71). Thus ACTH rhythmicity is par-
plasma ACTH rhythmicity similar to that of tially independent of negative feedback.
corticosteroids (47,56) and have indicated Finally, it should be remembered that
the presence of a daily rhythm in the pituvariations in the metabolic clearance rate of
itary secretion of other proopiomelanocortincorticosteroids have been reported and could
(POMC)-related peptides, such as R-lipotroeontribute to its rhythmic pattern (72-74).
pin (57) and R-endorphin (58,59). In man, Moreover, the circadian variation of the
the daily rhythm of the corticotropic axis HPA axis changes with the manipulation of
seems to be under the control of amplitudehythm by phase-shifting a synchronizer such
but not frequency, modulation of ACTH as the light-dark, sleep-wake and rest-activ-
secretion (59,60). In addition, in-phase dailyty cycles, and food schedule (75). In hu-
variation of the adrenal responsiveness tmans, an adult cortisol circadian pattern (peak
ACTH which amplifies the corticosterone of plasma cortisol at early morning) is estab-
rhythm has been well established (21,61)ished and maintained at a mean age of 8
On the other hand, morning cortisol peaks iweeks in healthy infants (76). Although it
ACTH-deficient patients treated with exog-has been suggested that the development of
enous ACTH suggest that extrapituitary facthe circadian pattern in adrenocortical activ-
tors may act in conjunction with ACTH (62). ity in humans is parallel to the development
The negative feedback mechanism thatf sleeping and feeding patterns and is also
controls the secretion of ACTH by adrenafelated to maternal adrenocortical activity
steroids also presents daily variation, witl{(77), the ontogeny of HPA axis circadian
higher efficacy at nadir time (46,63). It wasrhythm deserves further investigation both
demonstrated in rats that the occupation of humans and in rats.
type I (high affinity) corticosteroid receptors  Although neither the mechanism nor the
is able to control basal activity in the HPAsite of feeding-associated daily rhythm is
axis in the morning and that in the eveningnown, studies have indicated feeding as a
type | occupation potentiates the inhibitiormajor organizer of rhythms of HPA axis
of plasma ACTH by occupation of type Il activity. There are two classes of animals in
receptors (lower affinity) (64). terms of food behavior. Diurnal mammals,
Although most evidence indicates thatincluding human beings, are active in the
HPA axis rhythmicity is under a hierarchicaldaytime and sleep at night. Nocturnal ani-
order, other evidence indicates functionamals (including many ranging in size from
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bears to mice) rest in the daytime and arghythms.
active and take most of their daily food inthe  Despite much work in the intervening 20
dark period. Thus, the feeding synchronizeyears, our knowledge of the mechanisms
effect on the HPA axis may differ consider-and pathways by which food induces syn-
ably both in quality and strength betweerchronization of adrenal axis rhythms is still
nocturnal and diurnal mammals, especialljncomplete. Honma et al. (85) correlated the
rats and men. duration of food restriction and amount of
Rats are nocturnal animals and eat mor®od ingested to the corticosterone rhythm.
than 70% of their daily food intake duringOn the other hand, the prefeeding corticos-
the night (78). Rats with free access to footerone peak does not appear to be related to
manifest a daily peak of plasma corticosterthe availability of certain food constituents
one at 20:00 h, just prior to the time of onset80). Furthermore, the time interval between
of predominant food intake. Approximatelyfood presentation and prefeeding corticos-
twenty years ago, the pioneering work oferone peak is incompatible with new neu-
Krieger (30) demonstrated that restriction ofotransmitter synthesis.
