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Abstract

Cervical cancer (CC) is the most common malignant tumor in females. Although persistent high-risk human papillomavirus
(HPV) infection is a leading factor that causes CC, few women with HPV infection develop CC. Therefore, many mechanisms
remain to be explored, such as aberrant expression of oncogenes and tumor suppressor genes. To identify promising
prognostic factors and interpret the relevant mechanisms of CC, the RNA sequencing profile of CC was downloaded from the
Cancer Genome Atlas and the Gene Expression Omnibus databases. The GSE63514 dataset was analyzed, and differentially
expressed genes (DEGs) were obtained by weighted coexpression network analysis and the edgeR package in R. Fifty-three
shared genes were mainly enriched in nuclear chromosome segregation and DNA replication signaling pathways. Through a
protein-protein interaction network and prognosis analysis, the kinesin family member 14 (KIF14) hub gene was extracted from
the set of 53 shared genes, which was overexpressed and associated with poor overall survival (OS) and disease-free survival
(DFS) of CC patients. Mechanistically, gene set enrichment analysis showed that KIF14 was mainly enriched in the glycolysis/
gluconeogenesis signaling pathway and DNA replication signaling pathway, especially in the cell cycle signaling pathway.
RT-PCR and the Human Protein Atlas database confirmed that these genes were significantly increased in CC samples.
Therefore, our findings indicated the biological function of KIF14 in cervical cancer and provided new ideas for CC diagnosis
and therapies.
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Introduction

Cervical cancer (CC) is the most common type of
malignant tumor in females and has affected a vast
number of women in the world, especially in sub-Saharan
Africa and Southeastern Asia. Although the incidence and
mortality of cervical cancer have declined due to vaccina-
tion, screening, and control of precancerous lesions, CC
incidence is high in some less economically developed
areas, affecting young women (peak 45–49) and advanc-
ing to the late stage (1). Approximately 570,000 new CC
cases per year worldwide cause 31,000 deaths per year,
making it the fourth leading cause of cancer death among
women (2). Persistent high-risk human papillomavirus
(HPV) infection is a leading factor that leads to cervical
tumor occurrence (3); however, few women infected with
HPV eventually develop cervical cancer. Other risk factors
have been reported and include immunosuppression,

smoking, pregnancy history, and long-term contraception,
suggesting that the occurrence of CC is a multifactor,
multistep complex process not only related to the
environment but also involved in the aberrant expression
of oncogenes and tumor suppressor genes (4). Therefore,
it is necessary and urgent to identify sensitive and specific
biomarkers that could predict CC prognosis and serve as
a target for CC treatment.

In the past decade, high-throughput transcriptomics
techniques (e.g., using microarrays and RNA sequencing)
have been extensively used in the identification of cancer-
related biomarkers, pathways, and drug targets (5).
Several online databases, including the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA),
are readily available, which allow transcriptomic, genomic,
proteomic, and epigenomic data to be used for
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comprehensive analysis (6,7). Weighted gene coexpres-
sion network analysis (WGCNA) is a powerful genomic
technique extensively used in the exploration of disease-
related biomarkers (8). In the present study, we performed
comprehensive bioinformatics analyses using the expres-
sion profiles of CC patients from the GEO database
through WGCNA and differentially expressed gene (DEG)
analysis. Subsequently, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology (GO)
enrichment analyses were performed. Hub genes were
detected by protein-protein interaction (PPI) network
analysis and cytoHubba. The Kaplan-Meier curve of CC
was drawn by the Gene Expression Profiling Interactive
Analysis (GEPIA) database to identify the prognostic
molecules in CC. Gene set enrichment analysis (GSEA)
and correlation analysis were performed to further
investigate the potential molecular mechanism and
biological roles of potential hub genes.

Material and Methods

Data acquisition
The expression profile of GSE63514 was downloaded

from GEO (https://www.ncbi.nlm.nih.gov/geo/). GSE63514
contains 24 cervical normal tissues and 76 cervical
intraepithelial neoplasia (CIN) tissues, which comprise 14
CIN1 lesions, 22 CIN2 lesions, 40 CIN3 lesions, and 28 CC
tissues, which were analyzed with GeneChip RMA (GC-
RMA). Later, the gene symbols were matched with probes
after removing redundant data, and the ‘‘limma’’ pack-
age in R software 4.0 (https://bioconductor.org) was used
to correct the background, normalize quantiles, and
summarize quantiles.

