Brazilian Journal of Medical and Biological Research, Volume: 46, Issue: 7, Published: 2013
  • MSX1 gene and nonsyndromic oral clefts in a Southern Brazilian population Biomedical Sciences

    Souza, L.T.; Kowalski, T.W.; Collares, M.V.M.; Félix, T.M.

    Abstract in English:

    Nonsyndromic oral clefts (NSOC) are the most common craniofacial birth defects in humans. The etiology of NSOC is complex, involving both genetic and environmental factors. Several genes that play a role in cellular proliferation, differentiation, and apoptosis have been associated with clefting. For example, variations in the homeobox gene family member MSX1, including a CA repeat located within its single intron, may play a role in clefting. The aim of this study was to investigate the association between MSX1CA repeat polymorphism and NSOC in a Southern Brazilian population using a case-parent triad design. We studied 182 nuclear families with NSOC recruited from the Hospital de Clínicas de Porto Alegre in Southern Brazil. The polymorphic region was amplified by the polymerase chain reaction and analyzed by using an automated sequencer. Among the 182 families studied, four different alleles were observed, at frequencies of 0.057 (175 bp), 0.169 (173 bp), 0.096 (171 bp) and 0.67 (169 bp). A transmission disequilibrium test with a family-based association test (FBAT) software program was used for analysis. FBAT analysis showed overtransmission of the 169 bp allele in NSOC (P=0.0005). These results suggest that the CA repeat polymorphism of theMSX1 gene may play a role in risk of NSOC in populations from Southern Brazil.
  • Induced maturation of hepatic progenitor cellsin vitro Biomedical Sciences

    Bi, Y.; He, Y.; Huang, J.Y.; Xu, L.; Tang, N.; He, T.C.; Feng, T.

    Abstract in English:

    Hepatic progenitor cells (HPCs) are a potential cell source for liver cell transplantation but do not function like mature liver cells. We sought an effective and reliable method to induce HPC maturation. An immortalized HP14.5 albumin promoter-driven Gaussian luciferase (ALB-GLuc) cell line was established from HPCs isolated from fetal mouse liver of post coitus day 14.5 mice to investigate the effect of induction factors on ALB promoter. HP14.5 parental cells were cultured in DMEM with different combinations of 2% horse serum (HS), 0.1 µM dexamethasone (DEX), 10 ng/mL hepatic growth factor (HGF), and/or 20 ng/mL fibroblast growth factor 4 (FGF4). Trypan blue and crystal violet staining were used to assess cell proliferation with different induction conditions. Expression of hepatic markers was measured by semi-quantitative RT-PCR, Western blot, and immunofluorescence. Glycogen storage and metabolism were detected by periodic acid-Schiff and indocyanine green (ICG) staining. GLuc activity indicated ALB expression. The combination of 2% HS+0.1 µM Dex+10 ng/mL HGF+20 ng/mL FGF4 induced the highest ALB-GLuc activity. Cell proliferation decreased in 2% HS but increased by adding FGF4. Upon induction, and consistent with hepatocyte development, DLK, AFP, and CK19 expression decreased, while ALB, CK18, and UGT1A expression increased. The maturity markers tyrosine aminotransferase and apolipoprotein B were detected at days 3 and 6 post-induction, respectively. ICG uptake and glycogen synthesis were detectable at day 6 and increased over time. Therefore, we demonstrated that HPCs were induced to differentiate into functional mature hepatocytes in vitro, suggesting that factor-treated HPCs may be further explored as a means of liver cell transplantation.
  • Effect of castration on renal glycosaminoglycans and their urinary excretion in male and female rats with chronic renal failure Biomedical Sciences

    Lemos, C.C.S.; Tovar, A.M.F.; Guimarães, M.A.M.; Bregman, R.

    Abstract in English:

    Glycosaminoglycans (GAGs) participate in a variety of processes in the kidney, and evidence suggests that gender-related hormones participate in renal function. The aim of this study was to analyze the relationship of GAGs, gender, and proteinuria in male and female rats with chronic renal failure (CRF). GAGs were analyzed in total kidney tissue and 24-h urine of castrated (c), male (M), and female (F) Wistar control (C) rats (CM, CMc, CF, CFc) and after 30 days of CRF induced by 5/6 nephrectomy (CRFM, CRFMc, CRFF, CRFFc). Total GAG quantification and composition were determined using agarose and polyacrylamide gel electrophoresis, respectively. Renal GAGs were higher in CF compared to CM. CRFM presented an increase in renal GAGs, heparan sulfate (HS), and proteinuria, while castration reduced these parameters. However, CRFF and CRFFc groups showed a decrease in renal GAGs concomitant with an increase in proteinuria. Our results suggest that, in CRFM, sex hormones quantitatively alter GAGs, mainly HS, and possibly the glomerular filtration barrier, leading to proteinuria. The lack of this response in CRFMc, where HS did not increase, corroborates this theory. This pattern was not observed in females. Further studies of CRF are needed to clarify gender-dependent differences in HS synthesis.
  • Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats Biomedical Sciences

    Zhang, Y.P.; Niu, C.Y.; Zhao, Z.G.; Zhang, L.M.; Si, Y.H.

