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In this paper we deal with the problem of controlling some Chaplygin systems in the framework of the
vakonomic approach for nonholonomic systems. Equations of motion for these systems are obtained which
contain a free parameter that permits to control the system. It is show that given a prescribed path it is possible
to determine the parameter of control which inserted in the equations of motion compel the trajectory of the
system to follow the input function.
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1. INTRODUCTION

The subject of nonholonomic systems has a long history
since the observation by Hertz that some types of mechan-
ical systems subjected to nonintegrable constraints cannot
be analysed in the framework of the lagrangian mechanics
[1]. This means that the lagrangian formulation of mechan-
ics does not give the correct equations of motion for these
systems. The problem introduced by the so called nonholo-
nomic constraints was circunvented by the introduction of
the method of the lagrangian multipliers in lagrangian me-
chanics [2–4]. Since that times, nonholonomic systems are
analysed on the basis of the Lagrange-d’Alambert principle
and some others equivalent approaches [5].

More recently, it was observed that the nonholonomic con-
traints are an open window to the possibility of controlling
nonholonomic systems. The Lagrange multiplier method
conjugated with an adequate variational procedure gives a
set of equations of motion which contain free parameters that
can be used to compel the system to follow a prescribed path.
This formulation, the so called variational axiomatic kind for
nonholonomic systems or shortly vakonomic approach for
nonholonomic system [6], is the procedure used in this paper
to obtain the equations of motion of an instructive example,
the Chaplygin sleigh [7], which is very convenient to shed
some light on the details of the controlling mechanisms.

The general problem of the nonholonomic scleronomous
systems consists in given a lagrangian L(q, q̇) and a set of
constraint equations,

n

∑
j=1

al j(q)q̇ j = 0 (` = 1, ...,m < n), (1)

to seek for the correct equations that describe the au-
tonomous motion of the system, can be approached by the
Lagrange-d’Alembert principle.

On the other hand, if we intend to obtain the equations of
motion for a prescritive mechanics which admits the possi-

∗Electronic address: antunes@if.ufrj.br
†Electronic address: sigaud@if.ufrj.br
‡Electronic address: guaranho@ufsj.edu.br

bility of controlling the system, according to the vakonomic
approach, the lagrangian must be extended to include the
nonholonomic constraint conditions,

L′ = L(q, q̇)+
m

∑
`=1

λ`

n

∑
j=1

a` j(q)q̇ j, (2)

where λ`(` = 1, ...,m) are the Lagrange multipliers.
The Hamiltonian principle,

δ

Z
L′dt = 0, (3)

where L′ is the constrained lagrangian, gives the equations of
the motion,

∂L′

∂q j
− d

dt
∂L′

∂q̇ j
= 0, ( j = 1, ...,n), (4)

which are explicitly,

∂L
∂q j

− d
dt

∂L
∂q̇ j

−
m

∑
`=1

λ̇`a` j +

m

∑
`=1

λ`

n

∑
k=1

(
∂a`k

∂q j
−

∂a` j

∂qk

)
q̇k = 0, ( j = 1, ...,n), (5)

together with the constraint equations,
n

∑
j=1

a` j(q)q̇ j = 0, (` = 1, ...,m). (6)

Using these n+m equations, it is possible to determine the
λ̇`(` = 1, ...,m), which are the forces of the constraints on the
system. The remaining λ` are free parameters which can be
conveniently chosen in order to force the system to follow a
prescribed path in the coordinate space.

Our aim is to use a simple model, the Chaplygin sleigh to
enlighten the procedure of determining the free parameters
of control λ`, which drive the system along a chosen curve
given by a function on the horizontal plane.

2. THE MODEL

The vakonomic approach to nonholonomic systems sum-
marized in the preceding section is applied to the Chaplygin
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FIG. 1: The Chaplygin sleigh.

sleigh. This apparatus consists of an eliptical board moving
on a horizontal plane supported by two sliding points and a
knife edge rigidly fixed under the board along the longitudi-
nal axis. The contact point of the knife with the horizontal
plane is at a distance a of the center of mass of the system.
The coordinates used to describe the motion of this system
are (x,y), the coordinates of the point of contact of the knife
with the plane, φ the angle between the knife (and the longi-
tudinal axis of the board) and the x axis on the plane.