Construction of WGCNA and identification of modules
A weighted gene coexpression network was estab-

lished using the ‘‘WGCNA’’ package in R and the one-
step network construction and module detection function.
First, the expression data were clustered, and obvious
outliers were removed. Then, the soft-thresholding power
of 7 was set according to the scale-free topology criterion.
Furthermore, the average linkage hierarchical clustering
dendrogram was used to explore gene modules based on
a topological overlap matrix (TOM). A minModuleSize of
30 was selected to detect modules with different colors,
and a mergeCutHeight of 0.25 was set to merge the
similar modules automatically. Finally, the Spearman
correlation coefficient was calculated to assess the
correlation between the genes and clinical traits.

Identification of differentially expressed genes (DEGs)
in CC

The edgeR package in R (https://bioconductor.org)
was applied to explore DEGs in CC. The criteria of false
discovery rate (FDR) value o0.05 and |logFC| 41,
upregulated genes (log2FC 41), and downregulated

genes (log2FC p1) were set for significant DEGs based
on the normalized gene expression levels.

Screening of candidate genes
A Venn diagram program was performed to reflect the

intersection between DEGs and red and green modules
in WGCNA, which included 30 downregulated genes and
23 upregulated genes.

Pathway enrichment analyses
To investigate the underlying mechanisms of shared

DEGs, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis and Gene Ontology (GO),
including gene molecular function, biological process,
and cellular component, were performed using the
‘‘clusterProfiler’’ package in R (https://bioconductor.org).

Construction of the protein-protein interaction (PPI)
network

The interaction between proteins was analyzed
through the Search Tool for the Retrieval of Interacting
Genes (STRING) database (http://string-db.org, version
11.0) with a confidence score 40.41. PPI networks were
established using the Cytoscape plugin cytoHubba (https://
apps.cytoscape.org). The top 10 genes were selected as
candidate hub genes based on the maximal clique
centrality (MCC) algorithm.

Gene set enrichment analysis
To explore the signaling pathways and biological

characteristics associated with kinesin family member 14
(KIF14) expression in CC, the expression profile of CC
from TCGA was used for KIF14 analysis through the
GSEA software (http://www.gsea-msigdb.org). Pathways
were selected based on the following criteria: normalized
enrichment score 41 or p1, nominal P value o0.05, and
FDR q-value o0.5.

GEPIA database analysis
GEPIA (http://gepia2.cancer-pku.cn) is an online cancer

database that provides fast and customizable functions
based on TCGA and GTEx project data for comprehensive
expression analysis by mining differentially expressed levels
between cancer and noncancer patients (9). We explored
the overall survival (OS) and disease-free survival (DFS) of
patients with high and low KIF14 expression. Moreover, we
investigated the correlation between the expression of KIF14
and markers of the cell cycle signaling pathway, including
BUB1, TTK, PLK1, CREBBP, and CDK1.

Cell culture and RT-qPCR analysis
Human cervical cancer cells (HeLa and SIHa) were

purchased from the China Center for Type Culture
Collection. Cells were maintained in DMEM (Servicebio,
China) complete medium with 100 U/mL penicillin/
streptomycin (YEASEN Biotech Co. Ltd., China) and
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10% fetal bovine serum (FBS; YEASEN Biotech Co. Ltd.)
at 37°C in a humidified atmosphere containing 5% CO2.
Total RNA was extracted from the synovial membrane
using TRIzol reagent, and cDNA synthesis was per-
formed with a Hifair 1st Strand cDNA Synthesis kit
(YEASEN Biotech Co., Ltd.) according to the manufac-
turer’s protocol. Reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR) was performed using
Hieff qPCR SYBR Green Master Mix (YEASEN Biotech
Co. Ltd.), and the gene expression levels were detected
by an ABI 7500 Real-Time PCR system (Applied
Biosystems; Thermo Fisher Scientific, Inc., USA). Rela-
tive mRNA expression was calculated with the 2�DDCT

method compared to GAPDH expression. The primers
are listed in Supplementary Table S1.

