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Abstract

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically 
increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or 
maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk 
factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed 
to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction 
and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system 
and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular 
function and a better understanding of how vascular function can be influenced by these systems would facilitate the develop-
ment of new therapies for treatment of obesity-associated hypertension.
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Obesity is a major worldwide public health problem 
(1,2), especially in the United States, where approximately 
300,000 deaths each year have been attributed to over-
weight or obesity. The worldwide prevalence of obesity has 
rapidly risen to epidemic proportions in the past decades, not 
only in industrialized nations but also in developing countries 
(1,2). Current estimates indicate that more than 1 billion 
people in the world are overweight or obese, compared to 
850 million who are underweight (3). In the United States, 
obesity continues to be a leading public health concern. At 
least 65% of adults are overweight, and approximately one-
third of adults are obese with a body mass index (defined 
as kg weight/m2 height) of more than 30 (1). An alarming 
increase in the prevalence of obesity has also been observed 
in Brazil. When data from the 1970s showed undernutri-
tion as the main nutritional problem in Brazil, obesity was 
still considered a minor issue. With time, this scenario has 
changed dramatically, with a strong reduction of undernu-
trition and the prevalence of obesity constantly growing in 

the Brazilian population: from 5.7% in 1974/1975 to 9.6% 
in 1989, to 11.4% in 2006, and then to 13.9% in 2009 
(4,5). Changes in the quality, quantity and source of food 
consumed, combined with a decrease in levels of physical 
activity among the genetically predisposed population, have 
led to the increased prevalence of obesity (3).

Associated with obesity is hypertension, considered as 
the primary mediator of the development of obesity-induced 
cardiovascular diseases (6). Clinical and experimental 
studies have consistently indicated that excess weight 
predicts the development of hypertension (7,8). Although 
the importance of obesity as a cause of hypertension is well 
established, the excess weight-induced physiological and 
molecular mechanisms that mediate high blood pressure 
are only beginning to be elucidated. Several mechanisms 
with therapeutic implications as potential causes of obesity-
induced hypertension have been identified in the last few 
years. Of great interest are observations on endothelial 
dysfunction in obesity, which could contribute to hyperten-
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sion. It is well established that obesity impairs the vasodi-
lating properties of the endothelium leading to endothelial 
dysfunction (9), which in turn can be considered to be the 
first step in the progression of cardiovascular disease (6).

Additional mechanisms, still related to endothelial dys-
function, have been proposed to mediate hypertension in 
obese patients. These include: increase in both peripheral 
vasoconstriction and renal tubular sodium reabsorption, 
increased sympathetic activity, overactivation of the renin- 
angiotensin system (RAS), and insulin resistance (Figure 
1). The intra-abdominal visceral deposition of adipose tissue 
is also considered to be a contributor to the development of 
hypertension in obese individuals (7,8). In addition to these 
advances, a revolution in our understanding of mechanisms 
regulating appetite, metabolism, and adiposity has occurred 
since the discovery of the endocannabinoid system more 
than 10 years ago (10,11). This system is activated in obese 
individuals and might mediate the effects of obesity on the 
development of the metabolic and vascular alterations of 
hypertension.

If these advances can translate into safe and effective 
pharmacological treatment of obesity, this would also greatly 
impact the management of obesity-associated hyperten-
sion. Considering this, in the present section, an overview 
of the advances in the understanding of the pathophysiology 

of obesity-associated hypertension, focusing on the role of 
endothelial dysfunction, will be addressed. We also outline 
the function of the main modulating systems of the develop-
ment of hypertension and obesity. A better understanding 
of how the vascular function can be influenced by these 
systems would facilitate therapeutic approaches to the 
treatment of obesity-associated hypertension.