Let ṡ be the velocity of the point of contact of the knife.
Its cartesian components are,

ẋ = ṡcos(φ) and ẏ = ṡ sin(φ). (7)

The equation for the constraint condition on the system is,

−ẋsin(φ)+ ẏcos(φ) = 0. (8)

Let m be the mass of the sleigh and I the moment of iner-
tia of the board and the knife around a vertical axis passing
through the center of mass. The kinetic energy of the system
is,

T =
1
2

m
(
ẋ2 + ẏ2)+

1
2

(
I +ma2)

φ̇
2 +

maφ̇(−ẋsin(φ)+ ẏcos(φ)) . (9)

Following the vakonomic prescriptions described above,
we write the extended lagrangian,

L′ = T +λ(−ẋsin(φ)+ ẏcos(φ)) , (10)

or

L′ =
1
2

m
(
ẋ2 + ẏ2 +b2

φ̇
2)+

λc
(
φ̇
)
(−ẋsin(φ)+ ẏcos(φ)) , (11)

where,

b =

√
a2 +

I
m

, (12)

is the radius of gyration of the system and

λc
(
φ̇
)

=
(
λ+maφ̇

)
. (13)

The equations (4) are used to obtain the equations of motion
of the Chaplygin sleigh. In this way, we obtain the equations
of the motion of the system,

ẍ =−sin(φ)(ẋcos(φ)+ ẏsin(φ)) φ̇+
λc

m
cos(φ)φ̇, (14)

ÿ = cos(φ)(ẋcos(φ)+ ẏsin(φ)) φ̇+
λc

m
sin(φ)φ̇, (15)

φ̈ =−
(

λc

mb2

)
(ẋcos(φ)+ ẏsin(φ)) . (16)

Together with the equation that gives the force of the con-
straint,

λ̇c =−m(ẋcos(φ)+ ẏsin(φ)) φ̇. (17)

Using the constraint equation 8 and the velocity of the knife
contact point,

ṡ = ẋcos(φ)+ ẏsin(φ), (18)

the set of equations above can be written more compactly as,

s̈ =
λc

m
φ̇, (19)

φ̈ = − λc

mb2 ṡ, (20)

and

λ̇c=−mṡφ̇. (21)

A more convenient set of variables is,

u1 =
√

mṡ, (22)
u2 =

√
mbφ̇, (23)

and

Λ=χ̇+
a
b

φ̇, (24)

where

χ̇ =
λ

mb
. (25)

In terms of these variables, the set of equations above
reads,

u̇1 = Λu2, (26)
u̇2 = −Λu1, (27)

and

Λ̇=− 1
mb2 u1u2. (28)

Besides these equations, we have the dynamical condition,

u2
1 +u2

2 = 2T, (29)

which comes from the expression for the kinetic energy. The
relations (26), (27) and (29) suggest that the variables u1 and
u2 can be written in sinusoidal forms:

u1 =
√

2T sin(Ψ), (30)

u2 =
√

2T cos(Ψ), (31)
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where Ψ is an angle that can easily be related to the param-
eter Λ. Putting the functions (30) and (31) in the equations
(26) and (27), we obtain,

Ψ̇ = Λ, (32)

then,

Ψ = χ+
a
b

φ. (33)

In terms of the configuration coordinates the above equa-
tions read:

ṡ = vT sin(Ψ), (34)

φ̇ =
vT

b
cos(Ψ), (35)

and

ẋ = vT sin(Ψ)cos(φ), (36)
ẏ = vT sin(Ψ)sin(φ), (37)

where,

vT =

√
2T
m

. (38)

This set of equations is usually obtained in the framework
of the differential geometric formulation of nonholonomic
mechanics [8] and u1 =

√
2T sin(Ψ) and u2 =

√
2T cos(Ψ)

are called the controls of the system. Using a matrix notation
and defining u = (u1,u2)

>the set of equations (26), (27) and
(32) can be integrated giving,

u(t) = eΨ(t)Juo, (39)

where J is the simpletic matrix,

J =
(

0 1
−1 0

)
. (40)

3. THE AUTONOMOUS MOTION

Choosing χ = 0, the equations of motion (36) and (37)
become,

ẋ = vT sin(Ψ)cos
(

b
a

Ψ

)
, (41)

ẏ = vT sin(Ψ)sin
(

b
a

Ψ

)
. (42)

These are the same equations obtained by Neimark and Fu-
faev [5] for the motion of the Chaplygin sleigh in the hori-
zontal plane and free from external forces and torques.