food access in the morning hours from 9:00 We have recently investigated the effect
to 11:00 h was able to cause a 12-h shift af food restriction on the various functional
plasma corticosterone peak in rats. This odevels of the HPA axis. Although the 12-h
servation was initially associated with theshift of plasma corticosterone peak was clear
changes of locomotor activity and sleepand plasma ACTH was high in the morning,
wake cycle that accompany the eating pathere was no significant difference between
tern. Other studies showed that this explananorning and afternoon plasma ACTH levels
tion was not completely correct, since peakd47). Furthermore, there was no detectable
corticosterone levels are observed prior tdaily variation of hypothalamic CRH or pi-
food presentation regardless of its relation ttuitary ACTH contents and plasma ACTH
the lighting period (79,80). Furthermore,response to synthetic CRH in free-fed or
Honma et al. (22) demonstrated that théood-restricted rats. These findings led us to
rhythm of plasma corticosterone is not anvestigate the effect of food restriction on
direct consequence of the rhythm of locomothe adrenal responsiveness to ACTH. We
tor activity. demonstrated a 12-h shift in the adrenal
Additionally, it was found that food- response to synthetic ACTH [1-24] induced
shifted rhythms of plasma corticosteroid conby the time of feeding as previously sug-
centrations and of body temperature pemgested by Wilkinson et al. (86). We also
sisted in animals with SCN lesions and if theriginally showed that this shift of corticos-
animals had become arrhythmic because ¢érone response to exogenous ACTH may
SCN lesions, a restricted-feeding scheduleot be influenced by endogenous plasma
could restore circadian rhythmicity. Further-ACTH levels during the preceding 12 h since
more, it was observed that daily food cyclicityit was maintained after dexamethasone pre-
did not affect SCN neural activity (81,82).treatment. This pattern of response, how-
These studies indicate the primacy of food asver, was abolished by chlorpromazine-mor-
a zeitgeber and suggest the existence ofphine-pentobarbital anesthesia. In addition,
biological clock other than the SCN. Never4n in vitro experiments, incubated adrenal
theless, the abolition of food-shifted dailyslices obtained from free-fed and food-re-
corticosterone and activity rhythmicity by stricted rats showed no daily variation in
ventromedial hypothalamic lesions (83,84)adrenal responsiveness to ACTH [1-24].
indicates the involvement of the hypotha-These results indicate that the daily variation
lamic area in the generation of food shifin adrenal responsiveness to ACTH is due to
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modulation by neural (central or peripheral)jzed central nervous system pathways, in-
vascular or humoral factors other than ACTHcluding medial basal hypothalamic nuclei
On the other hand, there is now a considand autonomic pathways. Moreover, feed-
erable body of evidence suggesting the iming patterns result from a balance between
portance of adrenal innervation in the moduanorectic (CRH, cholecystokinin, neuro-
lation of the HPA axis (87-92), including thetensin) and orectic (NPY, pancreatic polypep-
adrenal sensitivity to ACTH. Additionally, tide, galanine) factors forming a complex
the pituitary-adrenal axis appears to have @rcuitry (104-111), many of them being
daily pattern of response to stress, with alosely related to HPA axis activity.
higher ACTH response in the morning in  Neuropeptide Y is a potent orexigenic
free-fed rats, that is not dependent on cortagent with a dense distribution in hypotha-
costerone (93-96). lamic nuclei (112,113) and is responsible for
As well as the basal activity, the dailystimulating food intake in the rat (104,114).
variation of the HPA axis stress respons@ daily rhythm in NPY content in the
appears to be closely related to food intakparvocellular portion of the PVN with a
(96,97). In a previous study we found thatinimodal peak prior to the onset of dark has
food restriction for 2 weeks abolished thebeen described (115). In rats under food
a.m.-p.m. difference in plasma ACTH levelsrestriction, elevated NPY content and re-
attained after immobilization stress in ratdease in the PVN were observed before the
by a still uncharacterized mechanism (96). lintroduction of food, with decreasing levels
is suggested that food restriction may alsduring the course of eating (116). In addi-
modify the ACTH response to stress alondgion, anatomical and pharmacological stud-
the day. ies suggest that NPY can modulate CRH,
Although it has been shown that an intacACTH and corticosterone secretion (117,
vagus nerve is not necessary for the estah18). On the other hand, glucocorticoids are
lishment of the daily rhythmicity of plasmarequired for an increase in prepro NPY
corticosterone in free-fed or food-restrictedMRNA levels induced by food deprivation
rats (98), there is extensive evidence indica{119,120) and the hypothalamic NPY-feed-
ing the relationship among HPA axis, cating system is dependent upon corticoster-
echolamines and feeding (99-103). Food inene. We have investigated the role of vaso-
take was shown to be affected by centrgdressin using the food-restriction model (47).
