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Abstract

Nitric oxide (NO*) has been identified as a principal regulatory
molecule of the immune system and the major cytotoxic mediator of
activated immune cells. NO* can also react rapidly with a variety of
biological species, particularly with the superoxide radical anion
O,* at almost diffusion-limited rates to form peroxynitrite anion
(ONOO"). ONOO™ and its proton-catalyzed decomposition products
are capable of oxidizing a great diversity of biomolecules and can act
as a source of toxic hydroxyl radicals. As a consequence, a strategy for
the development of molecules with potential trypanocidal activities
could be developed to increase the concentration of nitric oxide in the
parasites through NO*-releasing compounds. In this way, the rate of
formation of peroxynitrite from NO* and O,*~ would be faster than the
rate of dismutation of superoxide radicals by superoxide dismutases
which constitute the primary antioxidant enzymatic defense system in
trypanosomes. The adenosine transport systems of parasitic protozoa,
which are also in certain cases implicated in the selective uptake of
active drugs such as melarsoprol or pentamidine, could be exploited to
specifically target these NO*-releasing compounds inside the para-
sites. In this work, we present the synthesis, characterization and
biological evaluation of a series of molecules that contain both a group
which would specifically target these drugs inside the parasites via the
purine transporter, and an NO*-donor group that would exert a specific
pharmacological effect by increasing NO level, and thus the peroxyni-
trite concentration inside the parasite.
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Introduction

South-American and African trypanoso-
miasis, in particular African sleeping sick-
ness, a disease caused by parasitic protozoa
of the Trypanosoma brucei subgroup, re-
mains a major public health problem, and
there is now a great need to develop drugs to
replace those to which these parasites have

become resistant (1). Protection against ac-
tive oxygen species is provided in part by an
enzymatic defense system which is essential
for the survival of aerobic organisms and
differs according to species. Both mamma-
lian and protozoan enzymatic systems have
in common superoxide dismutases (SODs)
that catalyze the dismutation of superoxide
radical into hydrogen peroxide and oxygen.
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In addition to SODs, the protective mamma-
lian enzymes are various hydroperoxidases
such as glutathione peroxidase, catalase, and
other hemoprotein peroxidases. In the ab-
sence of catalase, the antioxidant defense
system in trypanosomes is weak, and essen-
tially based on the presence of a spermidine-
glutathione conjugate named trypanothione,
whose oxidative form is regenerated in its
reduced dithiol form by an NADPH-depend-
ent flavoprotein, trypanothione reductase (2).
Asa consequence, most of the trypanosomes,
and parasitic protozoans in general, are sus-
ceptible to free oxygen radical-induced oxi-
dative stress and do not tolerate a high con-
centration of oxygen. This vulnerability to
reactive oxygen species could be exploited
to design new drugs with trypanocidal activ-
ity.

Nitric oxide (NO*), a key messenger im-
plicated in a wide range of biological pro-
cesses including cardiovascular (3-5) and
neuronal (6) systems, also plays a critical
role of protection against parasitic infections
as a regulatory molecule and cytotoxic me-
diator of the immune system (7,8). For ex-
ample, macrophages from 7rypanosoma
brucei brucei-infected mice have been shown
to produce high levels of nitric oxide (9) and
a number of reports have demonstrated that
in vitro cytotoxicity against the intracellular
form of leishmanias is mediated by NO* (10-
12). Although few physiologic target mol-
ecules of NO have been clearly identified, its
role in the protective mechanisms would
occur through inactivation of critical en-
zymes and nitrosation of thiols and other
nucleophilic residues (13-16). NO* can also
react rapidly with a variety of radical spe-
cies, like superoxide radical anion O,*~. While
O,°~ itselfis not an efficient oxidizing agent,
together with NO* it can produce the more
powerful oxidizing peroxynitrite anion
ONOO™ at an almost diffusion-limited rate
(6.7 nM/s) (17) which depends on the con-
centrations of both radicals. Peroxynitrite
and its proton-catalyzed decomposition prod-
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ucts are capable of oxidizing a great diver-
sity of biomolecules (18,19) including heme-
containing proteins such as hemoglobin and
myeloperoxidase, seleno-proteins such as
glutathione peroxidase, DNA or lipids within
the cell, or nitrating and nitrosating phenolic
compounds such as tyrosines of certain pro-
teins like SODs, and can act as a source of
toxic hydroxyl radicals. Peroxynitrite anion,
like NO*, seems to play a major role in the
protective mechanisms of the host against
parasitic infections, and, for example, has
been shown to be highly cytotoxic against
Trypanosoma cruzi epimastigotes, the causal
agent of Chagas’ disease, inactivating two
key enzymes for their energetic metabolism,
i.e., succinate dehydrogenase and NADH-
fumarate reductase (20,21).