    Abstract in English:

    Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.
  • Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition Biomedical Sciences

    Xia, D.Y.; Li, W.; Qian, H.R.; Yao, S.; Liu, J.G.; Qi, X.K.

    Abstract in English:

    Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.
  • GABA-induced inactivation of Cebus apella V2 neurons: effects on orientation tuning and direction selectivity Biomedical Sciences

    Jansen-Amorim, A.K.; Fiorani, M.; Gattass, R.

    Abstract in English:

    We investigated the GABA-induced inactivation of V2 neurons and terminals on the receptive field properties of this area in an anesthetized and paralyzedCebus apella monkey. Extracellular single-unit activity was recorded using tungsten microelectrodes in a monkey before and after pressure-injection of a 0.25 or 0.5 M GABA solution. The visual stimulus consisted of a bar moving in 8 possible directions. In total, 24 V2 neurons were studied before and after blocker injections in 4 experimental sessions following GABA injection into area V2. A group of 10 neurons were studied over a short period. An additional 6 neurons were investigated over a long period after the GABA injection. A third group of 8 neurons were studied over a very long period. Overall, these 24 neurons displayed an early (1-20 min) significant general decrease in excitability with concomitant changes in orientation or direction selectivity. GABA inactivation in area V2 produced robust inhibition in 80% and a significant change in directional selectivity in 60% of the neurons examined. These GABA projections are capable of modulating not only levels of spontaneous and driven activity of V2 neurons but also receptive field properties such as direction selectivity.
  • An interleukin-33/ST2 signaling deficiency reduces overt pain-like behaviors in mice Biomedical Sciences

    Magro, D.A.C.; Hohmann, M.S.N.; Mizokami, S.S.; Cunha, T.M.; Alves-Filho, J.C.; Casagrande, R.; Ferreira, S.H.; Liew, F.Y.; Cunha, F.Q.; Verri, W.A.

    Abstract in English:

    Interleukin (IL)-33, the most recent member of the IL family of cytokines, signals through the ST2 receptor. IL-33/ST2 signaling mediates antigen challenge-induced mechanical hyperalgesia in the joints and cutaneous tissues of immunized mice. The present study asked whether IL-33/ST2 signaling is relevant to overt pain-like behaviors in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing responses in wild-type (WT) mice; this overt nociceptive behavior was reduced in ST2-deficient mice. In an antigen-challenge model, ST2-deficient immunized mice had reduced induced flinch and licking overt pain-like behaviors. In the formalin test, ST2-deficient mice also presented reduced flinch and licking responses, compared with WT mice. Naive WT and ST2-deficient mice presented similar responses in the rota-rod, hot plate, and electronic von Frey tests, indicating no impairment of motor function or alteration in basal nociceptive responses. The results demonstrate that IL-33/ST2 signaling is important in the development of overt pain-like behaviors.
  • The efficacy of moxifloxacin-based triple therapy in treatment of Helicobacter pylori infection: a systematic review and meta-analysis of randomized clinical trials Clinical Investigation

    Zhang, G.; Zou, J.; Liu, F.; Bao, Z.; Dong, F.; Huang, Y.; Yin, S.

    Abstract in English:

    Recent evidence shows that moxifloxacin could exert an antimicrobial effect against Helicobacter pylori in both in vitroand in vivo models. To systematically evaluate whether moxifloxacin-containing triple therapy could improve eradication rates and reduce side effects in first-line or second-line anti-H. pyloritreatment, eligible articles were identified by searches of electronic databases. We included all randomized trials comparing moxifloxacin-based triple therapy with standard triple or quadruple therapy during H. pylori eradication treatment. Statistical analysis was performed with Review Manager 5.0.10. Subanalysis/sensitivity analysis was also performed. We identified seven randomized trials (n=1263). Pooled H. pylori eradication rates were 79.03% (95%CI: 75.73-82.07) and 68.33% (95%CI: 64.44-72.04) for patients with moxifloxacin-based triple therapy or with standard triple or quadruple therapy, respectively (intention-to-treat analysis). The odds ratio (OR) was 1.82 (95%CI: 1.17-2.81), the occurrence of total side effects was 15.23% (95%CI: 12.58-18.20) and 27.17% (95%CI: 23.64-30.92) for groups with or without moxifloxacin, and the summary OR was 0.45 (95%CI: 0.26-0.77). In subgroup analyses, we noted that the second-line eradication rate in the moxifloxacin group was significantly higher than that in the quadruple therapy group (73.33 vs 60.17%, OR: 1.78, 95%CI: 1.16-2.73, P<0.001). However, there was no difference in first-line eradication treatment. Findings from this meta-analysis suggest that moxifloxacin-based triple therapy is more effective and better tolerated than standard triple or quadruple therapy. Therefore, a moxifloxacin-based triple regimen should be used in the second-line treatment of H. pylori infection.
  • Hepatitis B virus subgenotype C2- and B2-associated mutation patterns may be responsible for liver cirrhosis and hepatocellular carcinoma, respectively Clinical Investigation

    Chen, Y.M.; Wu, S.H.; Qiu, C.N.; Yu, D.J.; Wang, X.J.