administration of catecholamines (103) andHowever, we found that the daily patterns of
the permissive role of corticosterone in norplasma vasopressin and ACTH-corticoster-
epinephrine-elicited feeding which exhib-one did not coincide in terms of basal activ-
ited a circadian pattern has been demority and stress response. Vasopressin may not
strated (99,100). Furthermore, the prefeedinige involved in the pituitary-adrenal adapta-
increase in paraventricular norepinephringions that occur in food restriction (47,96).
release and the abolition of the prefeeding We have recently shown a significant
corticosterone peak by destruction of catecorrelation between daily variation of plasma
cholaminergic innervation of the PVN inatrial natriuretic peptide (ANP) and corti-
rats under food restriction strongly suggestosterone in rats on a free or restricted feed-
the participation of catecholamines in theng regimen (121). However, the nature of
expression of feeding-related corticosteronthe relationship between ANP and feeding is
rhythms (101). far from clear. It is hypothesized that ANP
The mechanisms responsible for modumay interact with ACTH and other central
lation of the HPA axis by feeding are veryneuropeptides (122).
complex and probably involve uncharacter- Corticosteroids exert metabolic effects
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on food intake and intermediary metabo- Furthermore, it is hypothesized that the
lism, which together act to provide an adimetabolic actions of corticosteroids rely on
equate supply of energy (123). The studiesoncentration-dependent interactions with
of restricted feeding are of considerable imtype | and type Il glucocorticoid receptors
portance because they reveal feeding as(&37).
synchronizer link between hormonal sys- The association of feeding and HPA axis
tems and metabolic machinery. Once thactivity has been studied in humans under
food restriction schedule is set, neurohuphysiological and pathological conditions.
moral and metabolic variables are tempoThe demonstration of a large peak of plasma
rarily reorganized to ensure anticipative adeortisol coinciding with the noon meal and a
aptation of the animal. Thus, rats under foodmaller peak after the evening meal gives
restriction develop high rates of lipogenesigvidence for the influence of meal timing on
in adipose tissue and in liver (124), resisthe daily plasma cortisol pattern (138-140).
tance to liver glycogen depletion during fastThe mechanism by which ingestion of food
ing (125) and increased storage of glycogestimulates cortisol secretion is unknown.
in liver, muscle and adipose tissue during theligher postprandial plasma ACTH and cor-
postprandial period (126-128), higher effi-tisol increments related to high-protein meals
ciency in food utilization and a higher capachave been demonstrated (141,142) and a
ity to recover from hypoglycemia (129,130).role of gut peptides and neurotransmitter
In addition, delayed gastric emptying (128)ubstrates as neuroendocrine links between
and an increase in intestinal absorbing aregut and brain has been proposed. The role
due to mucosal hypertrophy have been olplayed by these peptides in HPA axis activ-
served (131). The periodicity of food pres-ty is supported by the finding that parenteral
entation is an important factor for the estabfeeding during a restricted time of day com-
lishment of the metabolic changes, since thgletely abolished blood corticosterone rhythm
same amount of food given randomly in timen rats (143). In humans, the parenteral nutri-
to food-restricted rats promotes a differentional support did not alter the circadian
adaptive metabolic pattern (132). Corticorhythm of cortisol as compared with enteral
steroids seem to be required for the metazutrition (144). Al-Damluji et al. (104) sug-
bolic adaptation since adrenalectomized angested a stimulatory effect of alpha-1 adre-
mals do not survive food restriction due tanoceptors on the ACTH and cortisol post-
lack of lipogenesis, gluconeogenesis angrandial peak. However, the physiological
glucogenolysis (133) to efficiently supply mechanisms leading to postprandial ACTH
energy in the intermeal period. and cortisol release remain to be determined.
