Acessibilidade / Reportar erro

The efficacy of corticosteroid after facial nerve neurorrhaphy: a systematic review and meta-analysis of randomized controlled trial

Abstract

Objectives:

The benefit of corticosteroids following facial nerve neurorrhaphy in the setting of complete transection is questionable. This systematic review and meta-analysis aimed to evaluate corticosteroid efficacy on facial nerve regeneration and functional recovery after complete disruption and neurorrhaphy.

Methods:

Randomized controlled trials on both human and animal models from Ovid MEDLINE and Ovid EMBASE studying corticosteroid efficacy in complete facial nerve disruption followed by neurorrhaphy were included. Data were extracted and pooled for meta-analysis. The outcomes were evaluated from electrophysiology, histology, and functional recovery. However, no randomized controlled trial in human was performed. Possibly, performing human trials with histopathology may not be feasible in clinical setting.

Results:

Six animal studies (248 participants) met inclusion criteria. Electrophysiologic outcomes revealed no differences in latency (Standardized Mean Difference (SMD) = −1.97, 95% CI −7.38 to 3.44, p = 0.47) and amplitude (SMD = 0.37, 95% CI −0.44 to 1.18, p = 0.37) between systemic corticosteroids and controls. When analysis compared topical corticosteroid and control, the results provided no differences in latency (Mean Difference (MD)=0.10, 95% CI −0.04 to 0.24, p = 0.16) and amplitude (SMD = 0.01, 95% CI −0.08 to 0.10, p = 0.81). In histologic outcomes, the results showed no differences in axon diameter (MD = 0.13, 95% CI −0.15 to 0.41, p = 0.37) between systemic corticosteroid and control; however, the result in myelin thickness (MD = 0.06, 95% CI 0.04 to 0.08, p < 0.05) favored control group. When comparing systemic corticosteroid with control in eye blinking, the results favored control (MD= 1.33, 95% CI 0.60 to 2.06, p = 0.0004).

Conclusions:

This evidence did not show potential benefits of systemic or topical corticosteroid deliveries after facial nerve neurorrhaphy in complete transection when evaluating electrophysiologic, histologic, and functional recovery outcomes in animal models.

Keywords
Corticosteroid; Facial nerve neurorrhaphy; Complete facial nerve transection; Nerve regeneration; Functional recovery

Highlights

The benefits of corticosteroid after facial nerve neurorrhaphy are questionable.

Corticosteroid was not provided benefits after coaptation in complete transection.

The benefits were judged by electrophysiology, histology, and functional recovery.

Introduction

The facial nerve is a mixed nerve consisting of motor, sensory and parasympathetic fibers. It can be classified by its anatomical location as intracranial, intratemporal, and extratemporal parts where the more distal part has more motor fibers.11 Condie D, Tolkachjov SN. Facial nerve injury and repair: a practical review for cutaneous surgery. Dermatol Surg. 2019;45:340–57. Complete axonal disruption of the facial nerve results from various etiologies, for example, traumatic facial nerve injury, iatrogenic injury in the parotid, soft tissue, orthognathic, or otologic surgery, and oncologic control surgery of head-and-neck cancer.11 Condie D, Tolkachjov SN. Facial nerve injury and repair: a practical review for cutaneous surgery. Dermatol Surg. 2019;45:340–57. Total facial nerve paralysis may cause facial asymmetry, corneal ulcer, inability to elevate the forehead, midface ptosis, unnatural or inability to smile which may lead to patient morbidity.22 Lee PH, Liang CC, Huang SF, Liao HT. The outcome analysis of traumatic facial nerve palsy treated with systemic steroid therapy. J Craniofac Surg. 2018;29:1842–7.

After nerve injury, an inflammatory reaction occurs with macrophage function at the distal peripheral nerve site, followed by Wallerian degeneration and demyelination. Subsequently, the nerve regeneration process begins.33 Park HJ, Hong J, Piao Y Shin HJ, Lee SJ, Rhyu IJ, et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Adv Clin Exp Med. 2020;29:819–24. Molecular mechanisms of peripheral nerve repair are remyelination, axonal sprouting, and axonal regeneration.44 Ellis JA, Goldstein H, Winfree CJ. Nerve repair. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. second edition Academic Press; 2014. p. 338–43. After the injury, Schwann cells begin to divide and proliferate. In the final stage, the axons enter the endoneurial tube of the distal stump.33 Park HJ, Hong J, Piao Y Shin HJ, Lee SJ, Rhyu IJ, et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Adv Clin Exp Med. 2020;29:819–24. Neuroinflammation is the main process after nerve injury, therefore, corticosteroids that reduce perineural inflammation in many diseases are used in facial nerve injury.