    Abstract in English:

    The objective of this study was to examine hepatitis B virus (HBV) subgenotypes and mutations in enhancer II, basal core promoter, and precore regions of HBV in relation to risks of liver cirrhosis (LC) and hepatocellular carcinoma (HCC) in Southeast China. A case-control study was performed, including chronic hepatitis B (CHB; n=125), LC (n=120), and HCC (n=136). HBV was genotyped by multiplex polymerase chain reaction and subgenotyped by restriction fragment length polymorphism. HBV mutations were measured by DNA sequencing. HBV genotype C (68.2%) predominated and genotype B (30.2%) was the second most common. Of these, C2 (67.5%) was the most prevalent subgenotype, and B2 (30.2%) ranked second. Thirteen mutations with a frequency >5% were detected. Seven mutation patterns (C1653T, G1719T, G1730C, T1753C, A1762T, G1764A, and G1799C) were associated with C2, and four patterns (C1810T, A1846T, G1862T, and G1896A) were associated with B2. Six patterns (C1653T, G1730C, T1753C, A1762T, G1764A, and G1799C) were obviously associated with LC, and 10 patterns (C1653T, G1730C, T1753C, A1762T, G1764A, G1799C, C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with CHB. Four patterns (C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with LC. Multivariate regression analyses showed that HBV subgenotype C2 and C2-associated mutation patterns (C1653T, T1753C, A1762T, and G1764A) were independent risk factors for LC when CHB was the control, and that B2-associated mutation patterns (C1810T, A1846T, G1862T, and G1896A) were independent risk factors for HCC when LC was the control.
  • Genetic analysis of the ELOVL6 gene polymorphism associated with type 2 diabetes mellitus Clinical Investigation

    Liu, Y.; Wang, F.; Yu, X.L.; Miao, Z.M.; Wang, Z.C.; Chen, Y.; Wang, Y.G.

    Abstract in English:

    Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance.
  • The impact of short daily hemodialysis on anemia and the quality of life in Chinese patients Clinical Investigation

    Jiang, J.L.; Ren, W.; Song, J.; Sun, Q.L.; Xiao, X.Y.; Diao, X.Z.; Huang, Y.H.; Lan, L.; Wang, P.; Hu, Z.

    Abstract in English:

    Anemia is a frequent complication in hemodialysis patients. Compared to conventional hemodialysis (CHD), short daily hemodialysis (sDHD) has been reported to be effective in many countries except China. The aim of the present study was to determine whether sDHD could improve anemia and quality of life (QOL) for Chinese outpatients with end-stage renal disease. Twenty-seven patients (16 males/11 females) were converted from CHD to sDHD. All laboratory values were measured before conversion (baseline), at 3 months after conversion (sDHD1), and at 6 months after conversion (sDHD2). The patient's QOL was evaluated at baseline and 6 months after conversion using the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36). Hemoglobin concentration increased significantly from 107.4±7.9 g/L at baseline to 114.4±6.8 g/L (P<0.05) at sDHD1, and 118.3±8.4 g/L (P<0.001) at sDHD2 (Student paired t-test). However, the dose requirement for erythropoietin decreased from 6847.8±1057.3 U/week at baseline to 5869.6±1094.6 U/week (P<0.05) at sDHD2. Weekly stdKt/V increased significantly from 2.05±0.13 at baseline to 2.73±0.20 (P<0.001) at sDHD1, and 2.84±0.26 (P<0.001) at sDHD2. C-reactive protein decreased from baseline to sDHD1 and sDHD2, but without statistically significant differences. Physical and mental health survey scores increased in the 6 months following conversion to sDHD. sDHD may increase hemoglobin levels, decrease exogenous erythropoietin dose requirements, and improve QOL in Chinese hemodialysis patients compared to CHD. A possible mechanism for improvement of clinical outcomes may be optimized management of uremia associated with the higher efficiency of sDHD.
  • A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay Clinical Investigation

    Wen, Z.; Liao, Q.; Hu, Y.; You, L.; Zhou, L.; Zhao, Y.

    Abstract in English:

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.
Associação Brasileira de Divulgação Científica Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto SP Brazil, Tel. / Fax: +55 16 3315-9120 - Ribeirão Preto - SP - Brazil
E-mail: bjournal@terra.com.br