4. THE CONTROLLED MOTION

The angle Ψ is related to the components of the center of
mass velocity. Using the equations (34), (35) and the defini-
tions of u1 and u2, we obtain,

tanΨ =
(

ṡ
bφ̇

)
, (43)

Where ṡ is the component of the center of mass velocity in
the direction of the longitudinal axis of the sleigh ( and of the
knife ) and bφ̇ is the transversal component. We introduce the
variable,

ρ =
ṡ
φ̇
, (44)

where, |ρ| is the radius of curvature of the trajectory. Then
the above equation reads,

tan(Ψ) =
ρ

b
. (45)

The equation (45) is of fundamental importance in the pro-
cess of controlling the system. It is this equation that deter-
mines the control parameter Ψ, for a prescribed path imposed
to the system.

In order to clarify this detail of the controlling procedure
we consider the problem of to compel the Chaplygin sleigh to
follow a path described by a well behaved function y = y(x)
in the plane (x,y) with finite derivatives y′(x) = tanφ and
y′′(x). The radius of curvature of this path is given by,

ρ(x) =

[
1+ y′(x)2

] 3
2

y′′(x)
. (46)

Then, the angle of control Ψ is obtained from,

tanΨ =

[
1+ y′(x)2

] 3
2

by′′(x)
. (47)

Under the above conditions we have tan(Ψ) ∈ (−∞,∞) and
Ψ ∈ (−π

2 , π

2 ).
For a parametric curve x(s), y(s) the equation (45) gives,

tanΨ =
1

b [x′(s)y′′(s)− y′(s)x′′(s)]
. (48)

This kind of procedure by which the equations of motion
of the system are determined such that the trajectory of the
system follows on the prescribed path is the first stage of the
control process sometimes called planning or tracking [9].

An immediate application of these results is the compu-
tation of the time of the motion along the given trajectory
between two points s = 0 and s(t).

The kinetic energy of the system is,

T =
m
2

[
ṡ2 +

(
bφ̇

)2
]
, (49)

and can be rewritten as,

vT =
ṡ

sin(Ψ)
. (50)

Then, the time of the motion is given by:

t =
1
vT

s(t)Z
0

ds
sin(Ψ)

. (51)

For a given input function x(s), y(s),

sin(Ψ) =
ρ(s)√

b2 +ρ2(s)
, (52)
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and the time expended along the motion is given by

t =
1
vT

s(t)Z
0

√
b2 +ρ2(s)

ρ(s)
ds. (53)

5. THE CONTROL SYSTEM

In order to examine the physical aspects of the control pro-
cess, we return to the constrained Lagrangian,

L′ =
1
2

m
(
ẋ2 + ẏ2)+

1
2

mb2
φ̇

2 +(
λ+maφ̇

)
(− ẋsinφ + ẏcosφ ) . (54)

The angular momentum of the system

pφ =
∂L′

∂φ̇
= mb2

φ̇, (55)

is not a conserved quantity because there is a torque:

ℑφ =
∂L′

∂φ
=−

(
λ+maφ̇

)
( ẋcosφ + ẏsinφ ) , (56)

or

ℑφ =−
(
λ+maφ̇

)
ṡ. (57)

This torque changes the angular momentum of the Chap-
lygin sleigh around the contact point of the knife which is
shown by the equation of motion

mb2
φ̈ =−λṡ−ma

ṡ2

ρ
. (58)

This first term (−λṡ) is due to an external system which con-
trols the motion of the Chaplygin sleigh. The second term
is a torque due to the centrifugal force that appears in the
accelerated frame fixed in the Chaplygin sleigh.

