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Abstract

Polyomavirus is a DNA tumor virus that induces a variety of tumors in
mice. Its genome encodes three proteins, namely large T (LT), middle
T (MT), and small T (ST) antigens, that have been implicated in cell
transformation and tumorigenesis. LT is associated with cell immor-
talization, whereas MT plays an essential role in cell transformation by
binding to and activating several cytoplasmic proteins that participate
in growth factor-induced mitogenic signal transduction to the nucleus.
The use of different MT mutants has led to the identification of MT-
binding proteins as well as analysis of their importance during cell
transformation. Studying the molecular mechanisms of cell transfor-
mation by MT has contributed to a better understanding of cell cycle
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regulation and growth control.

Introduction

DNA tumor viruses have proved to be
important tools in the study of cell growth
control and neoplasia. The relatively small
size of their genomes, together with the fact
that they efficiently and reproducibly induce
tumors when injected in animals and with
the advances in Molecular Biology tech-
niques, has facilitated the identification and
characterization of the viral proteins that are
responsible for cellular transformation and
tumor induction (1).

Polyomavirus (Py), a nuclear icosahedral
virus containing a circular genome of double-
stranded DNA, belongs to the papovavirus
family and was first discovered as a tumor
agent in 1953 by Ludwig Gross. Its ability to
induce tumors in adult mice is relative low,
but polyomavirus, as the name indicates,
causes a wide variety of tumors in newborn
mice (2).

Cells infected by Py express three pro-
teins that have been implicated in cell trans-
formation, the so-called tumor (T) antigens:
large T (LT), middle T (MT) and small T
(ST). T antigens are coded by the early re-
gion of the genome and are expressed in the
early phase of the virus cycle, before replica-
tion of viral DNA. Three other proteins,
namely VP1, VP2 and VP3, that are ex-
pressed after viral DNA replication, are coded
by the late region of the genome and are
essential for viral assembly (3).

T antigens have partially overlapping cod-
ing sequences and are generated by alterna-
tive splicing of a single RNA precursor. All
T antigens share a common N-terminal re-
gion, but differ in the C-terminal region as
the result of a frameshift reading.

A large number of early region mutants,
as well as cDNA cloning and expression of
each T antigen, have contributed to the anal-
ysis of their role during cell transformation
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(4). Py mutants that are unable to induce
tumors in animals display mutations that
map in the early region of their genome.

The large T antigen

The LT antigen is a 98-kDa protein (5)
that binds to specific sequences in the viral
DNA, regulating both DNA replication and
transcription. It acts as an important negative
and positive transcriptional regulator of the
early and the late regions of the genome,
respectively (6-8). The amino-terminal por-
tion of LT contains two phosphorylation
sites, at tyrosine residues T187 and T278
which are potential substrates for cyclin-
dependentkinases (CDKs). Li and colleagues
(9) have reported that mutations in T278, but
not in T187 abolish LT DNA replication
functions. In contrast to the wild-type and
T187 mutant, the T278 mutant is weakly
phosphorylated by the cyclin B-cdc2 com-
plex, suggesting the involvement of S and
G2 phase-specific CDKs in viral replication.
The importance of LT phosphorylation by
this cyclin/CDK complex may explain in
part why DNA tumor viruses require ac-
tively cycling host cells. Although this phos-
phorylation site is involved in viral DNA
replication, it is not important for the ability
of LT to drive cellular DNA replication (10).

LT is expressed in the nucleus of infected
cells, where it binds to the product of the
tumor suppressor gene pRb (11,12). Mutant
viruses which express LT antigen defective
in pRb binding, but normal MT antigen, are
unable to immortalize primary fibroblast
cultures, but are still able to transform cells
established in culture (12,13).

The immortality function of LT appears
to be due to a block in apoptosis, even though,
in contrast to SV40, polyomavirus LT does
not bind the product of the tumor suppressor
gene p53. In this case, alternative pathways
may be involved (14).

In fact, Py transforms cells in culture and
induces tumors in mice without an apparent
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interaction with or inactivation of the p53
tumor suppressor protein. Through the ex-
pression of a temperature-sensitive p53,
Doherty and Freund (15) have shown that
LT is able to overcome the growth suppres-
sive activity of p53 despite its failure to bind
p53, but binding to pRb is essential for this
effect.

In Py-transformed cells, there is no sig-
nificant accumulation of p53 protein, as op-
posed to SV40-transformed cells, in which
the amount of steady-state p53 protein is
elevated. However, accumulation of p53 is
observed following exposure of Py-trans-
formed cells to UV or X rays. Rapid induc-
tion of p21/WAF1 is also observed under
these conditions, suggesting that Py does not
interfere with the p53 DNA damage-induced
activities (16).

The small T antigen

The ST antigen is a 22-kDa protein local-
ized in the cytoplasm of cells infected with
Py, where it binds to cellular proteins such as
phosphatase PP2A (17,18).

Together with MT, ST appears to have a
role in viral DNA synthesis, since viruses
expressing mutated ST and MT show a 100-
fold defect in genome accumulation during
infection of NIH-3T3 cells when compared
to wild type viruses (19).

Although the expression of ST is not
required for cell transformation, ST is able
to augment the saturation density and to
induce changes in the cytoskeleton (20).

The middle T antigen

The MT antigen is a 55-kDa phosphopro-
tein associated with the plasma membrane of
cells infected with Py through a mirystyl
anchor attached to the C-terminus of the
protein. Its function in the viral cycle ap-
pears to be related to virus assembly, since
MT induces phosphorylation of the VPI
capsid protein (21).