Expression of KIF14 and cell cycle signaling pathways
The Human Protein Atlas (HPA, https://v15.protein

atlas.org/) (10) provides information on the tissue and cell
distribution of all 24,000 human proteins, and it was used
to validate the differential expression of KIF14 and the
indexes of cell cycle signaling pathways at the protein
level in the present study.

Statistical analysis
Statistical analysis was carried out using GraphPad

Prism 7.0 (GraphPad Software Inc., USA). Student’s t-test
was used for analyzing two groups with normal distribu-
tion. A P value of o0.05 was considered significant.

Results

Screening of DEGs among cervical normal, CIN, and
CC tissues

We used the microarray dataset (GSE63514) that
included 128 cervical specimens, which were separated
by histopathology into three disease stages: normal (24),
CIN (80), and cancer (28). There were 2759 DEGs

between CC and normal tissue samples, including 1741
upregulated genes and 1018 downregulated genes
(Figure 1A). There were 1169 DEGs between CC and
CIN samples, including 481 upregulated genes and 688
downregulated genes (Figure 1B). There were 2759
DEGs between CIN and normal tissue samples, including
609 upregulated genes and 218 downregulated genes
(Figure 1C).

Identification of significant gene modules
To further screen genes involved in the occurrence of

CC, we constructed a WGCNA network based on the
expression data of GSE63514. The soft-thresholding
power was set at 7 with scale independence at 0.9 to
ensure a scale-free network (Figure 2A). All 24,584 genes
were assigned to 15 modules, among which 444 genes
were assigned to the red module, and 455 genes were
assigned to the green module (Figure 2B and C). Both
modules were significantly related to clinical traits (red:
correlation coefficient=�0.59, Po0.001; green: correla-
tion coefficient=0.31, Po0.001; Figure 2D–F).

Identification of coexpressed DEGs
To further identify the key genes associated with

cervical cancer, we compared the coexpressed genes in
the red module with the downregulated DEGs between
CC and normal tissue samples, between CC and CIN
samples, and between CIN and normal tissue samples,
and we compared the coexpressed genes in the green
modules with the upregulated DEGs. Sets of 30 shared
downregulated genes and 23 shared upregulated genes
were obtained (Figure 3A and B).

Functional annotation for coexpressed DEGs
Most of the upregulated DEGs were enriched in nuclear

chromosome segregation, mitotic nuclear division, and
chromosome segregation in biological processes. Some
upregulated DEGs were enriched in the chromosomal

Figure 1. Screening of differentially expressed genes (DEGs) among cervical normal, cervical intraepithelial neoplasia (CIN), and
cervical cancer (CC) tissues. A, DEGs between CC and normal tissue. B, between CC and CIN samples, and C, between CIN and
normal tissue samples in the GSE63514 database are presented in volcano plots. The gray nodes represent genes that are not
differentially expressed, and the blue and red dots represent downregulated and upregulated genes, respectively.
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region and ATPase activities in cell components and
molecular functions (Figure 4A and B). Downregulated
DEGs were enriched only in cellular components, mainly in
extracellular regions (Figure 4C). The 23 upregulated DEGs
were enriched in 3 KEGG pathways, including cellular
senescence, DNA replication, and the Toll-like receptor
signaling pathway. The significantly enriched downregu-
lated DEGs involved 5-HT synapses, inflammatory

regulation, TRP channel regulation, arachidonic acid
metabolism, and other biological pathways (Figure 4D).

Identification of hub genes
String analysis was performed on 53 wild rabbit genes,

and Cytoscape was used to construct a PPI network
containing 21 nodes and 45 edges (Figure 5A). Then, the
top ten genes were selected as potential hub genes based

Figure 2. Identification of significant gene modules. A, A scale-free network was constructed in the GSE63514 database with the
soft-thresholding power set at 7. B, Clustering dendrograms of genes based on dissimilarity topological overlap and module colors in the
GSE63514 database are shown. C, A dendrogram is shown of consensus module eigengenes obtained by weighted coexpression
network analysis on the consensus correlation and heatmap plot of the adjacencies of modules in the GSE63514 database. D, Scatter
plots of gene significance relative to module membership in the GSE63514 database are shown. E and F, Scatter plots of red and green
modules in the GSE63514 database are represented.

