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Influence Functional Approach to Decoherence During Inflation
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We show how the quantum to classical transition of the cosmological fluctuations produced during inflation can
be described by means of the influence functional and the master equation. We split the inflaton field into the
system-field (long-wavelength modes), and the environment, represented by its own short-wavelength modes.
We compute the decoherence times for the system-field modes and compare them with the other time scales of
the model.

1 Introduction
The emergence of classical physics from quantum behav-
iour is important for several physical phenomena in the early
Universe. This is beyond the fundamental requirement that
only after the Planck time can the metric of the Universe be
assumed to be classical. For example, the inflationary era is
assumed to have been induced by scalar inflaton fields, with
simple potentials [1]. Such fields are typically assumed to
have classical behaviour, although in principle a full quan-
tum description should be used. The origin of large scale
structure in the Universe can be traced back to quantum fluc-
tuations that, after crossing the horizon, were frozen and be-
came classical, stochastic, inhomogeneities [2].

It is generally assumed that several phase transitions
have occurred during the expansion of the Universe [3]. As
in the case for the inflaton fields, the (scalar) order parame-
ter fields that describe these transitions are described clas-
sically. However, the description of early universe phase
transitions from first principles is intrinsically quantum me-
chanical [4]. As a specific application [5] of the previous
point, the very notion of topological defects (e.g. strings
and monopoles) that characterize the domain structure af-
ter a finite-time transition, and whose presence has conse-
quences for the early universe, is based on this assumption
of classical behaviour for the order parameter [6], as it dis-
tributes itself between the several degenerate ground states
of the ordered system.

In previous publications, we analysed the emergence of
a classical order parameter during a second order phase tran-
sition and the role of decoherence in the process of topolog-
ical defect formation [7, 8, 9, 10].

In the present paper our concern is directly related with
the first point above, the quantum to classical transition of
the inflaton. Any approach must take into account both the
quantum nature of the scalar field and the non-equilibrium
aspects of the process [11]. The problem of the quantum
to classical transition in the context of inflationary models
was first addressed by Guth and Pi [12]. In that work, the

authors used an inverted harmonic oscillator as a toy model
to describe the early time evolution of the inflaton, starting
from a Gaussian quantum state centered on the maximum
of the potential. They subsequently showed that, accord-
ing to Schrödinger’s equation, the initial wave packet main-
tains its Gaussian shape (due to the linearity of the model).
Since the wave function is Gaussian, the Wigner function
is positive for all times. Moreover, it peaks on the classi-
cal trajectories in phase space as the wave function spreads.
The Wigner function can then be interpreted as a classi-
cal probability distribution for coordinates and momenta,
showing sharp classical correlations at long times. In other
words, the initial Gaussian state becomes highly squeezed
and indistinguishable from a classical stochastic process. In
this sense, one recovers a classical evolution of the inflaton
rolling down the hill.

A similar approach has been used by many authors to
describe the appearance of classical inhomogeneities from
quantum fluctuations in the inflationary era [13]. Indeed,
the Fourier modes of a massless free field in an expanding
universe satisfy the linear equation

φ′′k + (k2 − a′′

a
)φk = 0. (1)

For sufficiently long-wavelengths (k2 ¿ a′′/a), this equa-
tion describes an unstable oscillator. If one considers an ini-
tial Gaussian wave function, it will remain Gaussian for all
times, and it will spread with time. As with the toy model of
Guth and Pi, one can show that classical correlations do ap-
pear, and that the Wigner function can again be interpreted
as a classical probability distribution in phase space. (It is
interesting to note that a similar mechanism can be invoked
to explain the origin of a classical, cosmological magnetic
field from amplification of quantum fluctuations.)

However, classical correlations are only one aspect of
classical behaviour. It was subsequently recognized that,
in order to have a complete classical limit, the role of the
environment is crucial, since its interaction with the sys-
tem distinguishes the field basis as the pointer basis [14].
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(We are reminded that, even for the fundamental problem of
the space-time metric becoming classical, simple arguments
based on minisuperspace models suggest that the classical
treatment is only correct because of the interaction of the
metric with other quantum degrees of freedom [15].)