Mechanisms of corticosteroids in nerve injury include (1) reduce neural edema and perineural inflammation, (2) protect cells from peroxidation, (3) prevent motor neuron death, (4) lower anterograde degeneration rate, and (5) promote recovery.55 Cayli SR, Kocak A, Yilmaz U, Tekiner A, Erbil M, Ozturk C, etal. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004;13:724–32., 66 Hall ED. The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol. 1993;59:241–8., 77 Genovese T Mazzon E, Crisafulli C, Di Paola R, Muià C, Bramanti P, et al. Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther. 2006;316:1006–16., 88 Tsutsumi S, Ueta T Shiba K, Yamamoto S, Takagishi K. Effects of the second national acute spinal cord injury study of high-dose methylprednisolone therapy on acute cervical spinal cord injury-results in spinal injuries center. Spine (Phila Pa 1976). 2006;31:2992–6, discussion 2997., 99 Salinas RA, Alvarez G, Ferreira J. Corticosteroids for Bell’s palsy (idiopathic facial paralysis). Cochrane Database Syst Rev. 2004:Cd001942. In partial injury of the facial nerve, corticosteroid is shown to improve facial nerve regeneration with a higher recovery rate.1010 Baugh RF, Basura GJ, Ishii LE, Schwartz SR, Drumheller CM, Burkholder R, et al. Clinical practice guideline: Bell’s palsy. Otolaryngol Head Neck Surg. 2013;149:S1-27, http://dx.doi.org/10.1177/0194599813505967.
http://dx.doi.org/10.1177/01945998135059...
, 1111 Fu X, Tang L, Wang C, Li M, Wu H, Li J, et al. A network meta-analysis to compare the efficacy of steroid and antiviral medications for facial paralysis from Bell’s Palsy. Pain Physician. 2018;21:559–69., 1212 Sun DQ, Andresen NS, Gantz BJ. Surgical management of acute facial palsy. Otolaryngol Clin North Am. 2018;51:1077–92., 1313 Axelsson S, Berg T, Jonsson L, Engström M, Kanerva M, Stjernquist-Desatnik A. Bell’s palsy – the effect of prednisolone and/or valaciclovir versus placebo in relation to baseline severity in a randomised controlled trial. Clin Otolaryngol. 2012;37:283–90., 1414 Linder TE, Abdelkafy W, Cavero-Vanek S. The management of peripheral facial nerve palsy: p̈aresisv̈ersus p̈aralysisänd sources of ambiguity in study designs. Otol Neurotol. 2010;31: 319–27. Consequently, clinical trials and guidelines recommend high dose corticosteroids for partial facial nerve injury.1010 Baugh RF, Basura GJ, Ishii LE, Schwartz SR, Drumheller CM, Burkholder R, et al. Clinical practice guideline: Bell’s palsy. Otolaryngol Head Neck Surg. 2013;149:S1-27, http://dx.doi.org/10.1177/0194599813505967.
http://dx.doi.org/10.1177/01945998135059...
, 1515 Engström M, Berg T, Stjernquist-Desatnik A, Axelsson S, Pitkäranta A, Hultcrantz M, et al. Prednisolone and valaciclovir in Bell’s palsy: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2008;7:993–1000., 1616 Sullivan FM, Swan IR, Donnan PT, Morrison JM, Smith BH, McKinstry B, et al. Early treatment with prednisolone or acyclovir in Bell’s palsy. N Engl J Med. 2007;357:1598–607. In contrast, the gold standard treatment of complete nerve injury is an immediate tension-free neurorrhaphy with end-to-end anastomosis or nerve interposition graft for the best functional outcome.1717 Nakamura Y, Teramoto Y, Asami Y, Imamura T, Sato S, Tanaka R, et al. The rate of facial nerve dysfunction and time to recovery after intraparotid and extraparotid facial nerve exposure and protection in head and neck cutaneous tumor surgery. Int J Clin Oncol. 2017;22:843–8., 1818 Kannan RY, Hills A, Shelley MJ, Bisase B, Kapoor K, Norris P, etal. Immediate compared with late repair of extracranial branches of the facial nerve: a comparative study. Br J Oral Maxillofac Surg. 2020;58:163–9. However, functional recovery does not achieve the pre-injury level. Adjunctive therapy with corticosteroids after facial nerve coaptation is proposed and prescribed in a general clinical setting.

Nevertheless, the clinical benefit is questionable, and there is no high level of evidence to support the use of corticosteroids. Moreover, there are risks associated with corticosteroid usage. Adverse effects, including gastrointestinal disturbance, increased blood glucose level, elevated blood pressure, and psychotic episodes have been reported.1919 Holland J, Bernstein J. Bell’s palsy. BMJ Clin Evid. 2011;2011., 2020 Sweetman SC. Dose adjustment in renal impairment: response from Martindale: the complete drug reference. BMJ. 2005;331:292–3. As a consequence, corticosteroid usage should be investigated to confirm its clinical benefits. Thus, this systematic review and meta-analysis aimed to evaluate corticosteroid efficacy on facial nerve regeneration and functional recovery after neurorrhaphy in the setting of complete axonal disruption.

