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We study the influence of the interfaces on the dispersion relation, energy and power flow of polaritons prop-
agating in coaxial cylinders. We consider an infinite coaxial cylinder of internal and external radii designated by
a and b, respectively, submitted to a magnetic dc field applied parallel to the z-axes. The presence of a magnetic
field causes significant alterations in the modes of propagation of polaritons. The numerical results are obtained
for the surface polaritons propagating in semiconductors cylinders of GaAs in presence of magnetic fields of 5

kG.
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I. INTRODUCTION

The properties of polaritons has been studied since many
years by many authors in different geometries [1-3]. How-
ever, the recent development of new techniques of produc-
ing micron-size materials, the intense current interest in left-
handed materials, and the enhanced transmission through sub-
wavelength holes updated the interest on the study of this kind
of electromagnetic excitation. Particularly, the study of po-
laritons in microcavities has received a great deal of attention
nowadays. Surface plasmon polaritons play a particularly im-
portant role in light-matter interactions at the nanometer scale
and they are important for applications in biology, nanotech-
nology, and materials sciences [4 - 9].

The change of the geometry, from plane or spherical to
cylindrical, induces considerable effects on the properties of
the polaritons. Some of these changes were object of study
in the last decade [10] but the complete comprehension of the
behavior of these modes in this geometry is far away to be
reached. Recently, due to the possibility of to grow micron-
size materials with shapes to fit different technological needs,
the interest of the study of electromagnetic excitation in ma-
terials with cylindrical geometry was renewed [11].

Materials with this symmetry are important for the correct
use of the scanning near-field optical microscopy (SNOM)
which rely on the use of nanometer-sized probes. These
probes are generally sharpened optical fibers that have a cylin-
drical geometry. It should be remarked that a good under-
standing of the physical behavior of these modes is of fun-
damental importance for gaining a proper interpretation of
the experimental data obtained by these optical devices. For
instant, it was found that evanescent light field plays an im-
portant role in the interaction with neutral atoms confined on
glass surface surrounding a hollow fiber. Therefore, the results
obtained by, for example, scanning near-field microscopy
(SNOM) would be better understood if the physical behav-
ior of these modes is completely understood for the different
SNOM configurations.

This work studies the influence of interfaces on the disper-
sion relation, propagation of energy and power flow of polari-

tons propagating in coaxial hollow cylinders. As can be seen
bellow, there are significant changes if the system under con-
sideration is a massive or coaxial cylinder. Similarly to the
planar geometry, in the coaxial cylinder, the presence of inter-
faces causes the appearance of new branches in the dispersion
relation and introduce alterations in the physical behavior of
the energy, power flow and the velocity of transport of energy,
in comparison with those obtained for a massive cylinder [12].

II. THEORY

The system studied is an infinite coaxial hollow cylinder of
internal and external radii designated by a and b, respectively.
The geometry of the system defines three different regions:
Region I (0 < r < a), region II (a < r < b) and region III
(r > b). For the applications in this work, we considered the
region II as the only optically active region. Regions I and
III, are considered homogeneous, isotropic and in the numer-
ical applications were considered as the vacuum. The system
is submitted to an external dc magnetic field applied paral-
lel to the z-axis of the cylinder. The presence of a magnetic
field applied on a semiconductor cylindrical system, causes
significant alterations in the modes of propagation of polari-
tons. One of the main effects of the application of the field is
to promote the decoupling between the electric transverse (TE
mode; E; = 0) and the magnetic transverse (TM mode; H, =
0) modes, by the elimination of the TE mode [2].

Solving the Maxwell’s equations in cylindrical coordinates
and considering the continuity of the tangential components
of the electromagnetic fields at the interfaces of the cylinder,
we obtain the dispersion relation which gives us information
on the modes in order to obtain the energy flow, the energy
density and the total power.

The external magnetic field provokes remarkable changes
in the dielectric function of the material, which is usually
represented by a diagonal matrix. It introduces off-diagonal
terms in the dielectric tensor and, consequently, causes dra-
matic changes in the physical behavior of the polaritons. The
non-diagonal dielectric tensor is now given by:
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FIG. 1: Dispersion relation for surface polaritons propagating in two
different hollow cylinders, whose external radius, b=50 um, is kept
unmodified. The solid line represents the modes for the cylinder
whose internal radius is a=10 ym. The dashed lines represents the
case of a=25 um. The long dashed line is the light line.
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FIG. 2: Dispersion relation for surface polaritons propagating in two
different hollow cylinders, whose internal radius, a=10 ym, is kept
unmodified. The solid line represents the modes for the cylinder
whose external radius is b=50 um. The x-lines represents the case
of b=20 um. The long dashed line is the light line.
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The index j refers to region (Il is the optically active medium).
The frequency dependent elements of the dielectric tensor at
the region II are given by:
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In the equations above, ®, and @, are the plasma and cy-
clotron frequencies, respectively:
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where n and m}, are the concentration and the effective mass
of the carriers, e is the magnitude of electron charge, and By
is the intensity of the externally applied magnetic field.