Endothelial dysfunction: linking obesity 
and hypertension

The vascular endothelium plays an important role in 
the control of vascular homeostasis. Besides providing a 
physical barrier between the lumen and the vessel wall, 
the endothelium actively regulates the basal vascular tone 
and reactivity in physiological conditions (12). Endothelial 
dysfunction, represented by an altered ability of the endothe-
lium to maintain vascular homeostasis through the release 
of endothelium-derived relaxing factors and endothelium-
derived contracting factors, is present in human obesity 
and associated comorbidities (12), promoting changes in 
pressure and flow patterns and, consequently, resulting in 
obesity-associated hypertension. Even in normotensive 
subjects, endothelial function progressively deteriorates 
as blood pressure rises (13).

Endothelial dysfunc-
tion is an important risk 
factor for hypertension 
because it leads not 
only to functional altera-
tions, represented by the 
impaired control of the 
vascular tonus, but also 
to structural changes, 
such as thickening of 
the intima and media 
of the vessel wall. The 
association between en-
dothelial dysfunction and 
increased blood pres-
sure in obesity comes 
from studies showing 
that obese individuals 
display blunted vasodi-
latation in response to 
classical endothelium-
dependent vasodilators 
such as acetylcholine in 
resistance arteries, as 
well as reduced capillary 
recruitment in response 
to reactive hyperemia 
and shear stress (13,14) 
and that the severity of 
endothelial dysfunction 

Figure 1. Mechanisms involved in obesity-associated hypertension. WAT = white adipose tissue; SNS 
= sympathetic nervous system; RAS = renin-angiotensin system.
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correlates with the degree of visceral adiposity (14).
Although the mechanisms linking obesity with endothe-

lial dysfunction have not yet been fully clarified, several 
factors have been proposed to mediate this process (Figure 
2). Results obtained with experimental models of obesity-
associated hypertension indicate a potential role for vascular 
proinflammatory factors and oxidative stress on endothelial 
dysfunction in this condition. Mice with high-fat diet-induced 
obesity display increased blood pressure and impairment 
in the relaxation of the aorta in response to acetylcholine, 
an endothelium-dependent vasodilator. The endothelial 
dysfunction in this model has been proposed to be a con-
sequence of the reduced antioxidant defense and the local 
activation of the nuclear factor κB (NF-κB) pathway (15). In 
a model of hypertension without obesity, high activation of 
NF-κB and increased su-
peroxide (O2-) generation 
are observed in the vascu-
lar wall (16), indicating that 
these two factors may be 
the link between obesity 
and hypertension.

Decreased nitric oxide 
(NO) bioavailability has 
been reported to play a 
major role in endothe-
lial dysfunction in obesity-
associated hypertension 
(17,18). High O2- levels 
as a consequence of in-
creased generation of reac-
tive oxygen species (ROS) 
or reduced antioxidant 
defense contribute to de-
creasing NO bioavailability. 
Endothelial nitric oxide syn-
thase (eNOS) uncoupling, 
a process in which eNOS 
generates O2- instead of 
NO when the concentra-
tions of either L-arginine, 
the substrate of NOS, or 
tetrahydrobiopterin (BH4), 
a cofactor of the enzyme, 
are depleted, may also 
mediate decrease in NO 
bioavailability (19). The 
crucial role of uncoupled 
eNOS as a O2- producing 
enzyme has been reported 
in hypertension (19) and 
diabetes (20). In a model of 
obesity without high blood 
pressure or hyperglycemia, 
the detrimental impact of 

obesity on endothelial function in the microvasculature is 
also attributable to the reduced NO bioavailability as a con-
sequence of uncoupled eNOS (21). These findings indicate 
the presence of uncoupled eNOS in obesity as a primary 
event before the establishment of comorbidities.

Another factor that has been suggested to be associ-
ated with the increased generation of ROS in obesity and 
hypertension is the enzyme NAD(P)H oxidase (the main 
source of O2- in the vasculature). Excessive O2- generation 
from AT1-dependent overexpression of NAD(P)H-oxidase 
subunits was demonstrated in spontaneously hypertensive 
rats (22). In a similar way, increased O2- derived from 
NAD(P)H oxidase was found to impair the endothelial func-
tion of the aorta from Zucker fa/fa rats, a model of obesity 
and insulin resistance (23).