Methods

Eligibility criteria

This systematic review followed the guidelines provided by the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.2121 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. Randomized Controlled Trials (RCTs) studying the efficacy of corticosteroid therapy after microsuture repair, in subjects with complete disruption of the extratemporal facial nerve, were screened. The microsuture repair included direct end-to-end anastomosis or nerve interposition graft. Studies of either human or animal models were eligible. Corticosteroid administrations at any route, dosage, frequency, and duration after facial nerve coaptation were included in the analysis. The comparisons were (1) systemic corticosteroid versus no corticosteroid (control), (2) local corticosteroid versus no corticosteroid (control), and (3) systemic corticosteroid versus local corticosteroid. Exclusion criteria included RCTs that were published in a language other than English.

Information sources and search strategy

Ovid MEDLINE and Ovid EMBASE were searched using the search terms: "Dexamethasone OR Methylprednisolone OR Prednisolone OR Corticosteroids OR Triamcinolone OR Steroids OR Hydrocortisone OR Glucocorticoids" AND "Neurorrhaphy OR Nerve anastomosis OR Nerve suture OR Suturing method OR Suturing technique OR End-to-end anastomosis OR End-to-end method OR Nerve graft OR Nerve autograft OR Nerve interposition graft OR Microsuture OR Microsurgery OR Nerve surgery OR Nerve coaptation" AND "Facial nerve". The last search was performed on 20 April 2021. References of the included studies were searched for identifying any missing published or unpublished trials.

Study selection and data collection

The RCTs selection was performed independently by two reviewers (PC and KS). The reviewers independently screened the titles and abstracts based on the predetermined eligibility criteria. Full texts of the selected articles were reviewed. Any disagreements were resolved by another author (NU), if necessary. Two review authors (PC and KS) independently extracted data from the included studies using a predetermined data collection form. The extracted data included study type, number of participants, animal type, age, sex, intervention, primary outcomes, and secondary outcomes. If there were many doses of corticosteroids in one study, the recommended high dose of 50–60 milligrams per day (which was equivalent to 1 mg/kg/dose) from the guideline1010 Baugh RF, Basura GJ, Ishii LE, Schwartz SR, Drumheller CM, Burkholder R, et al. Clinical practice guideline: Bell’s palsy. Otolaryngol Head Neck Surg. 2013;149:S1-27, http://dx.doi.org/10.1177/0194599813505967.
http://dx.doi.org/10.1177/01945998135059...
was extracted for the meta-analysis. Primary outcomes were two aspects of nerve regeneration, which included (1) electrophysiology which assessed the latency and amplitude values of electroneurography, and (2) histology which evaluated axon diameter and myelin thickness. Secondary outcomes were functional recovery evaluated from eye blinking and adverse events. Standard error, interquartile range, and 95% Confidence Interval (95% CI) were used when a Standard Deviation (SD) was not reported.

Risk of bias in individual studies

Risk of bias of the included studies was assessed according to the Cochrane Handbook for Systematic Reviews of Interventions. Five domains were evaluated: random sequence generation, allocation concealment, blinding of participants and personnel, incomplete outcome data, and selective reporting.2222 Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. The included studies had low risk of bias when the methods for each domain were clearly described. When the described methods for each domain showed a high risk of bias, that study was classified as high risk in that domain. When there was not enough information to determine the risk, the RCT was defined as unclear risk of bias.

Data synthesis and statistical analysis

Data were pooled for meta-analysis. Odds Ratio (OR) and 95% CI were used for dichotomous data. Mean Difference (MD), Standard Mean Difference (SMD), and 95% CI were used for continuous data. Heterogeneity or discrepancy in the estimates of treatment effects from different trials were assessed by I2 statistic. An I2 of less than 40%, 40%–60%, or > 60% represented low, moderate, and substantial heterogeneity, respectively. A fixed-effect method was used when the statistical heterogeneity was low. When the statistical heterogeneity was high, a random-effect method was used for a more conservative estimate of the difference. Statistical assessment was performed with Review Manager (RevMan) version 5.4 (The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen, Denmark).2323 Lee YH. An overview of meta-analysis for clinicians. Korean J Intern Med. 2018;33:277–83., 2424 Cheung MW, Vijayakumar R. A guide to conducting a metaanalysis. Neuropsychol Rev. 2016;26:121-8., 2525 RevMan whenever its output is used:Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration; 2020.