While these linear instabilities cited above characterise
free fields, the approach fails when interactions are taken
into account. Indeed, as shown again in simple quantum me-
chanical models (e.g. the anharmonic inverted oscillator),
an initially Gaussian wave function becomes non-Gaussian
when evolved numerically with the Schrödinger equation.
The Wigner function now develops negative parts, and its in-
terpretation as a classical probability breaks down [9]. One
can always force the Gaussianity of the wave function by us-
ing a Gaussian variational wave function as an approximate
solution of the Schrödinger equation, but this approximation
deviates significantly from the exact solution as the wave
function probes the non-linearities of the potential [9, 16].

When interactions are taken into account, classical be-
haviour is recovered only for ”open systems”, in which the
unobservable degrees of freedom interact with their environ-
ment. When this interaction produces both a diagonalization
of the reduced density matrix and a positive Wigner func-
tion, the quantum to classical transition is completed [17].

In Ref.[9] we have considered an anharmonic inverted
oscillator coupled to a high temperature environment. We
showed that it becomes classical very quickly, even before
the wave function probes the non-linearities of the potential.
Being an early time event, the quantum to classical transition
can now be studied perturbatively. In general, recoherence
effects are not expected [18]. Taking these facts into ac-
count, we have extended the approach to field theory models
[7, 8]. In field theory, one is usually interested in the long-
wavelengths of the order parameter. Even the early universe
is replete with fields of all sorts which comprise a rich envi-
ronment, in the inflationary example, we considered a model
in which the system-field interacts with the environment-
field, including only its own short-wavelengths. This is
enough during inflation. Assuming weak self-coupling con-
stant (inflaton potential is flat) we have shown that deco-
herence is a short time event, shorter than the time tend,
which is essentially the time by which different modes in
the system sector cross the horizon. As a result, perturba-
tive calculations are justified[8]. Subsequent dynamics can
be described by a stochastic Langevin equation, the details
of which are only known for early times [19].

In our approach, the quantum to classical transition is
defined by the diagonalization of the reduced density matrix.
In phase transitions the separation between long and short-
wavelengths is determined by their stability, which depends
on the parameters of the potential. During Inflation, this sep-
aration is set by the existence of the Hubble radius. Modes
cross the aparent horizon during their evolution, and they
are usually treated as classical. The main mativation of this
talk is to present a formal way to understand this statement
within the open quatum sytem approach. In the last sense,
decoherence is the critical ingredient if we are to dynami-
cally demonstrate the quantum-to-classical transition of the
open system.

The paper is organized as follows. In Section 2 we in-
troduce our model. This is a theory containing a real system

field φ, massless and minimally coupled to de Sitter back-
ground. We compute the influence functional by integrating
out the environmental sector of the field, composed by the
short-wavelength modes. Section 3 is dedicated to review-
ing the evaluation of the master equation and the diffusion
coefficients which are relevant in order to study decoher-
ence. In Section 4 we evaluate upper bounds on the de-
coherence times. As we will see, decoherence takes place
before the end of the inflationary period. Section 5 contains
our final remarks.

2 The Influence Functional and the
Density Matrix

Let us consider a massless quantum scalar field, minimally
coupled to a de Sitter spacetime ds2 = a(η)[dη2 − d~x2]
(where η is the conformal time dη = dt/a(t)), with a quar-
tic self-interaction. The classical action is given by

S[φ] =
∫

d4x a4(η)

[
φ′2

2a2(η)
− ∇φ2

2a2(η)
− λφ4

]
, (2)

where a(η) = −1/(Hη) and φ′ = dφ/dη (a(ηi) = 1
[ηi = −H−1], and H is the Hubble radius). Let us make
a system-environment field splitting

φ = φ< + φ>, (3)

where the system field contains the modes with wavelengths
longer than the critical value Λ−1 = 2π/λc, while the
bath field contains wavelengths shorter than Λ−1. As we
set a(ηi) = 1, a physical length λphys = a(η)λ coincides
with the corresponding comoving length at the initial time.
Therefore, the splitting between system and environment
gives a system sector constituted by all the modes with phys-
ical wavelengths shorter than the critical length λc at the ini-
tial time ηi.