Dallman et al. (3) suggest that the interCorticosteroids appear to play an important
actions among insulin, glucocorticoids andole in regulating the circadian fluctuations
NPY are responsible for the metabolic asef brain-gut peptides and cell cycle of the
pects related to food intake. It was observedastrointestinal mucosa (145).
that rats under food restriction present higher Anorexia nervosa has long been known
circulating levels of insulin and greater insu4o be associated with hypothalamic-pituitary-
lin sensitivity (134). Furthermore, many linesadrenal axis abnormalities. Anorectic pa-
of evidence support the hypothesis that insuients present elevated levels of plasma cor-
lin is an afferent central signal which regu-+isol with the loss of normal daily rhythm,
lates normal energy balance (135). It wafailure of suppression of plasma ACTH and
recently observed that high-dose dexametltortisol levels by dexamethasone, a defi-
asone administration decreases the efficien@yent response of plasma cortisol to insulin-
of CNS insulin transport (136). induced hypoglycemia and blunted ACTH
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and cortisol responses to CRH (146-149Yhe role of corticosteroids may be consid-
Although little is known about the patho-ered to be an adaptive response important
physiology of hypercortisolism of anorexiafor the metabolic adjustments for fuel stor-
nervosa, evidence points to a disorder at @ge to assure survival (160,161).
above the hypothalamus leading to hyperse- There is evidence that HPA axis activity
cretion of CRH (146,149-152). Since thesés altered by obesity. On the other hand, it is
abnormalities of cortisol secretion are rewell known that HPA axis components, in
versed with improvement in nutrition andparticular CRH and corticosteroids, influ-
body weight, they could be regarded only asnce the patterns of calorie and nutrient in-
secondary to malnutrition. However, agdake. The control of food intake is complex
pointed out by Gold et al. (149), CRH hyper-and involves numerous brain neurotransmit-
secretion may be a defect associated witlers and central and peripheral neural struc-
primary affective disorder, given the clinicaltures. Glucocorticoids are believed to inter-
and pathophysiologic similarities betweeract with hypothalamus neurotransmitters to
anorexia nervosa and depression. mediate their effects on nutrient intake
The investigation of HPA axis function (108,109). Obese humans have normal
in bulimia has revealed abnormalities thaplasma ACTH and cortisol circadian rhythm,
are independent of weight disturbancekigher cortisol production rate (162), normal
(153,154). Although the cortisol circadiancortisol response to hypothalamic-pituitary
variation appears to be normal, 24-h intestimulation by hypoglycemia and direct ad-
grated plasma ACTH and cortisol levels areenal stimulation by ACTH, and impaired
elevated and ACTH and cortisol responsesortisol response to pituitary stimulation by
to CRH are blunted (153). These finding<CRH (163). In addition, obese individuals
are in disagreement with those of Gold et amay fail to suppress plasma cortisol follow-
(149). A prominent finding in bulimia is the ing dexamethasone administration (164). The
lack of cortisol suppression by dexamethavarious animal models of obesity have pro-
sone (155). However, it is difficult to state ifvided important data to elucidate metabolic
this abnormality is related to psychic distresslisorders in this human disease. Corticoster-
or to eating behavior itself (154). Interest-one has been shown to be necessary for the
ingly, bulimics do not present the usual corexpression of genetic and hypothalamic le-
tisol increase in response to a mixed mealion-induced obesity (165). The genetically
(153). obese fa/fa rat presents many metabolic and
The changes of adrenal function in malendocrine abnormalities that are dependent
nutrition include increased serum cortisobn adrenal glucocorticoids. Most of these
concentration, abolition of daily rhythm, de-metabolic impairments are reversed by
creased cortisol metabolic clearance, deadrenalectomy and restored by corticoster-
creased cortisol responsiveness to CRH armhe treatment (166). Adrenalectomy, through
incomplete dexamethasone suppressidhe loss of corticosterone, may act on food
(156,157). This pattern of HPA axis activityintake, sympathetic activity and insulin (167)
has been attributed to endogenous CRH hgnd NPY (3) secretion. In spite of controver-
persecretion (158). These alterations are alal findings in the literature, studies of
reversible with refeeding. Some of thesdiypercorticismin genetically obese rats have
changes are also observed in normal mesuggested alterations in the central regula-
after fasting (159). tion of the HPA axis (168-171) by still un-
Although the mechanisms of the altereddentified mechanisms. A regulatory role of
adrenal function common to fasting, malnuglucocorticoids in obese gene expression and
trition and eating disorders are not knownleptin secretion has been indicated (172). An
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interaction between leptin and NPY has alsthe importance of time of day in the diagno-
been suggested (173), with inhibition of NPYsis and treatment of diabetes mellitus.
