
544 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005

Collisional Transport in Axisymmetric Plasma Columns with
Strong Longitudinal Flows: Application to Solar Loops

V. S. Tsypina) and R.M.O. Galvãoa),b)

a)Institute of Physics, University of São Paulo, Cidade Universitária, CEP 05508-900, São Paulo, Brazil and
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In this work we analyze the transport processes in solar loops considering a collisional plasma and high
longitudinal plasma flow. The general theory of the neoclassical transport in toroidal configurations with a
noncircular cross-section is applied to explain the transport processes in some kinds of solar loops, modeling
the solar loop as a toroidal plasma column. The plasma is assumed to be in the collisional regime and to have
particle longitudinal flow along the solar loop axis. The poloidal velocity and the radial fluxes of the particles
and the ion heat flux are derived in this article. It is shown that the particle poloidal velocity can be measured
giving rise to the possibility of having additional connections between the plasma macroscopic parameters,
which are very important for the solar loops diagnostic. It is also shown that the particle and heat fluxes are on
the ”classical” level, within the factor of an order of magnitude. We hope that such an approach (together with
other theories) can help to explain the transport processes in solar loops, whose shapes are similar to toroidal
configurations.

I. INTRODUCTION

Solar loops are usual structures on the surface of stars.
There are extensive investigations of the different physical
processes in solar loops, both, observational and theoretical
[1]. The transport processes in the solar loops are relatively
poorly studied because of their complex structure and the
necessity of taking into account a large amount of physical
processes present in them.

The solar loops have different shapes, indeed some of them
just rise above the surface of the sun while others look like
the toroidal configurations of fusion devices (Priest 1980,
page 378) [2]. Fortunately, the theory of plasma dynamics
in toroidal configurations has been rather well developed in
connection with the research of thermonuclear fusion. Specif-
ically, it is supposed that the ion transport is neoclassical (i.e.
the classical collisional transport [3]), taking into account ad-
ditionally the complicated topology of magnetic field) in all
collisional regimes. Indeed, the neoclassical theory consis-
tently includes the collisional regime, when the mean free path
is small in comparison with the typical longitudinal size of
the system, the weakly collisional one (the ”plateau” regime,
when the transport coefficients do not depend on the collision
frequency), and the ”banana” regime, when it is necessary to
take into account the so-called trapped particles, [4]. The elec-
tron dynamics in a collisional regime can be also described in
the framework of the neoclassical theory. A comprehensive
review of the neoclassical transport theory has been published
by Hinton and Hazeltine [5].

The plasma of solar loops, in some cases, is collisional
with high longitudinal particle flow velocities, not far from
the plasma sound speed. The ratio of the plasma pressure
p0 to the magnetic field pressure B2/8π is usually small, i.e.
the parameter βp = 8πp0/B2 is much smaller than one. The
toroidal (along the solar loop) magnetic field Bζp is usually
greater than the poloidal magnetic field Bθp, Bζp À Bθp.
Under these conditions, we can neglect the radial gradients
of the magnetic field in the equations describing the plasma

dynamics. The solar loops transverse cross-section can differ
from a circular one and the temperature is high enough for the
plasma to be considered as fully ionized [6].

Here, we want to construct the transport processes the-
ory valid for solar loops as in toroidal magnetically confined
collisional two-component (ions and electrons) plasma con-
figurations, with high longitudinal (along the torus) parti-
cle flow velocities and elongated (elliptical) transverse cross-
section. Previously, such a problem was solved for axisym-
metric plasma columns with circular cross-section, in cases
in a plateau [7], collisional [8], [9], and all transport regimes
[10].

Of course, there are fundamental differences between the
solar loops and tokamaks. The first difference is the sun strong
gravitational field. The second is the vertical position of the
many loops. The third is the absence of strong inductive cur-
rents in the loops, as in the case for tokamaks. Finally, the
feet of solar loops is on the surface of the Sun. These dif-
ferences need special considerations. We confine ourselves to
consider only the local characteristics of the plasma dynam-
ics, such as the local plasma transport. The sun gravitational
field affects primarily the plasma longitudinal flow. Simpli-
fying the problem, we average the evolution equations only
over the azimuthal angle, at the same coordinate along the
loop. In some sense, we replace the flow velocity, depend-
ing on the longitudinal coordinate, by the mean flow velocity.
In this case, as a first approximation, we neglect the depen-
dence of the macroscopic plasma parameters on the longitu-
dinal coordinate, along the torus. There is a similarity be-
tween tokamaks with the poloidal divertor, where the mag-
netic field lines are unclosed, and the solar case with the feet
of the loops tied to the solar surface. Furthermore, the longi-
tudinal transport dominates the energy and particles balance
in many kinds of solar loops, however, for interpretation of
the observational data, it is necessary to evaluate the particle
and energy amount crossing the solar loop surface. In some
kinds of solar loops (such as shown in the book by Priest,
page 378 [2]), the transverse transport can dominate the lon-
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gitudinal one because of the solar loop large outer surface, in
comparison with the transversal area of the feet.

