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The learned helplessness (LH) paradigm is characterized by learning deficits resulting from inescapable events. The aims of the
present study were to determine if protein-calorie malnutrition (PCM) alters learning deficits induced by LH and if the
neurochemical changes induced by malnutrition alter the reactivity to treatment with GABA-ergic and serotonergic drugs during
LH. Well-nourished (W) and PCM Wistar rats (61 days old) were exposed or not to inescapable shocks (IS) and treated with
gepirone (GEP, 0.0-7.5 mg/kg, intraperitoneally, N = 128) or chlordiazepoxide (0.0-7.5 mg/kg, intraperitoneally, N = 128) 72 h
later, 30 min before the test session (30 trials of escape learning). The results showed that rats exposed to IS had higher escape
latency than non-exposed rats (12.6 £ 2.2 vs 4.4 + 0.8 s) and that malnutrition increased learning impairment produced by LH.
GEP increased the escape latency of W animals exposed or non-exposed to IS, but did not affect the response of PCM animals,
while chlordiazepoxide reduced the escape deficit of both W and PCM rats. The data suggest that PCM animals were more
sensitive to the impairment produced by LH and that PCM led to neurochemical changes in the serotonergic system, resulting

in hyporeactivity to the anxiogenic effects of GEP in the LH paradigm.
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INTRODUCTION

Protein or protein-calorie malnutrition (PCM) early in
life produces morphological, neurochemical and behavior-
al alterations in rats tested as adults (1,2). Behavioral
alterations following malnutrition cannot be attributed only
to morphological and/or neurochemical changes in the
central nervous system. Several lines of experimental
evidence show that environmental changes concurrent
with malnutrition procedures may explain, in part, the
behavioral alterations observed in malnourished organ-
isms (3-5). It has been shown that early protein malnutri-
tion changes mother-pup and pup-pup interactions during
lactation (6,7), promoting a drastic reduction in social and
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environmental exploration early in life, a phenomenon
described as “functional isolation” (8). Although there are
no animal studies showing that the isolation from the
environment produced by malnutrition leads to behavioral
despair, a study on human malnutrition has reported that
depressive symptoms, especially feelings of hopeless-
ness, occur more often among mothers of malnourished
children than among mothers of control children (9). The
hopelessness feelings could be due to the absence of
control on the part of the mothers of the environmental
variables that lead to miserable living conditions and even-
tually to malnutrition. Thus, this uncontrollability of envi-
ronmental variables may alter the behavior of the mothers
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and their interactions with the children, possibly producing
long-lasting emotional alterations later in life in children.

In rats, it has been described that early protein malnutri-
tion also produces changes in emotionality, especially in the
reaction of the animals to aversive stimuli. It has been shown
that malnutrition early in life produces increased reactivity to
electric shocks (10) as well as increased inhibitory avoid-
ance in procedures using painful stimuli (11-13). However,
there are no reports in the literature about the effects of
inescapable shocks (IS) on the behavior of malnourished
animals. IS are extensively used in the classical model of
learned helplessness (LH) (14). In this model, described as
an experimental model of depression (15), animals previ-
ously exposed to IS present a subsequent impairment in the
performance of an escape task (16,17). Given the reports
showing the participation of serotonergic and GABA-ergic
neurotransmitter systems in the development, maintenance,
prevention, and reversal of LH (18-21) and the changes in
these neurotransmitter systems produced by early protein
malnutrition (1,22,23), it would be relevant to investigate LH
in malnourished animals.

Thus, the main objective of the present study was to
investigate the effects of early PCM and of acute treatment
with serotonergic (gepirone) and benzodiazepine (chlordi-
azepoxide) drugs on the expression of escape deficit
induced by the LH paradigm.

MATERIAL AND METHODS
Animals

Male Wistar rats from the animal colony of the Londrina
State University campus, Brazil, were used. On the day of
birth each litter was culled to 6 male pups. During the
lactation period (0-21 days of age), well-nourished (W) pups
were fed by mothers maintained on an ad libitum commercial
diet (Purina, Cascavél, PR, Brazil), and malnourished pups
were fed by mothers receiving 40% of the amount of diet
consumed by the ad libitum control group. The litters were
housed in opaque plastic cages (40 x 30 x 20 cm). After
weaning (22 days of age) the dams were removed from the
cages and the pups of both groups were given free access to
the diet up to the 60th day. The animals were kept on a 12-
h light/dark cycle with lights on at 7:00 am and room temper-
ature kept at 23-25°C. The experiment was conducted dur-
ing the dark portion of the cycle.