Figure 2. Putative mechanisms of endothelial dysfunction in obesity-associated hypertension. De-
creased nitric oxide (NO) bioavailability as a consequence of uncoupled endothelial nitric oxide syn-
thase (eNOS), a process in which eNOS generates superoxide (O2-) instead of NO when the concen-
trations of either L-arginine (L-arg), the substrate of NOS, or tetrahydrobiopterin (BH4), a cofactor of 
the enzyme, are depleted, may mediate endothelial dysfunction in obesity-associated hypertension. 
Increased reactive oxygen species generation as a consequence of increased NF oxidase and NF-
κB activity and reduced superoxide dismutase (SOD) activity also contribute to decreasing NO bio-
availability in this situation. Increased production of endothelium-derived contractile factors (EDCFs), 
including prostanoids (PGF2α and TX2), angiotensin II (Ang II) and endothelin I (ET-1) constitute 
additional mechanisms involved in endothelial dysfunction in obesity-associated hypertension. A po-
tential role for perivascular adipose tissue (PVAT) in the vascular dysfunction of obesity has also been 
proposed. PVAT can reduce adenosine monophosphate-activated protein kinase (AMPK) activation 
and increase the NAD(P)H oxidase-induced O2- production leading to reduced NO production. AA = 
arachidonic acid; ACE = angiotensin-converting enzyme; COX = cyclooxygenase; EC = endothelial 
cells; ECE = endothelin-converting enzyme; NF-kB = nuclear factor κB; pET-1 = pro-endothelin 1; 
PGI2 = prostaglandin I2; VSMC = vascular smooth muscle cells; WAT = white adipose tissue.
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An additional mechanism involved in vascular dysfunc-
tion in obesity is the disturbance in the vascular profile 
of prostanoid release. Overproduction of vasoconstrictor 
prostanoids has been reported in obesity-associated co-
morbidities such as diabetes (24). In addition, thromboxane 
A2 and prostaglandin H2 (TXA2/PGH2) receptor expres-
sion is enhanced in obesity-associated hypertension (25). 
A reduced balance of PGI2 and TXA2 release as a result 
of the increased TXA2 and decreased PGI2 levels was 
recently reported in obese rats (21). This alteration has 
been proposed to be associated with increased conversion 
of arachidonic acid to prostaglandins by cyclooxygenase-2 
(COX2), an isoform of COX described to be induced specifi-
cally under inflammatory conditions (21).

Increased production or activity of other vasoconstrictor 
substances, such as endothelin-1 (ET-1) and angiotensin 
II (Ang II), is also implicated in endothelial dysfunction in 
obesity and hypertension (26,27). In hypertensive patients, 
increased body mass is associated with enhanced ET-1-
induced vasoconstriction (17), suggesting that this abnor-
mality is a potential mechanism for endothelial dysfunction 
and may play a role in the pathophysiology of obesity-related 
hypertension.