However, the formulation above requires that the kinetic
energy

T =
1
2

(
u2

1 +u2
2
)

(59)

must be a constant along the controlled motion. The equa-
tions (26) and (27) give,

dT
dt

= u1u̇1 +u2u̇2 = 0. (60)

It is easy to see that if the system is under the action of a
torque solely, the energy is not conserved. The kinetic energy
is,

T =
m
2

(
v2

c + Iφ̇
2) , (61)

where,

−→vc = ṡŝ+aφ̇φ̂, (62)

then,

dT
dt

= m
(−→vc · −̇→vc + Iφ̇φ̈

)
. (63)

However, m−̇→vc =
−→
Fc and Iφ̈ = ℑc, which are a force applied

on the center of mass and a torque, respectively.
Using these relations, we obtain:

dT
dt

=−→vc ·
−→
Fc + φ̇ℑc. (64)

If
−→
Fc = 0 and ℑc 6= 0 then dT

dt 6= 0.
In order to obtain a control system that does not change

the kinetic energy, we must impose ṡFcs +
(
aFcφ +ℑc

)
φ̇ = 0.

Using ṡ = ρφ̇, we obtain,

Fcs =−1
ρ

(
aFcφ +ℑc

)
. (65)

In the absence of a torque, ℑc = 0, the condition for energy
conservation is

−→vc ·
−→
Fc = 0, (66)

then,
−→
Fc ⊥−→vc and,

Fcs =−a
ρ

Fcφ. (67)

Introducing the following notation,

−→rc =−→ccc =−ρφ̂+aŝ, (68)

where cc is the center of the curvature of the path, we obtain
−→rc · −→vc = 0,then

−→
Fc ‖ −→rc , and the force

−→
Fc is applied in c in

the direction of cc.
In order to determine the force that must be applied on

the CM for the system to follow a given path, we use the
relations,

Fcφ = m
(
aφ̈+ρφ̇

2) , (69)

and

φ̈ =−ρ

b
φ̇ψ̇,

then

Fcφ = mρφ̇

(
−a

b
ψ̇+ φ̇

)
, (70)

where

ψ̇ = χ̇+
a
b

φ̇. (71)
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6. EXAMPLES OF TRACKING

The first example is the motion along a straigh line given
by,

y(x) = Ax+B. (72)

The angles of this trajectory are:

φ = arctan(A), (73)

tan(Ψ) =
ρ

b
= ∞, (74)

then,

Ψ =
π

2
, (75)

and

χ =
π

2
− a

b
arctan(A), (76)

which are all constants. The scalar velocity is,

ṡ = vT sin(Ψ) = vT , (77)

and the equations of motion are,

ẋ = vT cos(φ), (78)
ẏ = vT sin(φ). (79)

The equations of the trajectory are,

x(t) =
vT√

1+A2
t, (80)

y(t) =
AvT√
1+A2

t +B. (81)

A second example is the case of a circular trajectory with
radius R,

x = Rcos
( s

R

)
, y = Rsin

( s
R

)
. (82)

Then

x′y′′− y′x′′ =
1
R

, (83)

and the equation (45) gives,

tan(Ψ) =
R
b

, (84)

which is a constant.
The period of circulation is

tc =
1
vT

I √
b2 +R2

R
ds = π

√
2m
T

√
b2 +R2. (85)

Besides the angle Ψ we have

tan(φ) =
y′(s)
x′(s)

=−cot
( s

R

)
, (86)

then,

φ =
s
R

+
π

2
. (87)

The angle χ which is the parameter that drives the system
along the circular path is,

χ(s) = arctan
(

R
b

)
− a

b

( s
R

+
π

2

)
. (88)

The time evolution is given by,

ṡ = vT sin(Ψ) =
vT R√

b2 +R2
, (89)

then,

s(t) =
vT R√

b2 +R2
t. (90)

The cartesian coordinates of the trajectory are given by,

ẋ =
vT R√

b2 +R2
cos

(
π

2
+

vT√
b2 +R2

t
)

, (91)

ẏ =
vT R√

b2 +R2
sin

(
π

2
+

vT√
b2 +R2

t
)

. (92)

Then,

x(t) = Rcos
(

vT√
b2 +R2

t
)