Apparatus

During the training phase two shock stimulators (model
M-EPO1, Funbec, S&o Paulo, SP, Brazil) and four Skinner
boxes (Funbec) were used. During the testing phase a 50
x 25 x 25-cm shuttle-box (Funbec) divided into two parts by
a 5-cm sliding door was used.
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Procedure

At 61 days of age, W rats and rats subjected to PCM
were assigned to the IS or to the non-shock (NS) group,
thereby generating 4 experimental groups for the LH para-
digm: WIS (well-nourished, inescapable shock); WNS (well-
nourished, non-shocked); MIS (malnourished, inescap-
able shock), and MNS (malnourished, non-shocked).

Inescapable shock session

At 61 days of age, rats of the WIS and MIS groups were
placed individually in a Skinner box and exposed to 60
inescapable 8-s footshocks of 0.6 mA. Shocks were deliv-
ered according to a variable time schedule, and the inter-
shock interval averaged 60 s. WNS and MNS rats were
also placed in Skinner boxes, but no shock was delivered
to them.

Test session

Seventy-two hours after the training session and 30
min before the test session rats received a single injection
of gepirone, chlordiazepoxide, or vehicle (N = 8 for each
group: WIS, WNS, MIS, and MNS). Thus, there were 128
rats in the gepirone group (64 of them well-nourished and
64 malnourished) and 128 rats in the chlordiazepoxide
group (64 of them well-nourished and 64 malnourished).
Rats were placed on side A of the shuttle-box (where the
shocks were delivered), and could escape to side B (where
no shocks were delivered) by jumping through the middle
sliding door. The intensity of the shock was the same as in
the training session. If the animal did not escape to side B,
the shock was turned off after 30 s and the animal was
removed by the experimenter and placed on side B in
which it remained for 30 s before being placed again on
side A for the next trial. The test session consisted of 30
trials. The experiments reported in the present paper were
performed in compliance with the recommendations of the
Brazilian Society of Neuroscience and Behavior (SBNeC),
which are based on the US National Institutes of Health
Guide for Care and Use of Laboratory Animals.

Drugs

Gepirone HCI (Bristol-Myers, Wallingford, CT, USA)
and chlordiazepoxide hydrochloride (Psicosedin™, Far-
masa, Sao Paulo, SP, Brazil) were both dissolved in dis-
tilled water. Acute injections of vehicle (distilled water),
gepirone (2.5, 5.0, or 7.5 mg/kg) or chlordiazepoxide (2.5,
5.0, 7.5 mg/kg) were administered intraperitoneally (ip) in a
volume of 1 mL/kg, 30 min before the test session.

Data analysis
Escape latency was analyzed by three-way (diet condi-
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tion x shock procedure x dose of the drug) analysis of
variance (ANOVA) and rat body weight was analyzed by
two-way ANOVA (diet condition x age). Post hoc compari-
sons were made using the Newman-Keuls test. The level
of significance was set at P < 0.05 in all analyses.

RESULTS
Body weight

The body weight of the animals (Figure 1) was affected
by diet restriction, with W animals being heavier than PCM
animals as indicated by a significant effect of diet (F(1,179)
= 448.8, P < 0.001). Animals of all groups significantly
increased their body weights across age (F(8,179) = 760.5,
P < 0.001). However, W animals had a greater increase
compared with PCM animals as indicated by a significant
diet x age interaction (F(8,179) = 26.5, P < 0.001).

Behavioral measures

Gepirone. As shown in Figure 2, there was a significant
effect of procedure (F (1,674) = 193.8, P < 0.001), with IS
animals presenting higher escape latencies compared
with NS animals. There was also a significant effect of
dose (F(3,674), P < 0.001), with post hoc analysis indicat-
ing a significant increase of escape latency at the dose of
5 mg/kg compared with saline (P < 0.05). However, this
increase in escape latency was statistically significant only
in W animals compared with PCM animals, leading to a
significant diet x dose interaction (F(3,674) = 18.2, P <
0.001).