Most of parasitic protozoa are unable to
synthesize purines de novo and consequently
must use specific transporters to obtain them
from the hosts for their survival. The African
trypanosome Trypanosoma brucei bruceithat
invades the central nervous system causing
the fatal neurologic disorder known as sleep-
ing sickness, possesses two adenosine trans-
porter systems: a P1 type which also trans-
ports inosine, and a P2 type which is also
able to transport adenine. Both systems have
been shown to be implicated in the selective
uptake of trivalent melaminophenyl arseni-
cal drugs (22) such as melarsen oxide 1a and
melarsoprol 1b (Figure 1), which are still the
only drugs of choice for the treatment of the
late stage of human African trypanosomia-
sis, and of pentamidine 2 (23), one of the
most frequently administered drugs in the
treatment of the early stage of the disease.
Moreover, the nitroheterocyclic compound
megazol 3 (Figure 1), that has been shown to
be active against many microorganisms in-
cluding Trypanosoma cruzi, might also act
as a substrate for carrier protein P2, although
the passive diffusion process would remain
the major route of entry (Barrett MP, Fairlamb
AH, Rousseau B, Perié J and Chauviére G,
unpublished results). In view of the analo-
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gies between adenine (or adenosine), benza-
midine and melamine, it has been hypoth-
esized that the amidine motif (N=C-NH,) is
the real structural feature for specific P2-
transporter recognition and uptake (24).

Trypanosoma equiperdum, a non-tsetse-
transmissible strain, possesses a transport
system similar to that of 7. brucei, compris-
ing two adenosine transporters, P1 and P2,
the latter also transporting adenine and the
melaminophenyl arsenical drug cymelarsen
lc (25) (Figure 1).

In the present paper, we describe the
synthesis of a series of drugs 7a-7c which
contain both a group that would specifically
target these drugs into the parasite via the
P2-transporter, and an NO*-donor group that
would exert a specific pharmacological ef-
fect by increasing the level of NO, and thus
the peroxynitrite concentration inside the
parasite. The uncommon stability of S-
nitroso-N-acetylpenicillamine (SNAP) as a
solid (26) or in solution suggests that peni-
cillamine derivatives should be good
canditates for new stable S-nitrosothiols and
could function as useful nitric oxide-releas-
ing compounds. We describe here the effect
of melaminyl thionitrite 7a on adenosine
transport by 7. equiperdum.

Results
Synthesis and stability of thionitrites 7a-c

The general synthetic route to thionitrites
7a-c is shown in Figure 2. Penicillamine 4
was activated for coupling with amines by
conversion into 3-acetamido-4,4-dimeth-
ylthietan-2-one 5 (27), which was prepared
directly from the racemate of penicillamine
by reaction with acetic anhydride in pyridine
(40% yield). Reaction of thietanone 5 with
the amino melaminyl derivative 8 (synthe-
sized in two steps from 2-chloro-4,6-diamino-
1,3,5-triazine and 4-aminoacetanilide, Fig-
ure 3), with 4-aminobenzamidine (commer-
cially available) or with the adenine deriva-
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tive 9 (synthesized in two steps from adenine
and 2-bromo-1[(tert-butyloxycarbonyl)
amino]ethane, Figure 4) gave the thiols 6a-c,
respectively. No protection was required for
amidine function for these coupling reac-
tions. The thionitrites 7a-c were then ob-
tained as hydrochloride salts under mild con-
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Figure 1 - Structures of melarsen oxide (1a), melarsoprol (1b), cymelarsen (1c), pentamidine
(2) and megazol (3).
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Figure 2 - Synthesis of compounds 5, 6 and 7. The reaction conditions were: i, acetic
anhydride; pyridine (0°C for 30 min, and then at room temperature (RT for 15 h). ii, 7a: 8,
DMF (RT for 20 h). 7b: 4-aminobenzamidine, NaOH 1 M; chloroform (RT for 2 h). iii, 7c: 9,
NaOH 1 M; chloroform (RT for 2 h).
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Figure 3 - Synthesis of compound 8. a, 1 eq NaOH; H20O (100°C, 3 h). b, 1.2 M HCI (100°C, 2 h).