Figure 3. Identification of coexpressed differentially expressed genes (DEGs). A and B, Venn diagrams show downregulated and
upregulated genes from both DEGs by weighted coexpression network analysis (WGCNA) and the edgeR package in R. Intersected
areas represent the common DEGs in both databases. CIN: cervical intraepithelial neoplasia.
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on the MCC algorithm through CytoHubba. Figure 5B
shows that the 10 candidate hub genes were RFC4,
ATAD2, TRIP13, NUF2, FOXM1, ECT2, KIF14, CDK2,
KNTC1, and DNA2.

Furthermore, to investigate the credibility of the
10 candidate hub genes, we explored their expression
levels in CC samples. In the GSE63514 database, the
aforementioned genes were all overexpressed in CC
tissues compared to CIN and cervical normal tissues
(Figure 5C, Po0.05). In addition, we then downloaded
the expression profile of CC from TCGA, and it was
observed that the mRNA expression of these genes was
also higher than that of cervical normal tissues (Figure 5D,
Po0.05).

Finally, to determine the relationship between the
expression of hub genes and DFS and OS in CC patients,
Kaplan-Meier curves were generated using GEPIA. The
results showed that the expression of three genes
(KNTC1, KIF14, and RFC4) significantly correlated with
the OS of CC patients (Figure 5E). There was a notably
longer survival time in the patients with high expression of
KNTC1 and RFC4 than in those with low expression;
however, the two genes were overexpressed in CC
(Figure 5C), which is contradictory to the prognosis. Only
the patients with high expression of KIF14 displayed
significantly shorter survival times than those with low
expression. Furthermore, there was a significant negative
correlation between the expression of KIF14 with the DFS

Figure 4. Functional annotation for coexpressed differentially expressed genes (DEGs). A, Gene Ontology (GO) analysis of the
23 shared upregulated genes, including biological process (BP), cellular component (CC), and molecular function (MF). B, Genes
linked by ribbons to their enriched terms are presented in the GOChord plot. C, GO analysis results are shown of the 30 shared
downregulated genes in the cellular component only (CC). D, KEGG pathway enrichment analysis results of the 53 shared genes
are shown. Po0.05 (t-test).

Braz J Med Biol Res | doi: 10.1590/1414-431X2021e11363

Role of KIF14 in cervical cancer 5/10

https://doi.org/10.1590/1414-431X2021e11363


of CC patients, while KNTC1 and RFC4 did not show
similar results (Figure 5F). Thus, KIF14 may be a more
important factor involved in the occurrence of CC, and we
explored it further.

Identification of KIF14-related signaling pathways by
GSEA

To investigate differentially activated signaling path-
ways in CC, we conducted the GSEA between high- and
low-KIF14-expression datasets from TCGA. Thirty-five
significantly enriched signaling pathways were enriched

based on the standard (padjusted o0.05 and FDR q values
o0.05) (Supplementary Table S2). There were many well-
known pathways including the cell cycle signaling path-
way, the glycolysis/gluconeogenesis signaling pathway,
and the DNA replication signaling pathway (Figure 6A).

The GSEA results and the GO enrichment analysis
(Figure 6B) suggested that KIF14 was involved in regulating
the cell cycle in CC, so we further explored the relationship
between KIF14 and the cell cycle signaling pathway. Five
indexes of the cell cycle, including BUB1, TTK, PLK1,
CREBBP, and CDK1, were selected and identified as the

Figure 5. Identification of hub genes. A, Protein-protein interaction network analysis was performed. Twenty-one nodes and 45 edges
were obtained with confidence scores X0.7. B, The top ten genes were selected as candidate hub genes according to the MCC
algorithm. C, Violin plots present the expression of the ten hub genes in cervical cancer (CC) tissues compared to the cervical
intraepithelial neoplasia (CIN) and cervical normal tissues in the GSE63514 database. D, Violin plots present the expression of the
ten hub genes in CC tissues compared to cervical normal tissues in the TCGA database. E, Overall survival (OS) plots in response
to the expression of the ten hub genes are shown. F, Disease-free survival (DFS) plots in response to the expression of the ten hub
genes are shown.
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important markers of the cell cycle signaling pathway. The
correlation of KIF14 expression with the aforementioned
genes was analyzed using GEPIA. Figure 6B shows a
significant positive correlation between the expression of
KIF14 with BUB1 (R=0.76), TTK (R=0.65), PLK1 (R=0.64),
CREBBP (R=0.63), and CDK1 (R=0.59). Therefore, KIF14
may play an oncogenic role possibly through promoting cell
cycle and cell proliferation in CC.