We are aware that, even for strongly toroidal solar loops,
we do not take into account all possible ranges of variation of
the plasma parameters. In some kinds of solar loops, the ef-
fects of radial gradients, curvature of the magnetic field, and
the derivatives of the plasma parameters along the torus can be
of the same order of the effects considered here. These prob-
lems can be the subject of future investigations. In this paper,
we confine ourselves to consider only the comparatively sim-
ple case of solar loops with the complicated geometry of the
magnetic field.

The model equilibrium magnetic field and the associated
coordinate system and metric are described in section 2 to 4.
The particle and heat fluxes are derived in sections 5 and 6, re-
spectively. The ambipolarity condition is discussed in section
7. Using this condition, the final expressions for the transport
fluxes are obtained and evaluated, for some cases of interest,
in sections 8 and 9. Finally, the conclusions are presented in
section 10.

II. MAGNETIC FIELD

First of all, we need to choose the coordinate system con-
venient to evaluate the heat and particle fluxes in the ellipti-
cal plasma torus. For a smooth torus (no dependence of the
plasma macroscopic parameters on the coordinate along the
toroidal column), it is convenient to take two coordinates in
a transverse cross-section of a plasma column (a radial co-
ordinate and a azimuthal, poloidal, coordinate) and an angle
coordinate along torus. The coordinates should be chosen so
that the dependence of the plasma macroscopic parameters on
them should be as simple as possible. For example, the plasma
macroscopic parameters should depend mainly on the radial
coordinate and be approximately constant along the magnetic
surfaces for a torus with a small inverse aspect ratio (the ra-
tio between the small and large radii of the plasma column).
It can be shown, from the approximate equilibrium equation
[3], that

1
c

[j×B]≈ ∇p, (1)

where B is the magnetic field, j is the plasma current, and p is
the full plasma isotropic pressure. Multiplying this equation
by B, we have

B ·∇p = 0, (2)

i.e. the plasma pressure is approximately constant along the
magnetic field line and on the magnetic surface (naturally, this
condition should be valid on the magnetic surface close to the
feet of the solar loop). Thus, it is convenient to choose the
radial coordinate so that it is constant on a magnetic surface.
Possible candidates for this coordinate are the plasma volume
inside the magnetic surface V , the toroidal φ or poloidal χ
magnetic fluxes, and any functions of these values. If a radial
coordinate does not coincide with the magnetic surface, strong

angle dependence will appear in dynamic equations and the
calculations will be highly complicated. In a toroidal mag-
netic configuration with elliptic transverse cross-section, it is
possible to take a function of semi minor and major axes as
the radial coordinate, as will be done in the sequel.

Let us designate the poloidal and toroidal coordinates (an-
gles) θ and ζ respectively, where 0≤ θ≤ 2π and 0≤ ζ≤ 2π.
Using the Maxwell equation

∇ ·B = 0, (3)

we obtain the identities

∇ · (Bθ) = B ·∇θ, ∇ · (Bζ) = B ·∇ζ. (4)

Let us make the cutting of torus in any place across the plasma
column and denote the meaning of the angle ζ as ζ1 = 0 on
the one side of the cutting and ζ2 = 2π on the other side of
the cutting. Then, integrating the second equation of Eqs. (4)
over the plasma volume inside a given magnetic surface of
the obtained magnetic configuration, using the absence of the
radial component of the magnetic field on the surface, and the
conservation of the toroidal magnetic flux inside it, we get the
expression for the toroidal magnetic flux (see, for example,
[11])

φ =
1

2π

Z
(B ·∇)ζdr. (5)

Analogously, let us make the cutting of torus in any place
along the plasma column from its center until the magnetic
surface and denote the meaning of the angle θ as θ1 = 0 on
the one side of the cutting and θ2 = 2π on the other side of the
cutting. Then, integrating the first equation of Eqs. (4) over
the plasma volume inside the surface and using the conserva-
tion of the poloidal magnetic flux, we get the expression for
the quantity

χ =
1

2π

Z
(B ·∇)θdr. (6)

Now, we can define the magnetic field B (Br = 0)

B =
{

0; Bθ; Bζ
}

, (7)

where Bθ = (B ·∇)θ and Bζ = (B ·∇)ζ are the contravariant
poloidal and toroidal components of the magnetic field, re-
spectively. From Eq. (3), allowing for Eq. (7), we obtain

1√
g

∂
∂θ

(√
gBθ

)
+

1√
g

∂
∂ζ

(√
gBζ

)
= 0, (8)

where g is the metric tensor determinant (see below). This
equation can be satisfied if we take (Shafranov & Soloviev
1969) [11]

Bθ =− 1
2π√g

∂H(r,θ,ζ)
∂ζ

, Bζ =
1

2π√g
∂H(r,θ,ζ)

∂θ
(9)

(r is some radial coordinate) and

H(r,θ,ζ) = A1(r)θ+A2(r)ζ+ H̃(r,θ,ζ), (10)
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where H̃(r,θ,ζ) is some periodic function of the angles θ
and ζ, so as Bθ and Bζ. Using Eqs. (5), (6), and (10)
and calculating the incremental toroidal and poloidal mag-
netic fluxes between neighbor magnetic surfaces r = const and
r +dr = const, we find

dφ =
1

2π

Z
(B ·∇)ζdr = A1(r)dr, (11)

dχ =
1

2π

Z
(B ·∇)θdr =−A2(r)dr, (12)

and

A1(r) = φ′, A2(r) =−χ′, (13)

where ”′” designates the radial derivative. As a result, we have

B =
{

Br; Bθ; Bζ
}

=
{

0;
χ′

2π√g
;

φ′

2π√g

}
.