Results

Study selection

There were 237 studies identified and retrieved, of which 235 were from electronic searches, and two from manual searches. During the title and abstract screening, 225 studies were excluded due to irrelevant references. Six studies were excluded after the full-text screening. Six studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. were finally included in the qualitative synthesis, of which three studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. were included in the meta-analysis. Characteristics of the included studies are shown in Table 1. A flow chart of the study retrieval and selection is presented in Fig. 1.

Table 1
Characteristic data.

Figure 1
A flow chart of the study retrieval and selection: The PRISMA flowchart of the systematic literature reviews.

Participants

There were no human studies that met the inclusion criteria. Three studies were rat models, and the others were New Zealand rabbit models. There were 248 animals, of which 156 were Wistar rats (106 Wistar rats,2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. 50 Albino Wistar rats2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50.), and 92 were New Zealand rabbits.2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. In the Wistar rat models, 124 animals were male,2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. and 32 animals were unidentified sex.2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. The rats weighed from 200 to 350g. The age was 12–14 weeks old in one study2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. but was not mentioned in the other two studies.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. In the New Zealand rabbit models, 60 animals were female3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. and 32 animals were unidentified sex.2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. The rabbits weighed from 1200 to 3000 grams. The age was not discussed in all rabbit model studies.

Interventions

The animals were housed at 21–25 °C under 10%–55% humidity. They were exposed to a 12-hour light/dark cycle and were fed with a standard diet. General anesthesia was induced with a combination of Ketamine Hydrochloride (30–50 mg/kg) and Xylazine Hydrochloride (5–10mg/kg) intraperitoneally. All included studies performed a completed transection of the facial nerve at one side and the other side was used as control. All animals exhibited postoperative facial paralysis. An immediate repair with tension-free, end-to-end microsuture coaptation was performed with Prolene 8–0 in one study,2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. Nylon 8–0 in one study,2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. Prolene 9–0 in three studies,2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. and Nylon 10–0 in the remaining study.2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. Epineural repair technique was used in four studies,2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. perineural suture was used in one study.2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. However, one study did not mention the repair technique.2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23.

Systemic corticosteroid was given in six studies,2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. and topical form was applied in two studies.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. Systemic dexamethasone was administered daily at 1 mg/kg/dose via intraperitoneal injection for seven consecutive days in two studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. and one study administered a total of three consecutive doses, 12 hour apart.2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. Systemic methylprednisolone (1 mg/kg/dose) was injected intramuscularly once daily for 15–18 days in one study,2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. three weeks in one study,3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. and two months in one study.3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5. Topical administration of dexamethasone-soaked gelfoam in 4mg/mL concentration was applied intraoperatively in two studies.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. The studied period ranged from 4 to 13 weeks.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. The preoperative baseline of electrophysiologic evaluation with electroneurography was evaluated on both sides.

Outcomes

Electrophysiologic results

The electrophysiologic outcomes were assessed by nerve conduction test using Neuro-MEP 2 channel digital instrument at 10%–20% supramaximal intensity. Latency (millisecond) and amplitude (millivolts) were recorded.

Latency value: There were three2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. studies that evaluated latency outcomes. However, one study2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. did not report either SD or 95% CI. Two studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. reported latency after systemic corticosteroid administration and one RCT2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. evaluated latency after topical application. The latency was assessed at 4-weeks, ≥12 weeks, and at the end of the study in the systemic route. There were no significant differences in latency between the corticosteroids and control groups at any time point: 4 weeks (SMD = −2.58, 95% CI −6.73 to 1.57, p = 0.22, 2 RCTs),2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. ≥12-weeks (MD = 0.10, 95% CI −0.02 to 0.22, p = 0.11, 1 RCT),2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. and the end of the study (SMD = −1.97, 95% CI −7.38 to 3.44, p = 0.47, 2 RCTs)2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. (Fig. 2). An I22 Lee PH, Liang CC, Huang SF, Liao HT. The outcome analysis of traumatic facial nerve palsy treated with systemic steroid therapy. J Craniofac Surg. 2018;29:1842–7. of 91% (4 weeks) and 95% (the end of study) represented substantial heterogeneity. In the topical corticosteroid application, there was no significant difference in latency between the topical steroid and control groups at the end of the study (MD = 0.10, 95% CI −0.04 to 0.24, p = 0.16, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. When topical corticosteroid administration was compared with systemic corticosteroid administration, there was no significant difference in latency at the end of the study (MD = 0.00, 95% CI −0.06 to 0.06, p = 1.00, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50.

Figure 2
The latency outcome of systemic corticosteroid at the end of study. Abbreviations: SMD, Standardized Mean Difference; IV, Inverse Variance; Random, Random effects; CI, Confidence Interval.