Polyomavirus transformation

Using cDNA injection in newborn mice,
Asselin and colleagues (22) have shown that
MT is able to induce tumors only in combina-
tion with the N-terminal region of LT and ST.

Since MT alone is able to transform cells
established in culture (23), it is believed that
it plays a central role during Py transforma-
tion and tumorigenesis.

The MT antigen can be phosphorylated
at serine residues located in the C-terminal
region of the molecule, as well as in threo-
nine and tyrosine residues present in differ-
ent regions of the protein. Its ability to trans-
form cells is related to binding and activa-
tion of a number of cytoplasmic proteins
related to cell growth control (24,25). In
general, the interaction between MT and
cellular proteins occurs through phosphoryl-
ated tyrosine residues in MT and Src homol-
ogy-2 (SH2) domains present in different
signal-transducing proteins, as is the case for
Src homology and collagen protein (Shc),
phosphatidylinositol-3-kinase (PI3K) and
phospholipase Cy(PLCY) (26,27). Mutations
in any of these tyrosines render MT defec-
tive for transformation (24).

In addition to tyrosine-SH2 interactions,
a proline-rich domain present in the MT
molecule is important for binding to SH3-
containing proteins (27). Viruses expressing
MT mutated in this proline-rich domain are
partially defective for transformation and
tumorigenesis and MT binding to PLCy is
partially affected (28).

Analysis of other MT mutants has led to
the identification of the N-terminal region as
the binding site for phosphatase PP2A and
Src tyrosine kinase (17). Recently, MT resi-
dues 185 to 210 were reported to be essential
for Src binding (29). Transformation-defec-
tive MT mutants that retain the ability to
bind Src were reported, suggesting that acti-
vation of Src is not sufficient to induce trans-
formation by MT (24,30).

Cullere and colleagues (31) recently de-
scribed the first MT phosphoserine residue as
an important binding site for the 14-3-3 pro-

tein. Mutation in MT Ser 257 completely abol-
ishes binding, but does not affect the ability of
MT to transform fibroblasts in vitro.

Activation of cellular proteins by MT
triggers a variety of signals in the cell that
culminate with growth proliferation, even in
the absence of growth factors (32).

Thus, MT binding to Shc (through the
250 Tyr residue of MT) leads to its binding
to and activation of the Ras protein and,
consequently, activation of the mitogen-ac-
tivated protein kinase (MAPK) pathway
(33,34). When activated, MAPKs translo-
cate to the nucleus, where they phosphoryl-
ate transcriptional factors, regulating the ex-
pression of genes that are essential for cell
proliferation (35).

Activation of PI3K by MT occurs through
association of MT Tyr 315 with the SH2
domain of the p85 regulatory subunit of
PI3K (36). Elevated levels of phosphoinosi-
tides phosphorylated at position 3 of the
inositol ring are observed in MT-transformed
cell lines, but not in cell lines expressing the
MT315 mutant (37). These molecules were
reported to bind to SH2 domains of cellular
proteins such as Src and PI3K itself, suggest-
ing that they play a role in the regulation of
these enzymes (38). Following PI3K activa-
tion by MT, induction of Akt (the protein
coded by the cellular homologue ofthe AKTS
retrovirus oncogene) serine/threonine kinase
activity is observed. Using MT mutants that
are not able to bind to Shc or PI3K, Summers
and colleagues (39) were able to localize Akt
downstream relative to PI3K, but not to Shc.
Recent studies evidenced the role of PI3K
activation in the blocking of apoptosis by
MT in a p53-independent manner (40).

Transgenic mice expressing MT mutants
defective in binding to Shc or PI3K develop
mammary epithelial hyperplasias, in con-
trast to rapid metastatic mammary tumors
observed in strains expressing wild-type MT
(41). The mammary epithelial hyperplasias
expressing the MT mutant defective in re-
cruiting PI3K are highly apoptotic, suggest-
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ing that recruitment of PI3K by MT affects
cell survival. Tumor progression in both
mutant strains correlates with upregulation
of'the epidermal growth factor receptor fam-
ily members which are known to couple to
the PI3K and She signaling pathways (41).

Transcription factors in Py-MT
transformation

MT overexpressing fibroblasts display
constitutively high transcription factor AP-1
activity (42) as a result of constitutive over-
expression of the cJun and JunB AP-1 com-
ponents (30). Induction of AP-1 activity by
MT was shown to be dependent on MT
binding to PI3K, but does not correlate with
cell transformation, indicating that additional
events are necessary (30).

Using glucocorticoid-inducible MT-over-
expressing fibroblasts, Rameh and Armelin
(43) have reported induction of the c-myc
proto-oncogene at the mRNA level, parallel-
ing induction of MT with glucocorticoids.
Taken together, these results indicate that
cMyc and Jun proteins act cooperatively
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during MT cell transformation.

High expression of urokinase-type plas-
minogen activator, which is regulated by
AP-1 consensus sequences present in its pro-
moter, is observed in MT-transformed cell
lines. Injection of MT-transformed endothe-
lial cell lines leads to the formation of vascu-
lar tumors in newborn mice. These cell lines
exhibit altered proteolytic activity that con-
tributes to tumor growth (44).

The contribution of polyomavirus to the
understanding of cell growth control and
neoplasia began with the important discov-
ery of the role played by tyrosine phosphory-
lation in cell proliferation (45). Since then,
studies of T antigens have led to new find-
ings in cell immortalization, apoptosis and
transformation. In particular, MT studies have
contributed to the mapping of a variety of
signalling pathways related to cell growth
control. Thus, expression of both wild type
and mutant MT in a variety of cell types has
become an important tool to understand the
differences among signalling pathways in
different cell systems (46).
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