A potential role for perivascular adipose tissue in the 
vascular dysfunction occurring in obesity has also been 
proposed. Recent studies have demonstrated that the 
adipose tissue surrounding blood vessels is a functional 
component of the vasculature, modulating vascular reactiv-
ity and proliferation (18,28,29). It has been demonstrated 
that, under physiological conditions, the perivascular fat 
attenuated the vascular responsiveness to several con-
strictor agonists, including serotonin, phenylephrine, 
and ET-1. This effect was attributable to the activation of 
voltage-dependent, delayed-rectifier K+ (Kv) channels that 
hyperpolarize the vascular smooth muscle cell membrane 
(18). Furthermore, it has been shown that perivascular 
adipose tissue releases relaxation factors in different vas-
cular beds (18,30). Although these findings do not provide 
an explanation for the association between obesity and 
hypertension, recent studies have shown that the ability 
of the perivascular adipose tissue to release relaxation 
factors is impaired in experimental models of obesity (31). 
Additionally, it has been shown that perivascular adipose 
tissue impacts vascular function and remodeling through 
impairment of both eNOS-mediated vasodilatation and 
the AMP-activated protein kinase/mammalian target of 
rapamycin (AMPK/mTOR) pathway in rats with high-fat 
diet-induced obesity (32). Perivascular adipose tissue has 
also been shown to enhance the contractile response of 
superior mesenteric arteries from Wistar-Kyoto rats through 
the production of superoxide mediated by NAD(P)H oxidase, 
and this enhancement involves activation of tyrosine kinase 
and the MAPK/ERK pathway (33). On this basis, perturba-
tions in perivascular adipose tissue regulation of vascular 
reactivity may contribute to blood pressure elevation in 

obesity-related hypertension.
Based on the observations discussed above, it is clear 

that the endothelium is a major regulator of vascular reac-
tivity, maintaining the balance between vasodilatation and 
vasoconstriction. Disturbance in this balance leading to 
endothelial dysfunction is considered an early marker for the 
development of cardiovascular diseases. Not surprisingly, 
this integral role of the endothelium in vascular health and 
endothelial dysfunction in obesity has generated consid-
erable interest in its potential role for the development of 
obesity-associated hypertension. Of relevance, although the 
effects of perivascular adipose tissue on the vasculature 
in the presence of obesity still constitutes a major chal-
lenge, it is well known that this tissue is implicated in the 
regulation of vascular function in the physiological state. 
Thus, the perivascular adipose tissue also provides an 
opportunity to understand how changes in the regulation 
of vascular function can contribute to the development of 
hypertension in obesity.

Role of insulin resistance in endothelial 
dysfunction in obesity-associated 
hypertension

Obesity is frequently associated with insulin resistance 
and compensatory hyperinsulinemia. Clinical and experi-
mental studies suggest a potential cause-effect relationship 
between obesity and insulin resistance, since weight gain 
or weight loss is closely correlated with reduction/increase 
in insulin sensitivity, respectively (34,35). Insulin resistance 
in obesity contributes to a range of metabolic and cardio-
vascular alterations, which would favor the development 
of hypertension (36).

Insulin is essential for normal tissue development, main-
taining glucose homeostasis and regulating carbohydrate, 
lipid, and protein metabolism (37). This hormone also has 
important vascular actions, which include the stimulation of 
endothelium-dependent NO release, leading to vasodilata-
tion and increased blood flow, favoring glucose uptake by 
skeletal muscle. Another distinct insulin-signaling pathway 
in the endothelium is the regulation of the release of the 
vasoconstrictor peptide ET-1 (38). The vascular actions of 
insulin play a central role in the control of metabolic and 
hemodynamic homeostasis under healthy conditions.

The role of insulin resistance in the physiopathology 
of hypertension was confirmed by studies showing that 
non-obese insulin-resistant patients display the same 
prevalence of hypertension when compared to obese 
individuals (36,39).

The influence of insulin on endothelial function has been 
extensively studied. It was demonstrated that the effect of 
vasodilating agents on endothelial cells depends on a direct 
facilitator action of insulin and that in insulin-deficient states, 
early alterations of the effects of insulin on endothelial cells 
might contribute to the impaired reactivity of the microves-
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sels (40). Consistent with these results are the observations 
that treatment with either insulin (20) or the insulin sensitizer 
metformin (41) corrects the reduced endothelium-depen-
dent vasodilatation without fully improving the metabolic 
parameters of experimental models of diabetes. Impaired 
arteriole and venule responses to endothelium-dependent 
vasodilators in type 2 diabetes are also corrected by both 
acute and chronic insulin treatment (42).