, (93)

y(t) = Rsin
(

vT√
b2 +R2

t
)

, (94)

and

φ̇ =
ṡ
R

=
vT√

b2 +R2
(95)

is the angular velocity of the system along the circular tra-
jectory. The time dependence of the driving angle is,

χ(t) = arctan
(

R
b

)
− a

b

(
π

2
+

vT√
b2 +R2

t
)

. (96)

The third example consists of an input path given by the
parametric equations of a catenary,

x(s) =
√

s2 + x2
o, (97)

y(s) = xo ln
(

s+
√

s2 + x2
o

)
, (98)

where s ≥ 0 is the arc lengh of the path.
The radius of curvature is,

ρ(s) =

(
s2 + x2

o
)

xo
, (99)

and the angle of control along this path is given by,

tan(Ψ) =
ρ

b
=

(
s2 + x2

o
)

bxo
. (100)
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FIG. 2: In this figure it is shown the graphics of the functions ob-
tained integrating the equations of motion along a catenary path.
We see s(t) in (a), x(t) in (b), y(t) in (c) and y(x) in (d).

The parametric equation of the motion

ṡ = vT sin[Ψ(s)], (101)

reads,

ds
dt

=
vT

(
s2 + x2

o
)√

(s2 + x2
o)

2 +(bxo)
2
, (102)

and the time evolution of the system along the path is given
by,

t (s) =
1
vT

Z s

0

√
1+

(bxo)
2

(s2 + x2
o)

2 ds. (103)

In order to obtain the equations of trajectory x = x(t) and
y = y(t), we use the parametric equations of the input path
x = x(s) and y = y(s), which give x = x(s(t)) and y = y(s(t)).

We integrate numerically the parametric equations of mo-
tion (102), with vT = 1 and b = xo = 1, obtaining s j = s(t j),
x j = x(s(t j)) and y j = y(s(t j)). The graphic of these results
is shown in figure (2).

The force
−→
Fc that drives the system along the catenary path

can be easily obtained. The equations of the motion are,

ṡ =−
vT

(
x2

o + s2
)√

(x2
o + s2)+(bxo)

2
, (104)

and

φ̇ =− vT xo√
(x2

o + s2)+(bxo)
2
. (105)

From tan(ψ) =
(
x2

o + s2
)
/(bxo), we obtain

ψ̇ =− 2bxosṡ

(x2
o + s2)2 +(bxo)

2 , (106)
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FIG. 3: In these figures are shown the results of numerical integra-
tions of the equations of the motion for tracking along a sinusoidal
path. In (a) and (b) are shown the tajectories xi = x(ti),yi = y(ti). In
(c) the tracking yi = y(ti) is compared with the path y(x) =−sin(x).

therefore, we are able to compute

Fcφ = mρφ̇

(
φ̇− a

b
ψ̇

)
. (107)

As a fourth example, we consider a sinusoidal path y(x) =
−Rsin(x/R) with R = 1. The equations of motion are,

ẋ = vT sin(Ψ(x))cos(φ(x)), (108)
ẏ = vT sin(Ψ(x))sin(φ(x)). (109)

The angles are given by,

tan(φ) = y′(x) =−cos(x), (110)

tan(Ψ) =
ρ

b
=

(
1+ cos2(x)

) 3
2

b sin(x)
, (111)

then

ẋ =
vT

(
1+ cos2(x)

)
[
b2 sin2(x)+(1+ cos2(x))3

] 1
2
, (112)

ẏ =−
vT cos(x)

(
1+ cos2(x)

)
[
b2 sin2(x)+(1+ cos2(x))3

] 1
2
, (113)

which can be integrated to give x(t) and y(t) =−sin(x(t)).
The result of numerical integration of the above equation,

which b = 1 and vT = 1, is shown in figure (3).
Finally, we observe that, from the equation (21), we ob-

tain,

maφ̈ =−λ̇−m
ṡ2

ρ
, (114)

where, at the right hand side, the first term is the constraint
reaction and the second term is the centrifugal force acting
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on the system. In the straigh line and the circular trajectories
we have φ̈ = 0, the angular momentum, pφ = mb2φ̇, is con-
stant under the action of the control system and the constraint
reaction and the centrifugal force are in equilibrium.