After splitting, the total action (2) can be written as

S[φ] = S0[φ<] + S0[φ>] + Sint[φ<, φ>], (4)

where S0 denotes the free field action and the interaction
term is given by

Sint[φ<, φ>] = −λ

∫
d4x a4(η)

{
φ4

<(x) + φ4
>(x)

+ 6φ2
<(x)φ2

>(x) + 4φ3
<(x)φ>(x) + 4φ<(x)φ3

>(x)
}

.

(5)

The total density matrix (for the system and bath fields)
is defined by

ρ[φ+
<, φ+

>, φ−<, φ−>, t] = 〈φ+
<φ+

>|ρ̂|φ−<φ−>〉, (6)

where |φ±<〉 and |φ±>〉 are the eigenstates of the field opera-
tors φ̂< and φ̂>, respectively. For simplicity, we will assume
that the interaction is turned on at the initial time ηi and that,
at this time, the system and the environment are not corre-
lated (we ignore, for the moment, the physical consequences
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of such a choice, it has been disussed in [8]). Therefore, the
total density matrix can be written as the product of the den-
sity matrix operator for the system and for the bath

ρ̂[ηi] = ρ̂<[ηi]ρ̂>[ηi]. (7)

We will further assume that the initial state of the environ-
ment is the vacuum.

We are interested in the influence of the environment on
the evolution of the system. Therefore the reduced density

matrix is the object of relevance. It is defined by

ρr[φ+
<, φ−<, η] =

∫
Dφ>ρ[φ+

<, φ>, φ−<, φ>, η]. (8)

The reduced density matrix evolves in time by means of

ρr[η] =
∫

dφ+
<i

∫
dφ−<i Jr[η, ηi] ρr[ηi], (9)

where Jr[η, ηi] is the reduced evolution operator

c

Jr[φ+
<f , φ<f , η|φ+

<i, φ
−
<i, ηi] =

∫ φ<f

φ+
<i

Dφ<

∫ φ<f

φ<i

Dφ< × exp
i

~
{S[φ+

<]− S[φ−<]}F [φ+
<, φ−<]. (10)

The influence functional (or Feynman-Vernon functional) F [φ+
<, φ−<] is defined as

F [φ+
<, φ−<] =

∫
dφ+

>i

∫
dφ−>i ρφ>

[φ+
>i, φ

−
>i, ηi]

∫
dφ>f

×
∫ φ>f

φ+
>i

Dφ+
>

∫ φ>f

φ−>i

Dφ−> exp
(
i{S[φ+

>] + Sint[φ+
<, φ+

>]})

× exp
(−i{S[φ−>] + Sint[φ−<, φ−>]}).

d

This functional takes into account the effect of the environ-
ment on the system. The influence functional describes the
averaged effect of the environmental degrees of freedom on
the system degrees of freedom to which they are coupled.
With this functional, one can indetify a noise and dissipa-
tion kernel related by some kind of fluctuation-dissipation
relation. This relation is important when one is interested
in possible stationary states where a balance in eventually
reached. During inflation we have a very flat potential well
away from its minimum, and we are, in general, only inter-
ested in the dynamics over some relatively small time. For
example, we would neglect dissipation during the slow roll
period; but it is not correct during the eventual reheating
phase.

We define the influence action δA[φ+
<, φ−<] and the

coarse grained effective action (CGEA) A[φ+
<, φ−<] as

F [φ+
<, φ−<] = exp

i

~
δA[φ+

<, φ−<], (11)

A[φ+
<, φ−<] = S[φ+

<]− S[φ−<] + δA[φ+
<, φ−<]. (12)

We will calculate the influence action perturbatively in λ and
we will consider only terms up to order λ2 and one loop in
the ~ expansion. The influence action has the following form

δA[φ+
<, φ−<] =

{〈Sint[φ+
<, φ+

>]〉0 − 〈Sint[φ−<, φ−>]〉0
}

+
i

2

{
〈S2

int[φ
+
<, φ+

>]〉0 −
[〈Sint[φ+

<, φ+
>]〉0

]2}

−i
{〈Sint[φ+

<, φ+
>]Sint[φ−<, φ−>]〉0

− 〈Sint[φ+
<, φ+

>]〉0〈Sint[φ<, φ>]〉0
}

(13)

+
i

2

{
S2

int[φ
−
<, φ−>]〉0 −

[〈Sint[φ−<, φ−>]〉0
]2}

,

where 〈 〉0 is the quantum average, assuming the environ-
ment is initially in its vacuum state.