Amplitude value: Four studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. analyzed amplitude outcomes. SDs or 95% CIs were not reported in one study. Three studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. evaluated amplitude after systemic corticosteroid administration and two studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. analyzed amplitude after topical application. The amplitude was assessed at 4 weeks, 8 weeks, ≥ 12 weeks, and the end of the study in the systemic group.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. There were no significant differences in amplitude between the corticosteroid and control groups at any time point: 4 weeks (SMD = 0.49, 95% CI −1.13 to 2.11, p = 0.55, 2 RCTs), 8 weeks (MD = 0.05, 95% CI −0.11 to 0.21, p = 0.53, 1 RCT), ≥12 weeks (MD = −0.30, 95% CI −1.45 to 0.85, p = 0.61, 1 RCT), and the end of study (SMD = 0.37, 95% CI -0.44 to 1.18, p = 0.37, 3 RCTs)2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. (Fig. 3). An I2 of 79% represented substantial heterogeneity at 4 weeks, and I2 of 54% represented moderate heterogeneity at the end of the study. In the analysis of local corticosteroid application, there was no significant difference in amplitude between the corticosteroid and control groups at the end of the study (SMD = 0.01, 95% CI −0.08 to 0.10, p = 0.81, 2 RCTs)2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. (Fig. 4). An I2 of 0% represented low heterogeneity. There was no significant difference in amplitude between topical corticosteroid and systemic corticosteroid administrations at the end of the study (SMD = 0.17, 95% CI −0.41 to 0.74, p = 0.57, 2RCTs).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. An I2 of 58% represented moderate heterogeneity.

Figure 3
The amplitude outcome of systemic corticosteroid at the end of study. Abbreviations: SMD, Standardized Mean Difference; IV, Inverse Variance; Random, Random effects; CI, Confidence Interval.

Figure 4
The amplitude outcome of topical corticosteroid at the end of study. Abbreviations: SMD, Standardized Mean Difference; IV, Inverse Variance; Random, Random effects; CI, Confidence Interval.

Histologic results

The coapted segment of facial nerve was taken, fixed in 2.5% glutaraldehyde and 1% osmium tetroxide, and examined under Transmission Electron Microscope (TEM). The axon diameter and myelin thickness were measured quantitatively. One RCT,2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. which studied both systemic and topical corticosteroids, assessed axon diameter and myelin thickness outcomes.

Axon diameter: One RCT2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. assessed axon diameter at the end of the study. There was no significant difference in axon diameter between the systemic corticosteroid and control groups (MD = 0.13, 95% CI −0.15 to 0.41, p = 0.37, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. When the topical group was compared with the control group, the result favoured the control group (MD = 0.32, 95% CI 0.03–0.61, p = 0.03, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. When the topical group was compared with the systemic group, there was no significant difference in axon diameter at the end of the study (MD = 0.19, 95% CI −0.02 to 0.40, p = 0.07, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50.

Myelin thickness: One RCT2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. assessed myelin thickness at the end of the study. When the systemic steroid group was compared with control, the meta-analysis favored control (MD = 0.06, 95% CI 0.04 to 0.08, p < 0.05,1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. When topical steroid application was compared with control, the result favoured control (MD = 0.04, 95% CI 0.02 to 0.06, p = 0.0005, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50. When topical steroid group was compared with the systemic corticosteroid group, the result favoured topical route (MD = −0.02, 95% CI −0.04 to −0.00, p = 0.03, 1 RCT).2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50.

Functional results

The degree of eye blinking was graded using a standardized scale. One study2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. reported the eye blinking result.

Eye blinking function: One RCT2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. assessed eye blinking at the end of the study. When systemic steroid administration was compared with control, the meta-analysis favored control (MD = 1.33, 95% CI 0.60 to 2.06, p = 0.0004, 1 RCT).2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. When topical steroid application was compared with control, the result favoured control (MD = 0.09, 95% CI −0.54 to 0.72, p = 0.78, 1 RCT).2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. When the topical corticosteroid group was compared with the systemic group, the result favoured topical route (MD = -1.24, 95% CI −2.05 to −0.43, p = 0.03, 1 RCT).2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40.

Adverse events

In one study,2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. one animal in the steroid group died in the third week after the operation. However, the cause of death was not clarified. Adverse events in other studies were not reported.

Risk of bias in the included studies

One study2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. (16.67%) had low risks of bias in randomization and allocation concealment. Five studies2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. (83.33%) had a low risk of bias in blinding participants and personnel. Five RCTs2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23., 2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. (83.33%) were classified as low risk of bias in incomplete outcome data. Finally, three RCTs2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40., 2828 Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23. (50%) had a low risk of bias in selective reporting. The results are shown in Fig. 5.