(14)
The definition of the safety factor q, which plays an important
role in a plasma stability theory, is

q =
Bζ

Bθ =
φ′

χ′
(15)

in any coordinate system. We see from this equation that q de-
pends only on the radial coordinate r, i.e. in the chosen coordi-
nate system, the magnetic field lines are straight; the magnetic
field lines do not depend on the poloidal and toroidal angles on
a magnetic surface, what simplifies significantly calculations.

Now, we can find the metric and the coordinate dependence
of macroscopic plasma values in the coordinate system with
straight magnetic field lines.

III. COORDINATE SYSTEM

At first, we take the orthogonal coordinates ρ′, ω′ and ζ
(where ρ′ is the ”radial” coordinate, ω′ and ζ are the poloidal
and toroidal angles respectively) to be attached to some points
on the magnetic surfaces and to the geometric center of their
transverse cross-section.

The length element in this orthogonal coordinate system is

dl2 = dρ′2 +ρ′2dω′2 +
(
R−ρ′ cosω′

)2 dζ2. (16)

Here, R is the torus major radius. The next step is the encir-
cling of the magnetic surfaces by means of the transformation

ρcosω = exp(η/2)ρ′ cosω′, ρsinω = exp(−η/2)ρ′ sinω′,
(17)

where ρ =
√

l1l2 is the new ”radial” coordinate, η = ln(l2/l1),
l1 and l2 are the semi minor and major axes of the torus ellip-
tical cross-section, respectively, ω is the new poloidal angle.
We suppose also that for all magnetic surfaces the ratio l2/l1
is the same. Although, as it will be shown below, the ellip-
ticity usually does not give a substantial contributions to the

final expressions for the transport fluxes, we believe that it
is useful to take the ellipticity into account methodically for
future investigations in this direction, for cases, where the el-
lipticity may be substantial. Then, we focus on the geometric
center of the solar loop cross-section and straighten the mag-
netic line of force by means of small variations of the poloidal
angle with the help of the parameter δ(θ,r), introduced by the
expressions

ρcosω = r cos[θ+δ(θ,r)]+∆(r) ,

ρsinω = r sin[θ+δ(θ,r)], (18)

where θ is the final poloidal angle, r is the final radial coor-
dinate, ∆(r) is the Shafranov displacement of the geometric
center of the magnetic surfaces, when the plasma cylinder is
transformed into torus, see below.

We find the straightening parameter δ(θ,r), from the con-
dition of vanishing radial currents ( jr = 0) , taking into ac-
count the expression for the magnetic field B, with the force
straight line Eq. (14), supposing the torus to be axisymmetric
(∂/∂ζ = 0). We make this approximation as the first step to
solve the problem under investigation. This approximation is
valid provided that r ¿ R, as in this case, for example,

∂p
∂r
À 1

R
∂p
∂ζ

and we can omit terms with the longitudinal derivatives in the
plasma dynamic equations. Of course, this model needs fur-
ther investigation, taking into account the longitudinal (along
torus) derivatives of macroscopic values in the dynamic equa-
tions.

IV. METRIC

To find the metric tensor components gik and their determi-
nant, we substitute Eqs. (17), (18) into Eq. (16) to obtain

dl2 = gikdxidxk = g11dr2 +2g12drdθ+g22dθ2 +g33dζ2,
(19)

where x1 = r,x2 = θ,x3 = ζ. Then, from the contravariant ra-
dial component of the Maxwell equation (neglecting the dis-
placement current and assuming jr = 0), we have

∇×B =
4π
c

j, (20)

namely

∂Bζ

∂θ
= 0, Bζ = g33Bζ, (21)

where Bζ is the ζ-covariant component of the magnetic field.
Using Eq. (14) we find that

∂
∂θ

(
g33√

g

)
= 0, (22)
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where, within a ε∗2 accuracy, it follows from Eqs. (16)-(19)
that

√
g = rR

(
1− ε∗ cosθ−∆′ cosθ+

∂δ
∂θ

)
(23)

and

g33 = R2 (1−2ε∗ cosθ) . (24)

As a result, we derive from Eqs. (22)-(24) that the parame-
ter δ is equal to

δ =−sinθ
[
ε∗+∆′ exp(η/2)

]
(25)

and the metric tensor components and their determinant be-
come

g11 = coshη− sinhηcos2θ+2∆′ exp(−η/2)cosθ, (26)

g22 = r2 (coshη+ sinhηcos2θ)

[
1−2cosθ

(
ε∗+∆′ exp(η/2)

)]
, (27)

g12 = g21 = r{sinhηsin2θ− sinθ [coshη(ε∗+ (28)

+r∆′′ exp(η/2)
)
+∆′ exp(−η/2)

]}
,

g33 = R2 (1−2ε∗ cosθ) ,
√

g = rR(1−2ε∗ cosθ) , (29)

where the parameter ε∗ is ε∗ = εexp(−η/2) ,ε = r/R ¿ 1,
ε∗¿ 1.