Expression of KIF14 and indexes of cell cycle
signaling pathways

To identify the expression of KIF14 and the indexes of
cell cycle signaling pathways, we detected the expression
of KIF14 and the above genes by RT-PCR. We found that
human HeLa and SIHa CC cells overexpressed KIF14
and the other aforementioned genes, which were com-
pared with the normal cervical epithelial cell line Ect1/E6E
(Figure 7A). Furthermore, we observed that the protein
expression of KIF14 was higher in CC tissues compared
to normal cervix tissues based on the HPA database,
and KIF14 was mainly localized in the cytoplasm and
membrane (Figure 7B). Additionally, four of the five
indexes of the cell cycle (TTK, PLK1, CREBBP, and
CDK1) were included in the HPA, all of which were also
highly expressed in CC (Figure 7B).

Discussion

Our results suggested that shared upregulated DEGs
played a more important role in CC pathogenesis compared

with downregulated DEGs. Ten candidate hub genes were
extracted through PPI network analysis of the set of 53
genes, and they were all upregulated in CC compared with
CIN and normal cervical tissues. After OS and DFS
analysis, only KIF14 was negatively associated with OS
and DFS in CC patients. Therefore, KIF14 may be a critical
oncogene involved in the onset and progression of CC, and
it might also be useful as a diagnostic marker and specific
therapeutic target for the ultimate management of CC.

KIF14, located on chromosome 1q32.1, contains a
C-terminal motor domain, a citron kinase binding region,
and an N-terminal extension for the binding of protein-
regulating cytokinesis. The overexpression of KIF14 may
lead to rapid and error-prone mitosis, which induces
aneuploidy during tumorigenesis (11). Similar to our
results, previous studies have demonstrated that KIF14
is overexpressed in some cancers, such as lung cancer,
hepatocellular carcinoma, breast cancer, glioma, retino-
blastoma, and ovarian cancer (12–15). More importantly,
in aged transgenic mice and wild-type mice overexpres-
sing KIF14, spontaneous tumor formation of fatal lympho-
mas was observed, which were mainly follicular and
diffuse b-cell lymphomas (16), providing evidence that
KIF14 may be an oncogene in the progression of multiple
malignant tumors. In medulloblastoma, KIF14 overexpres-
sion at the protein level was notably associated with
shorter progression-free survival and OS (17), and KIF14
downregulation significantly increased DFS and trended
toward longer OS in lung cancer (18), which is consistent
with our study that showed that KIF14 expression was an

Figure 6. Identification of kinesin family member 14 (KIF14)-related signaling pathways by gene set enrichment analysis (GSEA).
A, A merged enrichment plot is shown from GSEA including enrichment score, gene sets, and P values. Ten KIF14-related pathways are
shown here. B, The correlation between KIF14 expression and the five indexes of the cell cycle, including BUB1, TTK, PLK1, CREBBP,
and CDK1, were analyzed using Gene Expression Profiling Interactive Analysis (GEPIA).
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independent prognostic factor for the outcome of CC.
Moreover, the upregulation of KIF14 promotes tumor
proliferation and inhibits apoptosis, while KIF14 down-
regulation suppresses tumorigenicity in vitro and in
xenografts (19). In addition, KIF14 has been reported
to be a predictor of multiple cancer levels. Further, its
downregulation changes the adhesion dynamics of
lesions by increasing cell proliferation, thereby inhibiting
cell migration and invasion (20–22). Nevertheless, the
biological role of KIF14 and its underlying molecular
mechanism in CC is still not clear.