Figure 5
Risk of bias summary: review authors’ judgments about each risk of bias item for each included study.

Discussion

The results of this systematic review and meta-analysis demonstrated that there were no benefits of systemic or topical corticosteroids in facial nerve regeneration after neurorrhaphy following complete transection in animal models. The nerve regeneration was evaluated by assessing electrophysiologic, histologic, and functional outcomes. In the electrophysiologic outcomes, there were no statistically significant differences in latency or amplitude values: (1) between corticosteroids (both systemic and topical routes) and control, nor (2) between systemic route and topical route. In the histologic and functional outcomes, neither systemic nor topical corticosteroids demonstrated superiority over control in axon diameter, myelin thickness, and eye blinking function.

The meta-analysis favored topical application over systemic corticosteroids in myelin thickness and eye blinking function outcomes. This finding might result from the fact that topical corticosteroid directly contacted the injury site and was absorbed instantly. However, there was only one RCT in the analysis of each outcome.2626 Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50., 2727 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40. Additional studies should be enrolled for further confirmation.

The meta-analysis result was in line with a previous study by Kardilag et al.3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. that was not included in the meta-analysis. They reported that methylprednisolone not only had no statistically significant effects on nerve healing after facial nerve re-anastomosis but also further increased degeneration by causing fibrosis in the endoneurium. Furthermore, regeneration (Schwann cell proliferation) was less in the methylprednisolone group compared with the control group and had no superior advantage of steroid over control in myelin thickness. The reason might be collagen scar formation that deteriorated the nerve regeneration.

According to a study by Yanilmaz et al.,2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72. the degree of axonal degeneration and myelin debris accumulation was higher in the corticosteroid group than the control group. Moreover, Schwann cell proliferation was also worse in the steroid group. Yildirim et al.3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5. demonstrated no beneficial effects of methylprednisolone over control in a histologic outcome such as Schwann cell proliferation. In summary, these studies2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. showed that corticosteroids had no advantages on nerve regeneration after complete disruption of the facial nerve, including nerve healing,3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. Schwann cell proliferation,2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3030 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. or myelin thickness.3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50. Furthermore, corticosteroids might increase the facial nerve degeneration.2929 Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72., 3131 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50.

Neuroinflammation is the first mechanism of neural injury response. It involves several neuroinflammatory cytokines and local production of reactive oxygen species.3232 Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem. 2007;100:639–49. Irreversible oxidation caused by free radical leads to cell apoptosis.3333 Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NYAcadSci. 2002;962:318–31. The next stage after the neuroinflammatory response are Wallerian degeneration and demyelination. The final stage is regeneration. In the regeneration process, Schwann cells, which are the essential cells involved in remyelination and improving conduction velocity,33 Park HJ, Hong J, Piao Y Shin HJ, Lee SJ, Rhyu IJ, et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Adv Clin Exp Med. 2020;29:819–24. begin to divide, proliferate, and guide the regenerated axons to enter the endoneurial tube at the distal stump.33 Park HJ, Hong J, Piao Y Shin HJ, Lee SJ, Rhyu IJ, et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Adv Clin Exp Med. 2020;29:819–24. However, this process does not warrant full functional recovery. Complete nerve maturation which involves remyelination, axonal enlargement, and end-organ connection is essential in functional recovery. Moreover, fibrosis and neuroma formation in any steps after nerve injury cause conductive blocking and disruption of the regeneration process. In general, the repair process occurs almost immediately, and regeneration must occur within 12–18 months after the onset of injury before the muscles become atrophied and are replaced with fat or fibrosis.44 Ellis JA, Goldstein H, Winfree CJ. Nerve repair. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. second edition Academic Press; 2014. p. 338–43., 55 Cayli SR, Kocak A, Yilmaz U, Tekiner A, Erbil M, Ozturk C, etal. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004;13:724–32., 66 Hall ED. The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol. 1993;59:241–8., 1414 Linder TE, Abdelkafy W, Cavero-Vanek S. The management of peripheral facial nerve palsy: p̈aresisv̈ersus p̈aralysisänd sources of ambiguity in study designs. Otol Neurotol. 2010;31: 319–27. Although neurorrhaphy was performed immediately after complete facial nerve disruption, the functional recovery in this meta-analysis did not achieve the pre-injury level.