Now, using Eqs. (14), (26) - (29), we can find the angular
dependence of the magnetic field

B =
√

gikBiBk, (30)

which is

B = Bs

(
1+ ε∗ cosθ+

Aε∗

2
cos2θ

)
, (31)

where

A =
ε∗ [exp(2η)−1]

q2 , Bs =
φ′

2πr
.

We shall also need a component of the Cristoffel’s symbol

Γi
kl = gimΓm,kl , Γm,kl =

1
2

(
∂gmk

∂xl +
∂gml

∂xk −
∂gkl

∂xm

)
,

(32)
namely,

Γζ
ζθ = ε∗ sinθ, (33)

where xi = (r,θ,ζ) .

The Shafranov displacement parameter ∆ can be found
from Eq. (1) (the equilibrium equation). In the zero approx-
imation to the parameter ε∗, we have the usual equilibrium
equation

d
dr

(
8πp+B2) =−2B2

θp

r
, (34)

where Bθp is the physical θ - component of the magnetic field.
In the next approximation on the parameter ε∗, we have

d
dr

[
rB2

θp
(
∆′+ ε∗

)− rε∗B2
θp

]
= ε∗

(
8πr

d p
dr
−B2

θp

)
. (35)

To find the parameter ∆, it is necessary to know the radial
distribution of the plasma pressure and current. In laboratory
toroidal devices, they usually have the parabolic radial depen-
dence.

V. PARTICLE TRANSPORT

The particle fluxes Γn can be found by integrating the elec-
tron continuity equation

∂n
∂t

=−∇ · (nVe) (36)

over the plasma volume, enclosed by a given magnetic sur-
face, and using the Gauss theorem

Γn =< nV r
e >, (37)

where n is the plasma density, Ve = Ve⊥+Ve‖h is the electron
macroscopic velocity and

< ... >=
Z 2π

0
(...)

√
gdθdζ/

Z 2π

0

√
gdθdζ.

We find the contravariant radial component of the electron
velocity using the electron motion equation [3]

Men
deVe

dt
=−∇pe−∇ · π̂e + een

(
E+

1
c

[Ve×B]
)

+Re,

(38)
where Me, pe, π̂e are the electron mass, pressure, and viscosity,
respectively, and

de

dt
=

∂
∂t

+Ve ·∇, Re = Ru +RT .

The electron-ion friction force is equal to

Ru =−een
(

j⊥
σ⊥

+
j‖
σ‖

)
(39)

where

j⊥ = [h× [j×h]] , j‖ = h(h · j)
are the plasma transverse and longitudinal currents,

σ⊥ =
e2

enτe

Me
, σ‖ = 1.96σ⊥
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are the plasma transverse and longitudinal electrical conduc-
tivity, respectively, and the thermal force term is given by the
expression [3]

RT =−0.71n∇‖Te +
3
2

nTe

ωBeτe
[h×∇Te] , h =

B
B

. (40)

Here, ωBe = eeB/Mec is the electron cyclotron frequency, τe
is the electron-ion collision characteristic time, and Te is the
electron temperature.

The transverse current is found by summing the ion and
electron motion equations

j⊥ =
c

B0

[
h×

(
∇p+∇ ·π+Min

diVi

dt

)]
, (41)

where we have neglected the electron inertia.
Let us find the ζ - covariant component of Eqs. (38) and

(39), neglecting the small terms of ε∗2 and assuming that
∂/∂ζ = 0

ee
√

g
c

V r
e Bθ− ee

σ⊥
(j⊥)ζ−

ee

σ‖

(
j‖

)
ζ

−3
2

√
gTe

ωBeτe

Bθ

B
(∇Te)

r−0.71
(
∇‖Te

)
ζ = 0. (42)

From Eq. (41), we have

(j⊥)ζ =
c
√

gBθ

B2 (∇p)r =
c
√

gBθg11

B2
∂p
∂r

(43)

and then

(
j‖

)
ζ =

(
j‖h

)
ζ =

j‖g33Bζ

B
, (44)

(
∇‖Te

)
ζ = [h(h ·∇)Te]ζ =

g33BζBθ

B
∂Te

∂θ
, (45)

where, as it follows from Eqs. (26) - (28),

g11 =
g22

g11g22−g2
12

= coshη+ sinhηcos2θ+ ε∗ sinhηcosθ.

(46)
Using Eqs. (42) - (45), we obtain

V r
e =− c2g11

σ⊥B2
s

(
∂p
∂r
− 3

2
n

∂Te

∂r

)
+

cq j‖
σ‖εBs

+
0.71c
eerBs

∂Te

∂θ
. (47)

Here we have omitted terms which disappear after the surface
averaging, Eq. (37), for example, terms of the kind sinθcosθ.