synthesis and release by leptin. Cushing’s syndrome is characterized by,
In normal man, glucose tolerance varieamong other things, HPA rhythmicity abnor-
with time of day. Plasma glucose responsawalities, insulin resistance and hyperglyce-
to oral and intravenous glucose or meals amia secondary to hypercortisolism. Hyper-
higher in the evening than in the morningcortisolemia is associated with increased glu-
(174,175). Van Cauter et al. (176) demoneose production, decreased glucose trans-
strated that the daily variation in glucoseport and utilization, decreased protein syn-
levels during constant glucose infusion ighesis and increased protein degradation in
paralleled by a similar variation in insulin muscle. It was demonstrated that glucocorti-
secretion, which is inversely related to thecoids may interfere with the early steps of
circadian rhythm of cortisol secretion. Un-insulin signal transduction in liver and muscle
der controlled conditions, a similar result(183). Centrally localized adipose tissue is
was obtained in response to mixed meainother feature of corticosteroid excess and
ingestion in the morning and in the eveningthis typical fat distribution has been attrib-
These studies suggest that factors other thaimed to elevated adipocyte lipoprotein lipase
cortisol and gastrointestinal hormones aractivity and low lipolytic activity (184). Af-
implicated in the circadian changes in gluter the noon meal, the normal postprandial
cose tolerance. Such factors could affect thelevation in cortisol is depressed or absent in
insulin response through changes in the papituitary-dependent Cushing’s syndrome
creatic beta cell sensitivity to glucose (177)patients (185).
Additionally, in a recent study our group Interestingly, two recent studies demon-
suggested a modulatory role of cortisol in thetrated that a rare pituitary-independent type
IGF-IGF binding protein system under physi-of Cushing’s syndrome can be food-depend-
ological conditions, especially in situationsent (186,187). In this uncommon case the
of low insulin concentrations (178). development of abnormal adrenal sensitivity
Finally, the study of hypothalamic-pitu- to the stimulatory action of secreted gastric
itary-adrenocortical activity in diabetic pa-inhibitory polypeptide (GIP) was possibly
tients has revealed a state of hypercorticissecondary to aberrant expression of GIP re-
(179,180). The origin of the increased activeeptors on adrenal cells. Thus, in this newly
ity of the HPA axis is not clear. It was described nodular adrenal hyperplasia corti-
suggested that fluctuations in blood sugasol production depends on how much and
could be the cause (179). In addition, tempdiow often the patients eat.
ral and quantitative correlations between glu- In conclusion, the present review exam-
cose and circadian cortisol variations weréned the role of food ingestion as an impor-
observed in patients with noninsulin-dependtant synchronizing agent for HPA axis regu-
ent diabetes and normal subjects submittddtion. The modulation of the HPA axis by
to fasting. Altogether, these findings indi-feeding is complex and may involve a neuro-
cate the role of glucocorticoids in the controhumoral circuitry with both central and pe-
of the daily variations in glucose levels andipheral components.
fuel availability (181,182) and, therefore,
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