Chlordiazepoxide. As shown in Figure 3, there was a
significant effect of procedure (F(1,673) = 198.5, P <
0.001), with IS animals presenting higher escape latencies
compared with NS animals. There was also a significant
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Figure 1. Body weight of well-nourished (W) and malnourished
(M) animals from birth to age of testing. Data are reported as
means + SEM for N = 18 animals for each condition. *P < 0.05
compared with malnourished animals (Newman-Keuls test).
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Figure 2. Latency of the escape response of well-nourished and
malnourished animals after acute treatment with gepirone. Data
are reported as means + SEM for N = 8 animals for each
condition. WIS = well-nourished animals exposed to inescapable
shocks; WNS = well-nourished animals not exposed to inescap-
able shocks; MIS = malnourished animals exposed to inescap-
able shocks; MNS = malnourished animals not exposed to ines-
capable shocks. *P < 0.05 compared with 0.0 mg/kg within the
same group and *P < 0.05 compared with non-shocked animals
(Newman-Keuls test).
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Figure 3. Latency of the escape response of well-nourished and
malnourished animals after acute treatment with chlordiazepox-
ide. Data are reported as means + SEM for N = 8 animals for
each condition. WIS = well-nourished animals exposed to ines-
capable shocks; WNS = well-nourished animals not exposed to
inescapable shocks; MIS = malnourished animals exposed to
inescapable shocks; MNS = malnourished animals not exposed
to inescapable shocks. *P < 0.05 compared with 0.0 mg/kg
within the same group, **P < 0.05 compared with non-shocked
animals, and *P < 0.05 compared with WIS animals (Newman-
Keuls test).
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effect of dose (F(3,674), P < 0.001), with post hoc analysis
indicating a significant decrease of escape latency at the
doses of 5.0 and 7.5 mg/kg as compared with saline (P <
0.05). In addition, ANOVA showed a significant effect of
diet (F(1,673) = 15.8, P < 0.001), with PCM animals pre-
senting higher escape latencies than W animals. Finally,
there was also a significant diet x shock procedure interac-
tion (F(1,673) = 8.62, P < 0.01) and a significant shock
procedure x drug dose interaction (F(3,673) = 8.17, P <
0.001). Post hoc analysis showed that the diet x shock
interaction was due to greater increases (P < 0.05) in the
escape latency for PCM animals exposed to IS, while the
shock procedure x drug dose interaction was due to a
significant decrease in escape latency in IS compared with
no effects in NS animals (P < 0.05) following pharmacolo-
gical treatment.

DISCUSSION

The nutritional manipulation imposed on the dams
directly affected pup body weight. Early PCM produced a
significant decrease in the animal's body weight, a well-
established result also reported in previous studies (24,25).

The behavioral data in the LH test showed that animals
exposed to IS present longer escape latencies compared
with animals not exposed to IS, in agreement with previous
literature data (17).

Moreover, early PCM increased the effects of the IS as
demonstrated by longer escape latencies in PCM animals
compared with W animals in the group treated with chlordi-
azepoxide, indicating that the nutritional insult increased
the impairment of escape learning following the helpless-
ness procedure. Although a similar result could be ob-
served in the gepirone group (i.e., longer latencies in PCM
rats compared with W rats), it was not possible to demon-
strate a statistical effect since the strong response of W
animals to the 5.0 mg/kg dose precluded the finding of a
significant effect of diet. This result can be interpreted not
only as an increased learning impairment produced by the
experience of inescapable shock, but also as a lower
shock threshold in malnourished animals. A lower shock
threshold produced by early malnutrition has already been
described (10). However, increased impairment of learn-
ing produced by the uncontrollability of the shocks in PCM
animals appears to be a more plausible explanation since
no differences due to diet were observed in the reactivity to
shock on escape latencies of the groups not exposed to IS
before escape learning. If this apparent increased sensitiv-
ity of PCM animals to inescapable painful aversive stimuli
is due to environmental changes produced by early malnu-
trition (i.e., hopelessness of malnourished mothers during
lactation), similar results can be expected in other experi-
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mental models of behavioral despair. Since there are
reports in the literature showing that early malnutrition is a
biological risk factor for further affective disorders, includ-
ing depression (26,27), it would be interesting to investi-
gate the effects of early malnutrition on behavioral despair
models.