The influence functional can be computed, and the result
is

ReδA = −λ

∫
d4x a4(η) P (x)

+λ2

∫
d4x

∫
d4y a4(η) a4(η′) θ(η − η′)

×{
64∆3(x)ReGΛ

++(x− y)Σ3(y)

+288∆2(x)ImGΛ2
++(x− y)Σ2(y)

}
, (14)

ImδA = −λ2

∫
d4x

∫
d4y a4(η) a4(η′)

{−32∆3(x)ImGΛ
++(x− y)∆3(y)

+144∆2(x)ReGΛ2
++(x− y)∆2(y)

}
, (15)

where GΛ
++(x − y) is the Feynmann propagator of the en-

vironment field, where the integration over momenta is re-
stricted by the presence of the infrared cutoff Λ. We have
also defined,

P =
1
2
(φ+4

< − φ−4
< ) ; ∆3 =

1
2
(φ+3

< − φ−3
< )

∆2 =
1
2
(φ+2

< − φ−2
< ) ; Σ3 =

1
2
(φ+3

< + φ−3
< )

Σ2 =
1
2
(φ+2

< + φ−2
< ) .
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3 Master Equation and Diffusion
Coefficients

In this Section we will obtain the evolution equation for the
reduced density matrix (master equation), paying particular
attention to the diffusion terms, which are responsible for
decoherence. We will closely follow the quantum Brownian
motion (QBM) example [21, 22], translated into quantum
field theory [7, 24].

The first step in the evaluation of the master equation
is the calculation of the density matrix propagator Jr from
Eq.(10). In order to solve the functional integration which
defines the reduced propagator, we perform a saddle point
approximation

Jr[φ+
<f , φ−<f , η|φ+

<i, φ
−
<i, ηi] ≈ exp iA[φ+

<cl, φ
−
<cl], (16)

where φ±<cl is the solution of the equation of mo-
tion δReA/δφ+

<|φ+
<=φ−<

= 0 with boundary conditions

φ±<cl(ηi) = φ±<i and φ±<cl(η) = φ±<f . Since we are work-
ing up to λ2 order, we can evaluate the influence functional
using the solutions of the free field equations. This classical
equation is φ

′′
< + 2Hφ

′
< − ∇2φ< = 0, (H = a′(η)/a(η)).

A Fourier mode φcl
<(x) =

∫
|~k|<Λ

φcl
~k

exp{i~k.~x}, satisfies

ψ
′′
~k

+
(

k2 − a′′(η)
a(η)

)
ψ~k = 0, (17)

where we have used ψ~k = a(η)φ~k and the fact that a′′(η)
a(η) =

2
η2 . It is important to note that for longwavelength modes,
k ¿ 2/η2, Eq. (17) describes an unstable (upside-down)
harmonic oscillator [12].

As a classical solution can be written as

φ±cl
~k

(η) = φ±i (~k)u1(η, ηf ) + φ±f (~k)u2(η, ηf ), (18)

where

u1 =
sin[k(η − ηf )]( 1

k + kηηf ) + cos[k(η − ηf )](ηf − η)
Idem num. η → ηi

,

u2 =
sin[k(ηi − η)]( 1

k + kηηi) + cos[k(η − ηi)](η − ηi)
Idem num. η → ηf

.