7. CONCLUSION

The equations of motion for nonholonomic nonau-
tonomous controlled systems can be obtained by different
methods. Differential geometry approaches to mechanics are
usually employed to obtain the equation of motion for this
kind of systems [8]. However, we used the vakonomic for-
mulation [6], an extension of the lagrangian formulation in
which the lagrangian function is added with a linear com-
bination of the constraint conditions. The coefficients of
this linear combination are the Lagrange multipliers which
are the free parameters that permit to control the system.
The next step is to solve the equations of motion using the
free parameters to compel the system to follow a prescribed
pathway. This procedure, usually called planning or track-
ing, requires a prescription that relates the free parameters,
or control parameters, of the theory with the input function
that describes the chosen trajectory. In this paper, we give a
prescription to obtain the control angle Ψ of the Chaplygin
sleigh. This control angle is given by tanΨ = ρ

b where b is
the radius of gyration of the system and ρ is the radius of cur-
vature of the prescribed pathway. In the appendices we show
some examples of Chaplygin systems that can be controlled
with the same prescription. All these examples pertain to the
class of the unicycles [9]. Some of these examples, the sleigh
and the vertical disk, need to be controlled by external force
and torque. However, the two wheeled carriage which has an
internal degree of freedom can be controlled using internal
torque and force. In a next paper, we intend to extend the
present formulation to include the process of linear feedback
or adaptative control [9]

APPENDIX A: A DISK ROLLING VERTICALLY ON A
PLANE WITHOUT SLIPPING [8]

The parameters of this system are the mass m of the disc,
the momentum of inertia I1 relative to the axis and the mo-
mentum of inertia I2 relative to a diameter.

The coordinates of this system are: the cartesian compo-
nents (x,y) of the contact point with the plane, the angle of
direction φ that the plane of the disk forms with the axis x on
the plane and the angle θ that denotes a rotation of the disk.
In terms of these coordinates the kinetic energy of the disk
reads,

T =
1
2

[
m

(
ẋ2 + ẏ2)+ I1θ̇

2 + I2φ̇
2] . (A1)

Let~v = ṡŝ be the velocity of the point of contact or the center
of mass of the disk. Its cartesian components are:

ẋ = ṡcosφ, (A2)
ẏ = ṡsinφ. (A3)

Then the motion of the point of contact is constrained by the
relation,

−ẋsinφ+ ẏcosφ = 0. (A4)

Besides this anti-transverse motion constraint, the motion of
the disk is constrained by the nonslipping condition

ṡ = Rθ̇. (A5)

This last relation can be used to rewrite the kinetic energy in
the form

T =
1
2

[(
m+

I
R2

)
ṡ2 + I2φ̇

2
]
. (A6)

Defining the new variables,

u1 =

√
m+

I1

R2 ṡ, (A7)

u2 =
√

I2φ̇. (A8)

The kinetic energy reads,

T =
1
2

(
u2

1 +u2
2
)
. (A9)

The vakonomic formulation can be used to obtain the equa-
tions of the motion from the extended lagrangian,

L′ =
1
2

[(
m+

I1

R2

)(
ẋ2 + ẏ2)+ I2φ̇

2
]
+

λ(−ẋsinφ+ ẏcosφ) . (A10)

Similarly as was done for the Chaplygin sleigh, it can be
shown that u1 and u2 are given by,

u1 =
√

2T sinΨ, (A11)

u2 =
√

2T cosΨ, (A12)

where Ψ is the angle of control given by,

tan(Ψ) =
ṡ

bφ̇
, (A13)

with

b = R

√
I2

(I1 +mR2)
. (A14)

APPENDIX B: A TWO-WHEELED CARRIAGE ROLLING
ON A PLANE WITHOUT SLIPPING [8]

The parameters of this system are the radius R of the
wheels, the lenght of the axis 2a, the mass m and the mo-
ments of inertia I1 and I2 of each wheel, the mass M, the prin-
cipal moments of inertia I of the axis and platform relative to
the vertical axis. In this car the center of mass coincides with
the center of the axis between the wheels. Let ~v = ṡŝ be the
velocity of the CM of the car. It cartesian components are,