Decreased sensitivity of resistance vessels to endothe-
lium-dependent vasodilatation induced by insulin has also 
been observed in obese individuals (43). Clinical studies 
have demonstrated a 40 to 50% reduction in endothelium-
dependent vasodilatation induced by insulin in non-diabetic 
and diabetic obese patients. This alteration was attributed 
to the impaired ability of insulin to stimulate NO produc-
tion by endothelial cells (44). These observations indicate 
that obesity and insulin resistance, independently of other 
risk factors, are associated with impairment of endothelial 
function.

Among the mechanisms proposed to mediate the role of 
insulin in the association between obesity and hypertension 
is insulin resistance in vascular smooth muscle cells, with 
impairment of insulin-mediated ion exchange processes 
(Ca2+-ATPase and Na+, K+-ATPase), leading to Ca2+ and 
Na+ accumulation on the vascular wall (45,46). This altera-
tion facilitates the action of vasoconstrictor agents such as 
Ang II and norepinephrine (47). Insulin resistance in ex-
perimental models of hypertension is also accompanied by 
endothelial dysfunction in resistance vessels with impaired 
PI3-kinase-dependent NO production and enhanced ET-1 
secretion, which may combine with elevated peripheral 
vascular resistance and contribute to hypertension in this 
model (38). Taken together, these findings support a role 
for several related mechanisms by which insulin resistance 
might contribute to the development of endothelial dysfunc-
tion in obesity-associated hypertension.

Sympathetic nervous system and endothelial 
dysfunction in obesity-associated 
hypertension

The overactivity of the sympathetic nervous system is a 
common feature of obesity, and is closely associated with 
the cardiovascular and renal alterations observed in this 
condition (48). A number of factors may account for this, 
including baroreflex dysfunction, hypothalamus-pituitary 
axis dysfunction, insulin resistance, hyperinsulinemia, 
hyperleptinemia, and overactivity of the RAS. Weight loss 
reduces blood pressure and the activity of the sympathetic 
nervous system (49), confirming that long-term sympatho-
activation is the link between obesity and the increase in 
blood pressure (Figure 1).

Leptin has emerged as a link between excess adiposity 
and increased cardiovascular sympathetic activity. Besides 
having an effect on appetite and metabolism, leptin acts 

on the hypothalamus to increase blood pressure through 
activation of the sympathetic nervous system (50). Obe-
sity is usually associated with selective leptin resistance, 
a condition characterized by resistance to the feeding 
and weight reducing effects of leptin, but preservation 
of the renal sympathoactivation by this hormone (51). 
Hyperinsulinemia may also play a role in the overactivity 
of the sympathetic nervous system in obesity. Insulin, like 
leptin, causes sympathetic activation in different tissues, 
including the kidney (52). The ability of insulin to stimulate 
renal sympathetic outflow is preserved in experimental 
models of obesity, despite the insulin resistance observed 
in this condition (53). The elevated circulating levels of 
non-esterified fatty acid (NEFA) from visceral fat depots 
in obese subjects appear also to mediate the increased 
sympathetic activity and, ultimately, the raise in blood pres-
sure (54). Longitudinal and cross-sectional studies also 
indicate a role for some newly discovered peptides such 
as ghrelin (55) and adiponectin (56), as independent risk 
factors for hypertension in obese patients via modulation 
of the sympathetic nervous system.