The components of the electromagnetic field are obtained
in terms of the modified Bessel Functions and we can show
that for TE modes (E; = 0) only the trivial solution E=0 and
H=0 can be found. Consequently, only the TM modes (H,=0)
can propagate.

The energy flow is calculated by the time average of the
Poynting vector, whose integral in all regions gives us the total
power flow. The energy density is obtained considering the
case of an anisotropic medium.

III. RESULTS AND DISCUSSIONS

The results presented bellow were obtained for hollow
cylinders which has GaAs as the optically active material (re-
gion II) in presence of an externally applied magnetic field of
5 kG.

In the Fig. 1, we show the dispersion relation for surface po-
laritons propagating in two different hollow cylinders with the
same external radius b=50 ym and the internal radius a equal
to of 10 ym and 25 ym. In Fig. 2, we keep unmodified the
internal radius a=10 um and the external radius b assumes the
values of 20 ym and 50 um. In both figures we consider the
magnetic field Bo=5 kG. The mathematical functions, from
which we obtain the dispersion relation, are obtained from the
usual boundary conditions for the electromagnetic fields at the
interface of the regions; therefore they are functions of the ra-
dius of the cylinder layers. So when we analyze the dispersion
relation curves, in general there is no condition to predict “a
priori” the region where the mode is propagating. However, in
the Figs. 1 and 2 we can observe clearly the effects of the in-

terfaces. In the Fig. 1, where it is changed the internal radius
a while the external radius b remains unmodified, the lower
branch shows alterations while the higher one do not exhibit
noticeable changes. Moreover, is observed that the modes are
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moved to the low frequencies region when the internal radius
is increased. The opposite behavior is observed in the Fig. 2,
where it is modified the external radius b while the internal
radius a is kept constant. The higher branch is moved to the
high frequencies region while the lower branch remains al-
most unmodified when the the external radius of the cylinder
increases.

The energy flow is shown in Figs. 3 and 4 for the modes
assigned in the dispersion relation curves of the Figs. 1 and
2. The maximum of intensity of the energy flow occurs in the
internal region II. Depending on the frequency of the polariton
(dispersion relation branch), we can observe a maximum of
this quantity near of the internal or of the external interfaces
of the region II. It seems that modes that propagate with high
frequencies “prefer” the external interface and on other way
around, those of lower frequencies propagate near the internal
interface.
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FIG. 3: Energy flow for modes indicated by letters A and in Fig. 1.
The dashed lines indicate the interfaces of the cylinders.
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FIG. 4: Energy flow for modes indicated by letters C and D in Fig.
2. The dashed lines indicate the interfaces of the cylinders.
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The energy density is showed in Fig. 5 for the mode B
pointed out in Fig. 1. We can see that it presents a behav-
ior similar to the energy flow. In regions I and III, the energy
density is almost equal to zero and it is concentrated inside of
the optically active part of the cylinder.

In Fig. 6 we show the total power propagated by surface
polaritons in cylinder of internal and external radii equal to 25
um and 50 um, respectively. It is obtained by integration of
energy flow in all regions. We notice that it exhibits a maxi-
mum value for modes with small wavevectors for all cylinders
analyzed.
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FIG. 5: Energy density for mode B, indicated in Fig. 1. The cylinder
considered has internal radius a=25 ym and external radius b=50 ym.
The dashed lines indicate the interfaces of the cylinder.
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FIG. 6: Total Power for surface polaritons propagating in cylinder of
internal radius a=25 um and external radius b=50 um. The dashed
curve represents the branch of the dispersion relation whose modes
we have analyzed.
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IV. FINAL COMMENTS

It is already well know the rich variety of the physical char-
acteristics of polaritons propagating in materials with cylin-
drical geometry. In this work we show that, in a way simi-
lar to the multilayer planar systems, the presence of interface
introduce new features which are the result of the combined
effect of the geometry and the optical characteristic of the con-
stituent material. As can be seen in the Fig. 3, for example, the
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appropriate choice of the internal radio is the main responsi-
ble to localize the energy flow at a particular region. We hope
these results can motivate experimental verification of our the-
oretical predictions.
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