ẋ = ṡcosφ,

ẏ = ṡsinφ,
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which give the anti-transverse constraint

−ẋsinφ+ ẏcosφ = 0. (B1)

The rolling without slipping constraints on the wheels are,

ṡ+aφ̇ = Rθ̇1, (B2)
ṡ−aφ̇ = Rθ̇2. (B3)

Defining the new coordinates

θ =
1
2

(θ1 +θ2) , (B4)

ξ =
1
2

(θ1−θ2) . (B5)

The nonslipping constraints become,

ṡ = Rθ̇, (B6)
aφ̇ = Rξ̇. (B7)

The kinetic energy of the system is

T =
1
2

[
m

(
ṡ+aφ̇

)2 +m
(
ṡ−aφ̇

)2 +Mṡ2+

I1
(
θ̇

2
1 + θ̇

2
2
)
+(I +2I2) φ̇

2] . (B8)

Changing the variables

θ̇
2
1 + θ̇

2
2 = 2

(
θ̇

2 + ξ̇
2
)

, (B9)

and using the nonslipping constraints we obtain

T =
1
2

{[
M +2

(
m+

I1

R2

)]
ṡ2+[

I +2I2 +2a2
(

m+
I1

R2

)]
φ̇

2
}

. (B10)

Defining the variables

u1 =

√
M +2

(
m+

I1

R2

)
ṡ, (B11)

u2 =

√
I +2I2 +2a2

(
m+

I1

R2

)
φ̇. (B12)

The kinetics energy reads,

T =
1
2

(
u2

1 +u2
2
)
. (B13)

Using the vakonomic formulation with the extended la-
grangian,

L′ = T +λ(−ẋsinφ+ ẏcosφ) , (B14)

simmilarly as in the case of the Chaplygin sleigh, we can
obtain the equations of the motion and show that u1 and u2
have the forms

u1 =
√

2T sin(Ψ), (B15)

u2 =
√

2T cos(Ψ). (B16)

The angle of the control Ψ is given by,

tanΨ =
ṡ

bφ̇
, (B17)

with

b =

√√√√√ I +2I2 +2a2
(

m+ I1
R2

)
M +2

(
m+ I1

R2

) . (B18)

From the extended lagrangian we obtain the angular momen-
tum of the system,

pφ =
∂L′

∂φ̇
=

[
I +2I2 +2a2

(
m+

I1

R2

)]
φ̇, (B19)

which is not conserved because there is a torque:

ℑ =
∂L′

∂φ
=−λṡ = ṗφ. (B20)

Using the constraint equation aφ̇ = Rξ̇ we obtain,

ℑ =−λṡ =
[

I +2I2 +2a2
(

m+
I1

R2

)](
R
a

)
ξ̈. (B21)

This result shows that the two-wheeled car can be controlled
by an internal torque that produces a difference in the aceler-
ations of the wheels ξ̈ = 1

2

(
θ̈1− θ̈2

)
, and a force Fs.

APPENDIX C: COMPARING THE VAKONOMIC
FORMULATION WITH HEURISTIC SOLUTION

In this appendix we show that, for the class of systems
considered in this work, the results obtained using the vako-
nomic approach can also be obtained with an independent
method. The prototype of these systems is the chaplygin
sleigh moving on a horizontal plane. Using the same coordi-
nates and the notations defined in the section II, the kinetic
energy reads

T =
1
2

[
m

(
ẋ2 + ẏ2)+

(
I +ma2)

φ̇
2] . (C1)

The constraint condition is

−ẋsinφ+ ẏcosφ = 0 (C2)

and the scalar velocity of the point of contact of the knife is

ṡ = ẋcosφ+ ẏsinφ. (C3)

Using these relations, the knife energy becomes

T =
1
2

m
(
ṡ2 +b2

φ̇
2) (C4)

where b2 = a2 + I/m. The velocity of the center of gyration
is

~vT = ṡŝ+bφ̇φ̂ (C5)
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then vT =
√

2T/m. We define

tanψ =
ṡ

bφ̇
. (C6)

Then (π/2−ψ) is the angle between the velocities ~vT and
~vA = ṡŝ. From the kinetic energy and the definition of ψ we
obtain,