In Eq. (47), the first term is the usual classical one. The
second term [12] and the thermal force term [13] are neoclas-
sical, taking into account the complicated topology of mag-
netic field, depending on the poloidal angle θ. The oscillating
with the angle θ longitudinal current j‖ can be derived from
the current continuity equation ∇ · j = 0

hθ ∂ j‖
∂θ

=−∇ · j⊥, (48)

as j = j⊥+ j‖, j‖ = h j‖, and

∇ · j‖ =
1√
g

∂
∂θ

(√
g j‖Bθ

B

)
≈ hθ ∂ j‖

∂θ
, (49)

hθ is the θ-contravariant component of the unit vector h. We
have taken into account the plasma quasineutrality (ne ≈ ni ≈
n), when we obtained the current continuity Eq. (48), sum-
ming the electron and ion continuity equations (Eq. (36)).

As it follows from Eq. (41), we have

∇ · c
B

[
h×Min

diVi

dt

]
≈−cMi√

g
∂
∂r

[
g33Bζn((Vi ·∇)Vi)θ

B2

]
.

(50)
and from Eq. (33),

(
V 2
‖ ≈ g22V 2

θ +g33V 2
ζ ≈VζV ζ

)

((Vi ·∇)Vi)θ ≈V ζ∇ζVθ ≈−VζV ζΓζ
ζθ ≈−V 2

‖ ε∗ sinθ, (51)

as V θ ¿V ζ, and

∇ζVθ =
∂Vθ
∂ζ

−VkΓk
ζθ.

Using Eqs. (41), (48) - (51), we obtain

∂ j‖
∂θ

=
cqg33

B
√

g
∂p
∂r

∂ lnB
∂θ

− chζ

εB
∂
∂r

(
MinV 2

‖ ε∗
)

sinθ, (52)

where Eq. (14) was used, and V‖ is the plasma longitudinal
flow velocity. Using Eq. (14), we obtain

j‖ =
cq
Bs

ε∗

ε

[
2
(

cosθ+
A
4

cos2θ
)

∂p
∂r

+ αp
(

1
r

+κn +2κV

)
cosθ

]
, (53)

where

κV =
∂ lnV‖

∂r
, α =

V 2
‖

c2
s
, c2

s =
Ti +Te

Mi
.

For a circular plasma (A = 0) and if the parameter α is ne-
glected, the expression for j‖, Eq. (53), reduces is to the well-
known Pfirsch and Schlüter current [12].

To derive an expression for the term ∂Te/∂θ, we should pro-
ceed from the longitudinal heat flux expression [3]

q‖e =−3.16σ⊥Te

e2
eqR

∂Te

∂θ
+

0.71Te

ee
j‖. (54)

The longitudinal heat flux can be found from the tempera-
ture evolution equation [3]. In our case it is given by

hθ ∂q‖e

∂θ
=−∇ ·q⊥e + peV θ

e
∂n
∂θ

, (55)
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where V θ
e is the contravariant poloidal component of the elec-

tron macroscopic velocity and

q⊥e =
5
2

pe

ωBeMe
[h×∇Te] . (56)

Thus, in the case of small βp, we can omit the radial deriv-
atives of the magnetic field B. This is possible to do, as for
nonoscillating terms with the angle θ under condition Bθp¿B
we obtain from Eq. (34)

κB ≈ βp

2
κp, κB =

∂ lnBs

∂r
, κp =

∂ ln p
∂r

.

For terms that oscillate with the angle θ, the radial derivative
of the magnetic field, Eq. (31), gives terms that vanish with
the surface average and we obtain

∇ ·q⊥e =
5
2

peUTe

r
∂

∂θ
ln

n
B2 , UTe =

1
MeωBe

∂Te

∂r
. (57)

We can now write down the expression for the particle
fluxes, Eq. (37)

Γne =−c2ncoshη
σ⊥B2

(
∂p
∂r
− 3

2
n

∂Te

∂r

)
+ (58)

+
1

2πrR

Z 2π

0
dθ

(
ncq

√
g j‖

εσ‖Bs
+

0.71cn
√

g
reeBs

∂Te

∂θ

)
,

valid up to order ε∗2. From Eqs.(47), (54) - (57), we see that
to derive the particle fluxes we need to find the poloidal de-
pendence of the particle density, n = n(θ), and the poloidal
particle velocity V θ

j . This is, by itself, a separate problem,
that should be solved by taking into account the ambipolarity
particle fluxes, as will be done in section 7.