The exact mechanism of why corticosteroid is beneficial in partial nerve injury but not in complete axotomy is still unknown. However, it is believed that corticosteroids reduce the neuroinflammatory process to reduce neural and perineural inflammation and prevent the neurons from peroxidation.55 Cayli SR, Kocak A, Yilmaz U, Tekiner A, Erbil M, Ozturk C, etal. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004;13:724–32., 66 Hall ED. The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol. 1993;59:241–8., 77 Genovese T Mazzon E, Crisafulli C, Di Paola R, Muià C, Bramanti P, et al. Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther. 2006;316:1006–16., 88 Tsutsumi S, Ueta T Shiba K, Yamamoto S, Takagishi K. Effects of the second national acute spinal cord injury study of high-dose methylprednisolone therapy on acute cervical spinal cord injury-results in spinal injuries center. Spine (Phila Pa 1976). 2006;31:2992–6, discussion 2997., 99 Salinas RA, Alvarez G, Ferreira J. Corticosteroids for Bell’s palsy (idiopathic facial paralysis). Cochrane Database Syst Rev. 2004:Cd001942. The neural injury in neurotmesis is more severe and the repair process is also more complex than those of the partial nerve injury. Perhaps that is why the benefits of corticosteroids could not be achieved. An exact reason needs to be further investigated.

For clinical application in humans, the results of this systematic review and meta-analysis suggested that using corticosteroids, either systemic or topical form, in complete facial nerve disruption and followed by neurorrhaphy should be considered carefully because no benefits were demonstrated. In addition, there are possible side effects of high dose corticosteroids such as increase blood glucose level, glaucoma or cataracts, gastrointestinal irritation, even though they were not examined directly in this systematic review. Therefore, corticosteroid usage should be considered cautiously and balanced between its risks and benefits.

There were limitations in this study: no studies in humans were included in this systematic review. Clinical application in humans is still based on clinical judgement of the clinician for each patient on an individual basis. RCTs in humans should be encouraged in the future for more accurate results. However, performing human trials with histopathology may not be feasible in clinical practice. Without the results in humans, this systematic review could only be used as guidance in clinical practice. The other limitation was only a few RCTs were included in the quantitative assessment in this meta-analysis. If there are more RCTs recruited with more pooled data, this topic could be re-analyzed in the future.

Conclusion

Evidence from this systemic review and meta-analysis did not show potential benefits of systemic or topical corticosteroid administrations after facial nerve neurorrhaphy in the setting of complete transection. The benefits were evaluated by electrophysiologic, histologic, and functional recovery outcomes in animal models. All available recruited studies did not include human participants, possibly due to the limitations in histologic outcome measurement. However, this study should be a reminder for clinicians in considering corticosteroid usage in such situation and, if possible, prospective human clinical trials are suggested for further study.

Acknowledgements

The authors would like to express our sincere thanks to English editing service, Research Affairs, Faculty of Medicine, Chulalongkorn University.

  • Submission declaration and verification
    The work has not been published previously and has not been under consideration for publication elsewhere.
  • Ethics committee consideration
    This protocol was waived from ethical committee consideration involving human beings or animal due to being review article (systematic review and meta-analysis). No patient consent form was needed in this review.
  • CRediT authorship contribution statement
    Prapitphan Charoenlux: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing — original draft, Writing — review & editing. Nattawan Utoomprurkporn: Conceptualization, Data curation, Methodology, Validation, Visualization, Writing — review & editing. Kachorn Seresirikachorn: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing -review & editing.
  • Peer Review under the responsibility of Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.