To explore the mechanism of KIF14 in promoting CC
onset, we analyzed the signaling pathway through GSEA
and found that the cell cycle signaling pathway was
closely related to KIF14, which was similar to the results
reported for hepatocellular carcinoma, prostate cancer,
and colorectal cancer (21,23,24). In colorectal cancer,
Wang et al. (23) found that decreased expression of KIF14
leads to cell division failure and multinucleation, which
inhibits cell cycle progression of nonviable daughter cells
and hinders cell transition into S phase. Apart from
interfering with cytokinesis, the fraction of cells in G2/M
phase was significantly higher in glioma cell lines infected
with KIF14-siRNA than in uninfected cells (U251 and U87

cells), indicating that KIF14 silencing induces G2/M phase
arrest in glioma cells (25). BUB1, TTK, PLK1, CREBBP,
and CDK1 are important cell cycle regulatory molecules
and are commonly used as cell cycle markers (26). BUB1
plays a key role in accurately distributing chromosomes
without mitotic spindle checkpoints and chromosome
alignment, and TTK is a key element of the spindle
assembly checkpoint (27). PLK1 plays a key role in
mitosis by affecting chromosome separation, spindle
assembly, and cytoplasmic division (28). Furthermore,
PLK1 and TTK act cooperatively at the beginning of
mitosis to establish a spindle assembly checkpoint by
recruiting the Mad1:C-Mad2 complex to the kinetochores
(29). Inhibiting CREBBP/EP300 bromodomain decreases
GATA1- and MYC-driven transcription and causes the
accumulation of cells in the G0/G1 phase of the cell cycle
(30). CDK1 is an important regulator of many mitosis
processes. As part of the cyclin A complex, CDK1
regulates the G2 phase and participates in G2/M
transformation by forming the cyclin B complex (31). In
addition, all aforementioned cell cycle markers are
involved in tumorigenesis (32–36). Additionally, abnor-
mal expression of KIF14 is often accompanied by
abnormal expression of BUB1, TTK, PLK1, CREBBP,

Figure 7. Kinesin family member 14 (KIF14) expression and the indexes of cell cycle signaling pathways. A, RT-PCR analysis results
are shown of KIF14 and the indexes (BUB1, TTK, PLK1, CREBBP, and CDK1) of the cell cycle signaling pathways in human cervical
cancer cells (HeLa and SIHa) and a normal cervical epithelial cell line (Ect1/E6E). B, The HPA database was utilized to analyze the
protein expression of KIF14, TTK, PLK1, CREBBP, and CDK1 in normal and cervical cancer (CC) tissues. Scale bar, 400 mm. Data are
reported as means±SD (n=3). *Po0.05; **Po0.01; ***Po0.001 (t-test).
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and CDK1 and affects the prognosis of several types
of cancer (e.g., esophageal squamous cell carcinoma,
glioblastoma, retinoblastoma, multiple myeloma, and acute
myeloid leukemia) (37–39). Chen et al. (40) found the
overexpressed genes (BUB1, BUB1B, TTK, and KIF14)
in gastric cancer, which are important parameters
included in the nomogram to predict the probability of
relapse for gastric cancer patients. Therefore, our results
showing that KIF14 was closely related to the expression
of the aforementioned genes and played an important
role in the pathogenesis of CC were consistent with
these studies.

In summary, we have identified a novel predictor for
the occurrence and prognosis of CC by integrating
bioinformatics analysis. The KIF14 hub gene was over-
expressed and related to the OS and DFS of CC patients.
In addition, our results suggested that KIF14 was not only
involved in the glycolysis/gluconeogenesis signaling path-
way and the DNA replication signaling pathway but also
tightly associated with the cell cycle signaling pathway
and related to the expression of cell cycle markers in CC.

Regrettably, we only performed a preliminary investigation
on the function of KIF14 by analyzing TCGA and GEO
data and have not confirmed the biological function of
KIF14 through in vivo and in vitro experiments or
determined how it modulates CC occurrence and devel-
opment. Therefore, we will conduct systematic research
on KIF14 to provide a theoretical basis for targeted CC
therapy in the future. However, our current results
revealed a biological role for KIF14 in cervical cancer
pathogenesis and provided new ideas for CC diagnosis
and therapy.

Supplementary Material

Click here to view [pdf].
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