VI. ION HEAT FLUX

As in the previous part, we derive the ion heat flux, ΓTi,
integrating the temperature evolution equation [3]

3
2

n
diTi

dt
+ pi∇ ·Vi =−∇ ·qi (59)

over the plasma volume

ΓTi =< qr
i > . (60)

In Eq. (59) we neglect an ion viscosity and an ion-electron
heat exchange. The heat flux radial contravariant component
is

qr
i =−2piνig11

Miω2
Bi

∂Ti

∂r
− 5

2
pig33hζ

MiωBi
√

g
∂Ti

∂θ
. (61)

The second term in this expression is neoclassical [14]. Eq.
(61) follows from the expression [3]

qi⊥ =− 2pi

Miω2
Biτi

∇⊥Ti +
5
2

pi

MiωBi
[h×∇Ti] . (62)

The poloidal dependence of the ion temperature can be found
from Eqs. (59), allowing for the continuity equation, Eq. (36),

hθ ∂q‖i

∂θ
=−∇ ·q⊥i + piV θ

i
∂n
∂θ

(63)

and

q‖i =− 3.9pi

νiMiqR
∂Ti

∂θ
, (64)

where

∇ ·q⊥i =
5
2

piUTe

r
∂

∂θ
ln

n
B2 , UTi =

1
MiωBi

∂Ti

∂r
. (65)

After integration over the angle θ, we obtain from Eq. (30)

ΓTi =−2nTiνi coshη
Miω2

Bi

∂Ti

∂r
− 5cBs

4πεeiR

Z 2π

0
dθ

pi

B2
∂Ti

∂θ
. (66)

¿From this equation it also follows that the value for the heat
flux depends explicitly on the ion poloidal velocity V θ

i .

VII. AMBIPOLARITY CONDITION

The ambipolarity condition follows from the current conti-
nuity equation ∇ · j = 0, i.e.,

< jr >= 0. (67)

It can be found from Eq. (41) that

jr√g =
cg33Bζ

B2

{
−

(
∇p+∇ · π̂+Min

dVi

dt

)

θ
+ (68)

+
g22

qg33

(
∇ · π̂+Min

dVi

dt

)

ζ

}

We take ∇ · π̂ in the form [15]

∇ · π̂ =
3
2

{
[h(∇ ·h)+(h ·∇)h]π‖+h(h ·∇)π‖−

1
3

∇π‖
}

.

(69)
Using the relations (taking into account that βp ¿ 1)

(h ·∇)h =− [h× [∇×h]]≈−
[

h×
[

∇
1
B
×B

]]
= ∇⊥ lnB

(70)
and

h(∇ ·h) =−h(h ·∇) lnB,

we find the components of this vector

(∇ · π̂)θ =
3
2

π‖
∂

∂θ
lnB− 1

2
∂π‖
∂θ

, (71)

(∇ · π̂)ζ =
3
2

g33Bζ2

qB2

(
−2π‖

∂
∂θ

lnB+
∂π‖
∂θ

)
. (72)
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As follows from Eqs. (20), (41), we have used here the con-
dition that ∇×B is proportional to the parameter βp which is
small in solar loops. Using Eq. (33), we obtain

Min
(

dVi

dt

)

θ
=−MinV 2

‖ ε∗ sinθ. (73)

The value ∂p/∂θ can be derived from the longitudinal com-
ponent of the summed electron and ion equation of motion,
Eq. (38),

Min
diVi

dt
=−∇p−∇ · π̂i +

1
c

[j×B] . (74)

Multiplying Eq. (74) by h and using Eq. (71) - (73), we find

∂p
∂θ

=−∂π‖
∂θ

+MinV 2
‖ ε∗ sinθ, (75)

where we have omitted the electron inertia and viscosity.

Neglecting the poloidal angle dependence of the electron
temperature, we get from Eq. (75)

ñ =−nT̃i +π‖
Ti +Te

−αε∗ncosθ, (76)

where ñ and T̃i are the oscillating, with the angle θ, parts of
the density and temperature.

Now the ambipolarity condition, Eq. (67), has the form

Z 2π

0
dθ

[
3
2

π‖
(

∂
∂θ

lnB+ ε∗Asin2θ
)
−αε∗

(
nT̃i +π‖

)
sinθ

]
= 0 (77)

To obtain this result we have used Eqs. (68), (71) - (73) and
we omitted the last two terms inside brackets in Eq. (68).

As one can see from Eq. (77), we need to calculate the

perturbed temperature and viscosity values. The temperature
T̃i can be obtained from Eqs. (63) - (65), (76)

T̃i =−νiMiq2R
3.91

ε∗

ε

{
5UTi

[(
1+

α
2

)
sinθ+

A
8

sin2θ
]
−αUθi sinθ

}
, (78)

where Uθi = rV θ
i .

We take the parallel viscosity tensor, π‖, in the changed
form [16]-[18], as for the problem under consideration, it is
important to mention it, the viscosity tensor depends on the
thermal fluxes qi. Using the usual viscosity expression [3], we
are led to the conclusion that the equilibrium poloidal velocity
of plasma rotation is zero. This problem was discussed in

several occasions [19], [17]

π‖ =−2
3

pi

νi
(0.96β−0.59γ) . (79)

Here

β = 3
{

h(h ·∇)Vi +
2

5pi
h(h ·∇)qi− 1

3

(
∇ ·Vi +

2
5pi

∇ ·qi

)}
, (80)

γ =−6
5

{
h(h ·∇)(qi−q∗i )+

1
3

(
Mi

Ti
Fi ·qi−∇ · (qi−q∗i )

)}
, (81)