We will assume that the system-field contains only one
Fourier mode with ~k = ~k0. This is a sort of “minisuper-
space” approximation for the system-field that will greatly
simplify the calculations, therefore we assume

φ±cl
< (~x, η) = φ±cl

~k0
(η) cos(~k0.~x), (19)

where φ±cl
~k0

is given by (18).
In order to obtain the master equation we must compute

the final time derivative of the propagator Jr. After that, all
the dependence on the initial field configurations φ±<i (com-
ing from the classical solutions φ±cl

< ) must be eliminated. In
previous publicatiuons, we have shown that the free propa-
gator satisfies [8]

φ±cl
< (η)J0 =

[
φ±<f [u2(η, ηf )− u′2(ηf , ηf )

u′1(ηf , ηf )
u1(η, ηf )]

∓ i
u1(η, ηf )

u′1(ηf , ηf )
∂φ±<f

]
J0. (20)

These identities allow us to remove the initial field config-
urations φ±i , by expressing them in terms of the final fields
φ±f and the derivatives ∂φ±f

, and obtain the master equation.
The full equation is very complicated and, as for

quantum Brownian motion, it depends on the system-
environment coupling. In what follows we will compute the
diffusion coefficients for the different couplings described in
the previous section. As we are solely interested in decoher-
ence, it is sufficient to calculate the correction to the usual
unitary evolution coming from the noise kernels (imaginary
part of the influence action). The result reads

i~∂ηρr[φ+
<f , φ−<f , η] = 〈φ+

<f |
[
Ĥren, ρ̂r

]
|φ−<f 〉

− i
[
Γ1 D1(~k0; η) + Γ2 D2(~k0; η)

]
ρr[φ+

<f , φ−<f , t]

+ ... , (21)

where we have defined Γ1 = V λ2

Λ−3

(φ+3
<f−φ−3

<f )2

H5 and Γ2 =
V λ2

Λ−3

(φ+2
<f−φ−2

<f )2

H3 . V is the spatial volume inside which there
are no coherent superpositions of macroscopically distin-
guishable states for the system field. The ellipsis denotes
other terms coming from the time derivative that not con-
tribute to the diffusive effects. This equation contains time-
dependent diffusion coefficients Di(t). Up to one loop, only
D1 and D2 survive. Coefficient D1 is related to the interac-
tion term φ3

<φ>, while D2 to φ2
<φ2

>. These coefficients can
be (formally) written as

D1(k0, η) = 2
H5

Λ3

∫ η

ηi

dη′a4(η)a4(η′)F 3
cl(k0, η, η′)

× ImGΛ
++(3k0, η, η′) θ(3k0 − Λ), (22)

and

D2(k0, η) = 36
H3

Λ3

∫ η

ηi

dη′a4(η)a4(η′)F 2
cl(k0, η, η′)

× [
ReGΛ2

++(2k0, η, η′) + 2ReGΛ2
++(0, η, η′)

]
, (23)

where the function Fcl is

Fcl(k0, η, η′) =
sin[k0(η − η′)]

k0η
+

η′

η
cos[k0(η−η′)]. (24)

The explicit expression of these coefficient are compli-
cated functions of conformal time, the particular mode k0,
and the cutoff Λ, and we will show them in a separate pub-
lication [23]. For the porpuse of this talk, we will use some
analytical approximations, which will allow to obtain an es-
timation of the scale of decoherence in a particular case.
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4 Decoherence
The effect of the diffusion coefficient on the decoherence
process can be seen considering the following approximate
solution to the master equation

ρr[φ+
<, φ−<; η] ≈ ρu

r [φ+
<, φ−<; η]

× exp


−

∑

j

Γj

∫ ηf

ηi

dη Dj(k0, Λ, η)


 , (25)

where ρu
r is the solution of the unitary part of the master

equation (i.e. without environment), and Γj includes the co-
efficients in front each diffusion term in Eq.(21). The sys-
tem will decohere when the non-diagonal elements of the
reduced density matrix are much smaller than the diagonal
ones.