The significant increase in escape latency after acute
gepirone treatment (5.0 mg/kg) in the present study agrees
with previously reported data comparing an anxiolytic pro-
file after chronic treatment (28). It has been reported that
the 5-HT 4 receptor subtype is the primary site of action of
the azaperone class of drugs such as buspirone, ipsapir-
one and gepirone (28). These receptor subtypes are pres-
ent on the soma and dendrites of 5-HT neurons and on
postsynaptic neurons in the brain (hippocampus, septum,
neocortex, amygdala, and hypothalamus) and on the spi-
nal cord (29). Thus, the present results showing anxio-
genic effects of acute treatment compared with an anxio-
lytic effect of chronic treatment (28) support the assump-
tion that an anxiolytic effect of drugs acting on 5-HTq4
receptors is only possible by the sustained presence of 5-
HT,a agonists (30). The stronger effect of gepirone at the
dose of 5.0 mg/kg and the lower effect with 2.5 and 7.5 mg/
kg is an example of what is known as a non-monotonic
dose-response curve. In this condition the curves are
shaped like inverted U’s with the greatest response in
intermediate ranges. In addition, the effect of gepirone
could not be attributed to effects on locomotor activity
since this drug did not alter locomotion in models of anxiety
(28). The absence of gepirone effects on the malnourished
animals is a pharmacological evidence that early protein
malnutrition affects the serotonergic neurotransmitter sys-
tem, especially 5-HT4 receptor subtypes. According to
this interpretation, it has been shown that 5-HT,, receptors
assayed with (3H)8-OH-DPAT were decreased by 20% in
the hippocampal CA3 subfield of early protein-malnour-
ished rats (31). Moreover, it has also been reported that
the sensitivity of 5-HT receptors stimulated with 8-OH-
DPAT is increased in well-nourished animals exposed to
chronic stress compared with no effect in malnourished
animals (32), indicating a lack of adaptive changes at
serotonergic sites following early malnutrition. In addition,
hyporeactivity to the effects of serotonergic drugs after
early protein malnutrition has also been reported, showing
that malnourished animals have a lower response to ipsa-
pirone in the hypertonic saline ingestion test (33) and in the
elevated plus-maze test (34), indicating that the nutritional
insult causes long-term alteration in the serotonergic neu-
rotransmitter system.

Treatment with chlordiazepoxide produced a signifi-
cant decrease in escape latency only in the group of IS
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animals, indicating that this drug reversed, in part, the
learning impairment produced by IS, especially with the
doses of 5.0 and 7.5 mg/kg. The reversal of this impair-
ment after treatment with the GABA, receptor agonists
muscimol and fengabine has also been reported (35),
suggesting a participation of the GABA-benzodiazepine
system in the LH model (21). In agreement with these
results are the reports showing that GABA microinjected
into the hippocampus also reverses LH when injected after
IS (36), while the GABA, receptor antagonist (bicuculline)
injected into the same region induced LH (37). Early PCM
did not change the reactivity of the animals to the effects of
chlordiazepoxide in the LH model. This result contrasts
with several reports showing hyporeactivity of malnour-
ished animals to treatment with benzodiazepines (for a
review, see Ref. 1). However, the great majority of these
reports were obtained in behavioral models without the
use of painful aversive stimuli or at least using controllable
shock procedures. Thus, it is possible that the controllabil-
ity of the aversive stimulus can play an important role in the
response of malnourished organisms to benzodiazepine
anxiolytic drugs.

Finally, since the drugs were administered before the
behavioral test it is possible that the behavioral changes
observed were due to the action of these drugs on the
expression of escape behavior rather than on processes of
learning and memory per se. Previous data from our group
using drugs of the same class in different experimental
models (elevated plus-maze and hypertonic saline inges-
tion) have suggested a possible involvement of the drugs
in the expression of the behavior rather than in the ability of
the animals to learn a task (33,34). Future studies using
experimental models of painless stimuli such as the forced
swimming test could definitely contribute to elucidate the
effects of drugs acting on the serotonergic and GABA-
ergic neurotransmitter systems of early malnourished ani-
mals. The use of a painless stimulus prevents possible
confounding factors due to the well-described lower shock
threshold observed in malnourished animals (10).
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