Fi = ∇pi/Min, and q∗i =−0.27q‖i. To find the ion perturbed velocities in Eqs. (80), (81), oscil-
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lating with angle θ, we proceed from the frozen-in condition

[∇× [Vi×B]] = 0 (82)

and the continuity Eq. (36). From the ζ-covariant component
of Eq. (82), we derive

∂
∂θ

[√
g
(

V θBζ−V ζBθ
)]

= 0 (83)

and, after using Eqs. (14), (15)

Ṽ ζ
i =−qṼ θ

i . (84)

¿From the continuity Eq. (36), which we rewrite in the form

∂
∂θ

(
n
√

gV θ
i

)
= 0, (85)

we have,

∂Ṽ θ
i

∂θ
=−Uθi

r
∂

∂θ
ln(n

√
g) . (86)

Here, ”Ṽ ” designates the parts that oscillate with the angle θ.
Now, we use the identities

h(h ·∇)Vi = (h ·∇)Vi‖−Vi (h ·∇)h = (h ·∇)Vi‖−Vi ·∇⊥ lnB, (87)

h(h ·∇)qi = (h ·∇)qi‖−qi ·∇⊥ lnB, Ṽi‖ ≈ g22hθṼ θ +g33hζṼ ζ.

Further, using Eqs. (63) - (65), (76), (78) and (84) - (86), we find

β =
3
r

{
−Uθi

∂
∂θ

ln
(√

gn0.4B
)
+UTi

∂
∂θ

ln
B
n

}
, (88)

γ =− 6
5r

{
38
45

Uθi
∂

∂θ
lnn+UTi

(
61
18

∂
∂θ

lnB− 19
9

∂
∂θ

lnn
)}

. (89)

Then, we finally derive the ambipolarity condition, using
Eqs. (31), (78), (88) and (89)

0.96
(

3
2

+α
)
{Uθi (1+0.19α)+UTi (1.83+1.52α)}+

(90)

+
bα
3

{
αUθi−5UTi

(
1+

α
2

)}
+

3
8

0.96A2 (Uθi−1.83UTi)= 0,

where

b =
3
2

Miν2
i q2R2

3.91Ti
(91)

is the collisionality parameter, which for the collisional

plasma is much greater than one.
For circular tokamaks, Eq. (90) was obtained earlier [17].

For this case, it is necessary to put the elliptic parameter A to
be equal to zero. This expression gives us the possibility to
find the ion ambipolar poloidal velocity Uθi.

VIII. FLUXES ANALYSIS

Now, we can derive the final expressions for the fluxes and
analyze them. Let us rewrite Eq. (90) in the form

Uθi = kUTi, (92)
where

k =−
[

0.96
(

3
2

+α
)

(1.83+1.52α)− 5
3

bα
(

1+
α
2

)
− (93)

−3
8
·0.96 ·1.83A2

][
0.96

(
3
2

+α
)

(1+0.19α)+
5
3

bα2 +
3
8

0.96A2
]−1

.

We see, from Eq. (92), that it has the usual form for a colli-
sional plasma [19] and for a weakly collisional plasma [20].

When the longitudinal fluxes and the ellipticity are absent, i.e.
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the parameters α and A are equal to zero, we have the well
known result [17]

Uθi =−1.83UTi, (94)

which differs only slightly from the result of Hazeltine [19]
(where, instead of the 1.83 value, the 2.1 value stands), ( as
it depends on the method of the calculation). If the parameter
α is to be allowed, we have the former result [17], where the
property of the k = k(α) function has been studied. Now, we
have taken into account the ellipticity in Eq. (93). In the well-

known thermonuclear facilities, the value A is around one. In
this case, the ellipticity contribution is about 0.25 of the nu-
merical coefficients in Eq. (93). But, it can be supposed that
in the solar loops, in some cases, the parameter A can be larger
than one and the contribution of the ellipticity into k is com-
parable with the other coefficients.

Even though the poloidal velocity Uθi is interesting by it-
self, it is also important to know it for the evaluation of the
transport fluxes in the plasma, let us show it. After using Eqs.
(53) - (58), we obtain the expression for the particle fluxes

Γne = Γni =− c2n
σ⊥B2

{
coshη

(
p′− 3

2
nT ′e

)
+ (95)

+q2 (2+α)
ε∗2

ε2

[
σ⊥
σ‖

(
1+

0.712

3.16
σ‖
σ⊥

)(
p′+

αp
2

(
1
r

+κn +2κV

))
−

−5 ·0.71
2 ·3.16

nT ′e

(
1+

α
2

(
1− 2

5
Uθe

UTe

))]}
.

This equation includes previously received results, when the
ellipticity and the particle longitudinal velocities are supposed
to be small ( α = 0 and coshη = 1 ) [21] or the α para-
meter is allowed [10]. We see from Eq. (95), that if one
takes into account only the values coshη and ε∗2/ε2, the
role of the neoclassical effects is diminishing (as the factor
l1/l2) and of the classical ones is increasing (as the factor
coshη =

(
l2
2 + l2

1
)
/2l1l2 ). But we should take into account

the ratio Uθe/UTe additionally, where

Uθe = Uθi +
ε
q

j‖
een

+Up, Up =
p′

MenωBe
. (96)

The ellipticity can also affect the particle fluxes through the
dependence Uθe on Uθi.