Interactions between autonomic nervous system regula-
tion and endothelial function may provide a mechanism to 
explain the endothelial dysfunction occurring in obesity and 
hypertension (Figure 1). The sympathetic nervous system 
may directly influence the endothelium. Endothelial cells 
possess both α2-adrenoceptors and β-adrenoceptors (57). 
Given that activation of endothelial adrenergic receptors 
releases endothelium-derived relaxant factors like NO 
and endothelium-derived contracting factors such as ET-1 
(57,58), disturbances in the balanced release of these fac-
tors as a consequence of altered activity of the sympathetic 
nervous system may explain the role of this system in 
abnormalities of endothelial function in obesity-associated 
hypertension (44). The best evidence of this comes from 
studies showing that exaggerated sympathetic nervous 
system activation may impair endothelial function and 
enhance an endothelium-mediated atherogenic process 
(59). Increased levels of catecholamines are also postulated 
to induce macrophages into the vessel (60) and increase 
uptake of low-density lipoproteins by endothelial cells (61). 
Despite this evidence, it is unclear whether the sympathetic 
nervous system and endothelial systems are negatively af-
fecting one another, or whether both systems are affected 
as a consequence of obesity and hypertension.

Endothelial dysfunction and the RAS

The RAS is another important system involved in hy-
pertension in obesity (Figure 1). Increased activity of the 
RAS, represented by increased circulating angiotensinogen, 
renin, aldosterone, and angiotensin-converting enzyme 
(ACE) activity has been demonstrated in obesity, both 
systemically and within adipose tissue, and was directly 
related to the mass of adipose tissue (62,63). The significant 
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role for Ang II in stimulating sodium reabsorption, impair-
ing renal-pressure natriuresis and causing hypertension 
in obesity is supported by studies showing that a modest 
reduction in body weight can lead to a meaningfully re-
duced RAS activity in plasma and adipose tissue, which 
parallels a reduction in blood pressure (64,65). A dietary 
intervention study in menopausal women showed that a 
5% weight loss resulted in a 7-mmHg reduction of blood 
pressure. This decrease was accompanied by significant 
declines of serum angiotensinogen (27%), renin (43%) and 
ACE activity (12%), as well as angiotensinogen expression 
in adipose tissue (20%) (64).

Under physiological conditions, infusion of Ang II causes 
redirection of blood flow between different vascular beds 
and within the vascular bed of skeletal muscle. This effect 
leads to an increase in total muscle blood flow and capillary 
recruitment with a consequent increase in insulin-induced 
glucose uptake (66). However, in obesity, the RAS seems 
to have a detrimental effect on insulin-induced glucose 
uptake (65). Additionally, Ang II has been reported to impair 
insulin stimulation of insulin receptor substrate 1 (IRS-1) 
tyrosine phosphorylation and coupling of the insulin receptor 
pathway to PI3-kinase in the vasculature, suggesting that 
activation of the RAS may contribute to insulin resistance 
in the vasculature (67).

The activation of the RAS may also mediate endothelial 
dysfunction in obese individuals. Ang II activates recep-
tors located on either endothelial or smooth muscle cells. 
The activation of endothelial receptors is linked to the 
production of the contractile peptide ET-1 and ROS. The 
effects of Ang II on smooth muscle cells involve contrac-
tion and proliferation (68). The role of the RAS as an 
independent factor involved in endothelial dysfunction 
in hypertension was confirmed by the observation that 
treatment of DOCA-salt hypertensive rats with an ACE 
inhibitor corrected the decreased endothelium-dependent 
relaxation in response to acetylcholine in aortic rings, 
independently of normalizing blood pressure levels (69). 
In addition, it was demonstrated that the free fatty acids  
(FFA)-induced impairment of endothelial function in obese 
individuals was completely prevented by either the AT1 
receptor blocker or the ACE inhibitor, which suggests that 
an elevation of FFA induces endothelial dysfunction through 
activation of the RAS (70). Chronically elevated Ang II can 
also increase ROS generation (16,71). ROS generation 
can reduce the endothelium-dependent vasodilatation by 
impairing NO bioavailability (72). Therefore, these findings 
indicate an important role for the RAS providing another 
potential link between obesity and hypertension.