The decoherence time-scale sets the time after which we
have a classical field configuration, and it can be defined as
the solution to

1 ≈
∑

j

Γj

∫ ηD

ηi

dηDj(k0, Λ, η). (26)

We will solve this equation only in a very approximated way
in order to find upper bounds for the decoherence times com-
ing from each diffusion coefficients. A more refined evalu-
ation of decoherence times will be shown in Ref. [23]. For
example, when we consider a mode k0 ≤ H , we can probe
that a good approximation to D1 is given by

Dapprox
1 (k0 ∼ H, η) ∼ − (1 + Hη)

Hη7k3
0Λ3

. (27)

This is valid for modes shorter or the same order than H;
but it is an overestimation for k0 ¿ H . As D1 is defined
under the constraint Λ/3 < k0 < Λ, and considering we
will set the critical length Λ ≤ H , ours is a good estima-
tion. Analysing the coefficient D2, it is possible to find an
approximated expression for small values of k0 (respect to
H). For k0/H > 1, that corresponds to those modes out of
the aparent horizon at ηi, the diffusion coefficient D2 is an
oscilatory function and it has a maximun when k0 ∼ Λ, this
is the behavior noted for conformally coupled fields [24].
Finally, for long-wavelength modes, we can write

Dapprox
2 (k0 < H, η) ∼ 1

Hη4Λ3
. (28)

Both approximations above, are close to the exact coef-
ficients when Λ ≤ H .

In order to quantify decoherence time we have to fix the
values of Γ1,2. For this, we have to assume values to λ, V ,
∆, and Σ. We will use the more conservative choice in order
to have a lower bound to the decoherence time.

Assuming slow roll condition 1/2(dφ/dt) ¿ U = λφ4,
the classical equations (using φ̈ ¿ U ′) are

H2 =
8πU

3m2
pl

; φ̇ = − U ′

3H
, (29)

these equations are obtained under the following conditions

εU =
m2

pl

2
U ′

U
¿ 1 ; σU = m2

pl

U ′′

U
¿ 1, (30)

where m2
pl = 1/G is the Plank mass.

Definig the end of the inflationary period setting εU ∼ 1,
one can set φ(N) ≈ √

8Nmpl, where N = ln a(ηf )/a(η)
is the e-fold number. Thus, we assume the mean value of
the system field at time of decoherence is φ, and we set
(φ+

< − φ−<) ∼ 10−5φ, and V ∼ H−3.
From previous considerations, we can show

tD1 ≤
1

6H
ln

{
5k3

0H
3

λ210−15φ6

}
∼ 1

6H
ln

{
λφ61015

m6
pl

}
,

(31)
and

tD2 ≤
1

3H
ln

{
3H4

λ210−10φ4

}
∼ 1

3H
ln

{
1010φ4

m4
pl

}
.

(32)
Using N = Htend ≥ 60 as an estimative scale to the

end of inflationary period,

tD1

tend
≤ ln{λ1015} ≤ 1, (33)

corresponding to the diffusion term D1 and values of λ ∼
10−8. The scale coming from D2 is

tD2

tend
≤ 1

10
, (34)

.
From scales tD1 , and tD2 , we can see that for a given

mode k0 < Λ ≤ H , decoherence is effective by the time in
which inflation is ending.

5 Final Remarks
Let us summarize the results contained in this paper. After
the integration of the high frequency modes in Section 2, we
obtained the CGEA for the low energy modes. From the
imaginary part of the CGEA we obtained, in Section 3, the
diffusion coefficients of the master equation. System and
environment are two sectors of a single scalar field, and the
results depend on the “size” of these sectors, which is fixed
by the critical wavelength Λ−1.

In Section 4 we analysed the decoherence times for those
modes in the system whose wavelength is shorter than the
critical value.

We have shown some analitycal approximations that al-
low to conclude that if we consider a critical length Λ ∼ H ,
those modes with wavelength k0 ¿ Λ are the more affected
by diffusion throught coefficient D2. For these modes, we
can show that the effect is not dependent of the critical Λ
[23].

If one consider a cutoff Λ ≥ H , and modes H < k0 <
Λ, diffusive effects are larger for those modes in the system
whose wavelength is close to the critical Λ−1 [24].
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In Ref. [23] we will present the complete expression of
the diffusive terms, an also an extensive analysis of the eval-
uation of the timescale for decoherence in several cases of
interest.
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