Ion heat flux can be derived from Eqs. (63) - (66)

ΓTi =−2nTiνi

Miω2
Bi

T ′i

{
coshη+1.6q2 ε∗2

ε2

[(
1+

α
2

)
× (97)

×
(

1+
α
2

(
1− 2

5
Uθi

UTi

))
+

A2

16

]}
.

We obtain the previously known results, if we put here η =
α = A = 0 [14] or η = A = 0 [8]. [9]. The ellipticity included
in Eq. (97) increases the role of the classical effects and di-
minishes the role of the neoclassical one, as in the collisional
case, if only the η and ε∗ effects are taken into account. The
toroidal flow (the parameter α) can also decrease the role of
the neoclassical term in the ion radial heat flux in some range
of the values of the collisional parameter b [8], [9].

IX. SOME EVALUATIONS

Now, we make some evaluations. There are some kinds
of the solar loops that exist on the Sun [1], [2]. The solar
loop parameters can be found in a wide range of values: the
lengths L are from 5×103 km to 7×105 km, the temperatures
T are from 104K to 4× 107K, the densities n between 2×
1014m−3 and 1018m−3, the toroidal magnetic fields Bζp are
between some Gauss to some kG and poloidal magnetic fields
Bθp reach 10 G. Siphonic flow velocities can reach 200 km/s,
but they are usually about 20-30 km/s, i.e. they are smaller or
the same order of magnitude of the plasma sound speed, Eq.
(53).

With these parameters, the collision frequency of the k-kind
particles, νk, satisfy the condition Tk/MkqR < νk < ωBk; the
particle mean free path is usually smaller than the loop cross-
section radius r; the parameter βp = 8πp/B2 satisfies the con-
dition βp ¿ 1. Then, we can use the collisional neoclassical
model [12] for the transverse transport calculation.

The pressure and temperature in the core of a loop are al-
ways lower than in the surrounding sheath, but they can be
either larger or smaller than the ambient coronal values. We
see from Eqs. (95), (97) that the particle and heat fluxes are
on the ”classical” level, maybe within a factor of an order of
the magnitude if the parameters α and A satisfy the reasonable
conditions α . 1 and A . 1. They can be essential when the
temperature and density profiles are sharp, e.g. on the border
between the sheath and the core of the solar loops.

The plasma poloidal velocity, Eqs. (92), (93), can reach
large values in the solar loops with the temperature sharpened
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profile. For example, for the temperature T = 106 − 107K,
the magnetic field B = 1− 10G, the radial gradient ∂T/∂r ≈
T/∆r, where ∆r ≈ 1km, we have

Uθi ≥ 10−106cm/s = 10km/s, (98)

i.e.. it can be on the level of the siphonic flow and can be mea-
sured experimentally. This measuring gives us the possibil-
ity to have additional connections between the plasma macro-
scopic parameters, that is very important for the solar loop
diagnostic. For example, at the some siphonic velocity and el-
lipticity values, the poloidal velocity Eqs. (92), (93) changes
sign, and can be also measured.

X. CONCLUSION

The general theory of the neoclassical transport in toroidal
configurations, well-developed in connection with the ther-
monuclear investigations, is applied to explain the transport
processes in some kinds of toroidal solar loops. It is supposed,
that they have the noncircular cross-section, and there are the
particles longitudinal flows along the solar loops. The plasma
is also supposed to be collisional and with two components,
ions and electrons.

The poloidal velocity, radial fluxes and the ion heat flux
of the particles were derived in this article. The dependence
of these values on the ellipticity parameters η = ln(l2/l1)
and A = ε∗ (exp(2η)−1)/q2, where l2 and l1 are the large
and the minor half-axis of the ellipse, and on the parameter

α = V 2
‖ /c2

s , connected with the particle longitudinal (along
the magnetic field lines) velocities V‖ and the sound velocity
cs, was found.

It is shown that, in the toroidal configurations, with the el-
liptic transverse cross-section in the plasma transverse trans-
port processes, the role of the classical effects increases as
coshη and of the neoclassical effects decreases as exp(−η),
at a not too large parameter A. Although the ellipticity usu-
ally does not give a substantial contribution to the expres-
sions for the transport fluxes, we believe that it is useful to
take the ellipticity into account methodically for future in-
vestigations. It is noted that, as in the circular cross-section
tokamak, the neoclassical ion heat flux decreased at some
range of the parameter α and the collisional parameter b =
3Miν2

i q2R2/(2 ·3.91Ti).
It is also confirmed that for these configurations the formula

for the ion poloidal velocity Uθi = kUTi is the same as the one
for a circular tokamak. It is possible that the poloidal velocity
can be measured in the solar loops by means of the Doppler
shift.

We suppose that such the approach (together with others
theories), in spite of the fundamental differences between so-
lar loops and thermonuclear facilities, can help to explain the
transport processes in solar loops, which form is similar to
toroidal configurations.
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