Endocannabinoid system: cardiovascular 
effects in obesity and hypertension

The endocannabinoid system has emerged as a highly 
relevant topic in the scientific community because of its 

important role in the central and peripheral regulation of 
food intake and energy balance (73). In fact, it has been 
demonstrated that increased activity of the endocannabinoid 
system contributes to the increased food intake and the de-
velopment of the cardiovascular risk factors that accompany 
weight gain (11). Since increased visceral adiposity can be 
considered to be the link between overweight and hyper-
tension, a dysregulated, overstimulated endocannabinoid 
system in visceral adipose tissue could indirectly contrib-
ute to visceral obesity-associated hypertension (74,75). 
However, endogenous cannabinoid ligands reduce blood 
pressure and heart rate and are potent vasodilators in a 
number of isolated vascular preparations of normotensive 
non-obese animals, which involve endothelium-dependent 
and -independent mechanisms (76-79). Thus, the direct 
involvement of an overstimulated endocannabinoid system 
in the endothelial dysfunction and hypertension occurring in 
obesity is not clear. Indeed, the implication of the endocan-
nabinoid system in the vascular dysfunction of hypertension 
is controversial. In fact, since increased hypotensive and 
vasodilator effects of cannabinoids have been reported in 
hypertension (80,81), this system could represent a com-
pensatory mechanism to counteract the increase in arterial 
pressure and vascular resistance in hypertension. 

The implication of the overstimulated endocannabinoid 
system in the endothelial dysfunction and obesity-associ-
ated hypertension has not been clarified. A dysfunctional 
activity of the endocannabinoid system in obesity could 
nullify its compensatory effect to counteract the increase 
in arterial pressure and endothelial dysfunction as that ob-
served in hypertension. Therefore, a direct involvement of 
the overstimulated endocannabinoid system in endothelial 
dysfunction and obesity-associated hypertension cannot 
be ruled out and further studies are necessary to clarify 
this point. 

Conclusion

Reduced NO availability as a consequence of uncou-
pled eNOS and increased NAD(P)H oxidase activity, and 
increased production of endothelium-derived contracting 
factors (EDCFs) (prostanoids, Ang II, and ET-1) are im-
plicated in endothelial dysfunction in obesity-associated 
hypertension. Visceral adiposity and/or perivascular 
adipose tissue dysfunction are directly involved in NO/
EDCFs imbalance by promoting a chronic inflammatory 
state. Moreover, disorders promoted by visceral adiposity 
dysfunction can individually impair endothelial function. 
Insulin resistance is the most common obesity-promoted 
disorder and this condition is characterized by impaired 
PI3-kinase-dependent NO production and enhanced ET-1 
secretion, which impair the capacity of insulin to promote 
a facilitator action of vasodilator agents. Compensatory 
hyperinsulinemia due to insulin resistance, hyperleptinemia, 
increased activity of the RAS, among other factors, are 
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responsible for the overactivity of the sympathetic nervous 
system in obesity-associated hypertension. Disturbances in 
the balanced release of NO and constrictor factors stimu-
lated by activation of endothelial adrenergic receptors con-
tribute to the endothelial dysfunction of obesity-associated 
hypertension. Besides promoting endothelial dysfunction 
through sympathetic overactivation, increased RAS activ-
ity also has a direct impact on endothelial function. Ang II, 
by activating receptors located on endothelial or smooth 
muscle cells, produces ET-1 and ROS. Finally, increased 
activity of the endocannabinoid system contributes to the 
pathophysiology of obesity; however, its contribution to the 
endothelial dysfunction of obesity-related hypertension has 
not been elucidated.

In conclusion, the mechanisms involved in the endothe-
lial dysfunction of obesity-associated hypertension are 

various and not mutually exclusive, and in some way they 
are redundant (Figure 1). The relative contribution of any 
of them is not easily defined. The important advances in 
understanding the pathophysiology of obesity-associated 
hypertension that have been achieved in the last years 
can greatly impact the prevention and the management of 
obesity-associated hypertension. Any intervention able to 
prevent or reverse obesity-related endothelial dysfunction 
might represent a major tool to improve the cardiovascular 
outcome of obese patients.
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