Braz ] Med Biol Res 32(11) 1999



1450

Figure 4 - Synthesis of com-
pound 9. c, 2-Bromo-1-[(tert-
butyloxycarbonyl)amino]ethane,
K2COg3, BuyN™*I; DMF (RT, room
temperature for 16 h). d, Trifluo-
roacetic acid; CH»Cl, (RT for
4 h).
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ditions by electrophilic nitrosation of the
corresponding parent thiols 6a-c with so-
dium nitrite in acid solution at room temper-
ature (28).

Like SNAP compounds, 7a-c were stable
as solids and presented a green color when in
solution in organic or aqueous media which
characterizes the presence of an S-nitroso
group. They were fully characterized by mass
spectrometry, 'H/'3C-NMR and UV-visible
spectroscopies. Decomposition studies were
carried out by UV-visible spectroscopy by
measuring the disappearance of the charac-
teristic absorbance at 340 nm (¢ - 800 M/cm).
7a-c decomposed slowly in sodium phos-
phate buffers, pH 7.5, with a half-life be-
tween 2 and 3 h, comparable to the half-life
of SNAP under the same conditions.

Biological evaluation

Cymelarsen 1c, SNAP and thionitrite 7a
were tested on 7. equiperdum E1 for their
ability to inhibit the uptake of [2-*H]Jadenosine
via the transporter P2 in the presence of
saturating concentration of inosine which
was required to inhibit P1 transporter. The
compounds were also tested for their in vitro

’T‘HZ NH,
N X N =
</ | N aod </ | )N
N/\N/ — N N/
1 {
H

Table 1 - Inhibition of adenosine transport by T.
equiperdum in the presence of inosine and in
vitro toxicity of the same strain.

Nd, Not determined.

Ki LD100
Adenosine 0.7 uM (Km) nd
Cymelarsen la 41 yM nd
SNAP >100 mM 125 pM
7a 0.5 uM 250 uM
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toxicity on the same strain (LD, after 18 h).
The data reported in Table 1 show that the
melaminyl derivative 7a efficiently inhibits
adenosine transport in 7. equiperdum in the
presence of inosine, suggesting a specific
interaction with the P2 transporter with a K;
of 0.5 pM which is equal to the Ky, values of
adenosine that enters the parasite through
both adenosine transporters P1 (Ky; = 0.6
uM) and P2 (Ky;= 0.7 pM). In comparison,
the uptake of cymelarsen via P2 is less effi-
cient (K;=41 uM) and SNAP has no affinity
for this transporter (K; >100 mM).

Discussion

Chemical reagents that release NO* un-
der physiological conditions are good candi-
dates to mimic the activity of NO-synthase
(29), an NADPH-dependent flavo-hemopro-
tein that produces NO* from L-arginine in
many types of cells by a two-step oxidation
reaction. A potential therapeutic application
lies in their possible use as vasodilators or as
drugs for the treatment of angina, and a
chemical application is their use as a depot
for NO* gas which is difficult to handle due
to its high reactivity and toxicity as a free
radical. Naturally occurring thionitrites like
S-nitroso-albumine (30) or S-nitrosogluta-
thione (31) are currently postulated to be
carriers of NO*, but synthetic S-nitrosothiols
are usually relatively unstable and spontane-
ously decompose in solution to yield quanti-
tatively NO® and the corresponding thiyl
radical, which dimerizes to give the disul-
fide, as primary products (32-35). In spite of
the presence of amino groups, the three
thionitrites of this study, like the well-known
SNAP, exhibit significant stability in the
solid form and in solution to permit full
structural characterization or a therapeutic
use, and are capable to slowly generate NO*
under physiological conditions with half-life
times of several hours.

Conversion of penicillamine into its cor-
responding thietanone for coupling with
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amino compounds is a convenient and gen-
eral method that can be carried out either in
organic solvents or in biphasic systems. The
nitrosation reactions to obtain the thionitrites
required the investigation of various meth-
ods. Only sodium nitrite under acidic condi-
tions gave a satisfactory result as nitrosating
agent, and no diazotization/deamination re-
actions were observed. As shown by UV-
visible spectroscopy, the final compounds
decomposed in neutral or basic aqueous so-
lutions within a few hours, i.e., at a rate of
decomposition comparable to that of SNAP,
and were highly stable under acidic condi-
tions.

The thionitrite 7a, which possesses a P2
recognition motif, strongly inhibits the aden-
osine uptake by the transporter P2. Despite a
specific interaction with this transporter,
these data do not indicate if compound 7a is
really transported by P2. Under the same
conditions, the melaminophenyl arsenical
drug cymelarsen that has been shown to
enter through the trypanosomal P2 trans-
porter, has a higher K; value, and SNAP does
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