References

  • 1
    Condie D, Tolkachjov SN. Facial nerve injury and repair: a practical review for cutaneous surgery. Dermatol Surg. 2019;45:340–57.
  • 2
    Lee PH, Liang CC, Huang SF, Liao HT. The outcome analysis of traumatic facial nerve palsy treated with systemic steroid therapy. J Craniofac Surg. 2018;29:1842–7.
  • 3
    Park HJ, Hong J, Piao Y Shin HJ, Lee SJ, Rhyu IJ, et al. Extracorporeal shockwave therapy enhances peripheral nerve remyelination and gait function in a crush model. Adv Clin Exp Med. 2020;29:819–24.
  • 4
    Ellis JA, Goldstein H, Winfree CJ. Nerve repair. In: Aminoff MJ, Daroff RB, editors. Encyclopedia of the neurological sciences. second edition Academic Press; 2014. p. 338–43.
  • 5
    Cayli SR, Kocak A, Yilmaz U, Tekiner A, Erbil M, Ozturk C, etal. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004;13:724–32.
  • 6
    Hall ED. The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol. 1993;59:241–8.
  • 7
    Genovese T Mazzon E, Crisafulli C, Di Paola R, Muià C, Bramanti P, et al. Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther. 2006;316:1006–16.
  • 8
    Tsutsumi S, Ueta T Shiba K, Yamamoto S, Takagishi K. Effects of the second national acute spinal cord injury study of high-dose methylprednisolone therapy on acute cervical spinal cord injury-results in spinal injuries center. Spine (Phila Pa 1976). 2006;31:2992–6, discussion 2997.
  • 9
    Salinas RA, Alvarez G, Ferreira J. Corticosteroids for Bell’s palsy (idiopathic facial paralysis). Cochrane Database Syst Rev. 2004:Cd001942.
  • 10
    Baugh RF, Basura GJ, Ishii LE, Schwartz SR, Drumheller CM, Burkholder R, et al. Clinical practice guideline: Bell’s palsy. Otolaryngol Head Neck Surg. 2013;149:S1-27, http://dx.doi.org/10.1177/0194599813505967
    » http://dx.doi.org/10.1177/0194599813505967
  • 11
    Fu X, Tang L, Wang C, Li M, Wu H, Li J, et al. A network meta-analysis to compare the efficacy of steroid and antiviral medications for facial paralysis from Bell’s Palsy. Pain Physician. 2018;21:559–69.
  • 12
    Sun DQ, Andresen NS, Gantz BJ. Surgical management of acute facial palsy. Otolaryngol Clin North Am. 2018;51:1077–92.
  • 13
    Axelsson S, Berg T, Jonsson L, Engström M, Kanerva M, Stjernquist-Desatnik A. Bell’s palsy – the effect of prednisolone and/or valaciclovir versus placebo in relation to baseline severity in a randomised controlled trial. Clin Otolaryngol. 2012;37:283–90.
  • 14
    Linder TE, Abdelkafy W, Cavero-Vanek S. The management of peripheral facial nerve palsy: p̈aresisv̈ersus p̈aralysisänd sources of ambiguity in study designs. Otol Neurotol. 2010;31: 319–27.
  • 15
    Engström M, Berg T, Stjernquist-Desatnik A, Axelsson S, Pitkäranta A, Hultcrantz M, et al. Prednisolone and valaciclovir in Bell’s palsy: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2008;7:993–1000.
  • 16
    Sullivan FM, Swan IR, Donnan PT, Morrison JM, Smith BH, McKinstry B, et al. Early treatment with prednisolone or acyclovir in Bell’s palsy. N Engl J Med. 2007;357:1598–607.
  • 17
    Nakamura Y, Teramoto Y, Asami Y, Imamura T, Sato S, Tanaka R, et al. The rate of facial nerve dysfunction and time to recovery after intraparotid and extraparotid facial nerve exposure and protection in head and neck cutaneous tumor surgery. Int J Clin Oncol. 2017;22:843–8.
  • 18
    Kannan RY, Hills A, Shelley MJ, Bisase B, Kapoor K, Norris P, etal. Immediate compared with late repair of extracranial branches of the facial nerve: a comparative study. Br J Oral Maxillofac Surg. 2020;58:163–9.
  • 19
    Holland J, Bernstein J. Bell’s palsy. BMJ Clin Evid. 2011;2011.
  • 20
    Sweetman SC. Dose adjustment in renal impairment: response from Martindale: the complete drug reference. BMJ. 2005;331:292–3.
  • 21
    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.
  • 22
    Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
  • 23
    Lee YH. An overview of meta-analysis for clinicians. Korean J Intern Med. 2018;33:277–83.
  • 24
    Cheung MW, Vijayakumar R. A guide to conducting a metaanalysis. Neuropsychol Rev. 2016;26:121-8.
  • 25
    RevMan whenever its output is used:Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration; 2020.
  • 26
    Tuna Edizer D, Dönmez Z, Gül M, Yiğit Ö, Yiğitcan B, Adatepe T, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy. J Int Adv Otol. 2019;15:43–50.
  • 27
    Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D, et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg. 2012;147:832–40.
  • 28
    Longur ES, Yiğit Ö, Kalaycık Ertugay Ç, Araz Server E, Adatepe T , Akakın D, et al. Effect of bumetanide on facial nerve regeneration in rat model. Otolaryngol Head Neck Surg. 2021;164:117–23.
  • 29
    Yanilmaz M, Akduman D, Sagun ÖF, Haksever M, Yazicilar O, Orhan I, et al. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J Craniofac Surg. 2015;26:667–72.
  • 30
    Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S, et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg. 2015;26:810–5.
  • 31
    Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx. 2012;39:145–50.
  • 32
    Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem. 2007;100:639–49.
  • 33
    Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NYAcadSci. 2002;962:318–31.

Publication Dates

  • Publication in this collection
    17 Feb 2023
  • Date of issue
    Jan-Feb 2023

History

  • Received
    30 July 2021
  • Accepted
    26 Sept 2021
  • Published
    02 Nov 2021
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Sede da Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico Facial, Av. Indianópolia, 1287, 04063-002 São Paulo/SP Brasil, Tel.: (0xx11) 5053-7500, Fax: (0xx11) 5053-7512 - São Paulo - SP - Brazil
E-mail: revista@aborlccf.org.br