ṡ = vT sinψ, (C7)

φ̇ =
vT

b
cosψ. (C8)

The equations of motion of the system can be obtained using
ẋ = ṡcosφ and ẏ = ṡsinφ, that give

ẋ = vT sinψcosφ, (C9)
ẏ = vT sinψsinφ, (C10)

φ̇ =
vT

b
cosψ. (C11)

These equations of motion depend on two parameters, vT
and ψ which must be determined for a prescribed controlled
motion of the system along a given path. Let the path be
given by y = y(x). Its radius of curvature is

ρ(x) =

[
1+ y′(x)2

] 3
2

y′′(x)
. (C12)

which is related to the scalar and angular velocities of the
system by

ρ =
ṡ
φ̇
. (C13)

The angle ψ is then determined by

tanψ =
ρ

b
. (C14)

The second parameter of control vT can be determined
choosing a particular motion along this path. If the ki-
netic energy must be constant along the motion, then vT =√

2T/m is constant. If the scalar velocity ṡ must be constant
ṡ = vs, vT is given by

vT =
vs

sinψ
(C15)

and the angular velocity is

φ̇ =
vs

b
cotψ. (C16)

The other equations of motion in this particular case are

ẋ = vs cosφ, (C17)
ẏ = vs sinφ. (C18)

APPENDIX D: COMPARING THE VAKONOMIC
FORMULATION WITH THE LAGRANGE-D’ALEMBERT

PRINCIPLE

The equations of motion for the chaplygin sleigh derived
using the vakonomic formulation, equation (21-54), can be

rewritten as

ẍ = −sinφ(ẋcosφ+ ẏsinφ) φ̇+ (D1)(
aφ̇+

λ

m

)
cos(φ)φ̇, (D2)

ÿ = cosφ(ẋcosφ+ ẏsinφ) φ̇+ (D3)(
aφ̇+

λ

m

)
sin(φ)φ̇, (D4)

φ̈ = − 1
b2

(
aφ̇+

λ

m

)
(ẋcosφ+ ẏsinφ) , (D5)

and

λ̇ =
[
−m

(
1− a2

b2

)
φ̇+

λa
b2

]
(ẋcosφ+ ẏsinφ) . (D6)

These are control equation that can be used to impose a pre-
scribed path to the system.

For autonomous motion we must apply the Lagrange-
D’Alembert (LD) principle. For the Chaplygin sleigh the
lagrangian is

L =
1
2

[
m

(
ẋ2 + ẏ2)+

(
ma2 + I

)
φ̇

2]+ (D7)

maφ̇(−ẋsinφ+ ẏcosφ) , (D8)

and the constraint condition reads

Γ
(
x,y,φ, ẋ, ẏ, φ̇

)
=−ẋsinφ+ ẏcosφ = 0. (D9)

The equations of motion given by the LD principle are

∂L
∂q

− d
dt

∂L
∂q̇

= µ
∂Γ

∂q̇
, (D10)

with q = x,y,φ, where µ is a Lagrange multiplier, and the
constraint equation:

−ẋsinφ+ ẏcosφ = 0. (D11)

After some algebra, we obtain the equations of motion:

ẍ = −sinφ(ẋcosφ+ ẏsinφ) φ̇+aφ̇
2 cosφ, (D12)

ÿ = cosφ(ẋcosφ+ ẏsinφ) φ̇+aφ̇
2 sinφ, (D13)

φ̈ = −aφ̇

b2 (ẋcosφ+ ẏsinφ) , (D14)

and the force of constraint:

µ =−m
(

1− a2

b2

)
φ̇(ẋcosφ+ ẏsinφ) . (D15)

It is well known that the set of vakonomic equations (D2-D6)
and the set of LD equations (D12-D14) are not, in general,
dynamically equivalents, in the sense that there are not any
initial condition λ(t = 0) such that the solutions of both sets
give the same trajectory in the configuration space [16]. The
vakonomic formalism does not describe the autonomous mo-
tion of the system. It is a kind of prescritive mechanics which
can be used to describe the motion of a nonholonomic system
along a prescribed path in the configuration space.
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