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A semiclassical formula for the coherent-state propagator requires the determination of speci�c
classical paths inhabiting a complex phase-space and governed by a Hamiltonian 
ux. Such tra-
jectories are constrained to special boundary conditions which render their determination diÆcult
by common methods. In this paper we present a new method based on Runge-Kutta integrator
for a quick, easy and accurate determination of these trajectories. Using nonlinear one dimensional
systems we show that the semiclassical formula is highly accurate as compared to its exact coun-
terpart. Further, we clarify how the phase of the semiclassical approximation is correctly retrieved
during the time evolution.

I Introduction

Semiclassical methods have a long history in the study
of several quantum systems. These methods (also
termed quasi-classical) are able to describe the behavior
of quantum states as expansions in terms of the clas-
sical behavior. There is a characteristic limit for these
expansions in which the associated action of the system
is suÆciently large if compared to the fundamental con-
stant ~. However, since the characterization of quan-
tum states strongly depends on the representation, the
semiclassical limit (or the semiclassical approximation
to the state) can be implemented by numerous meth-
ods.

Interesting questions arise when a representation
that makes use of the phase-space is introduced [1][2].
As we know, such representation can not be unique
since the uncertainty principle precludes the complete
description of states depending on canonical conjugate
variables. However, phase-space representations can in-
deed provide useful information mainly if carried out
in the semiclassical limit (formally written as the limit
~! 0).

The concept of coherent-state was created in 1926
by E. Schr�odinger [3] while a systematic study of these
states started much later in quantum optics [4], thanks
to the formal equivalence of the evolution between the
harmonic oscillator states and the quantized oscillation
modes of the electromagnetic �eld. In terms of the os-
cillator states, jn >, a coherent-state can be written

as

jz >= exp

�
�1

2
jzj2
� 1X
n=0

znp
n!
jn >; (1)

where z is the coherent state label associated to the
eigenvalue

z =
1p
2

�q
b
+ i

p

c

�
(2)

of the creation and destruction state operators [5]. In
(2), q and p are the average position and momentum of
the state (1) and b and c are the corresponding uncer-
tainties such that

bc = ~: (3)

The dynamics of quantum systems is fully de-
termined by the so called coherent-state propagator
(CSP), which is just the coherent-state matrix elements
of the time evolution operator

K(z00; z0; t00 � t0) =< z00j exp
 
�i Ĥ(t00 � t0)

~

!
jz0 >;

(4)
where Ĥ is the system Hamiltonian operators and t00�t0
is the time interval between the initial and �nal states
in consideration. Coherent-states are a class of the
so-called continuous representations [6]. The elements
given by (4) contain the entire quantum dynamics as-
sociated to the system. For instance, an initial state
can be easily evolved in time by using a propagation
integral where (4) acts as a kernel. On the other hand,
the Fourier transform of the diagonal elements of (4) is
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an analytical function whose poles are the energy levels
of the system.

In the context of the formalism represented by the
CSP, an interesting program is the search for a semi-
classical approximation to (4) [6] in the steps of sim-
ilar works [7] which were able to provide state transi-
tion amplitudes built in terms of an underlying classi-
cal skeleton. Such semiclassical approximation formula
exists [8-10] and, as we will show, is able to provide ac-
curate values for the CSP even in the purely quantum
regime, that is, for non zero values of ~.

The organization of the paper is as follows: in sec-
tion II we give the main elements for the semiclassical
coherent-state propagator (SCSP) formula, emphasiz-
ing the role of the complex roots. In section III we
describe a new method for �nding complex trajectories
by a simple Runge-Kutta integrator. In section IV we
discuss the behavior of the SCSP phase factor under
time evolution and give some examples of SCSP cal-
culation with one dimensional systems (harmonic and
quartic wells). Finally, in section V we discuss the main
results.

II Semiclassical formulas for the

CSP

In a previous paper [10] we have presented the main
relations describing the semiclassical approximation to
the CSP. The SCSP is based on a steepest descent pro-
cedure in which special roots are used to construct the
semiclassical version of the coherent-state kernel. These
roots can be viewed as classical trajectories that obey
special boundary conditions in a complex phase space
(that is, both position and momentum are complex vari-
ables). Usual classical dynamics is contained in the
complex one for the set of trajectories whose imaginary
position and momentum vanish. The aim of reference
[10] was to provide a numerical program for the deter-
mination of the complex roots in terms of which the
SCSP, ~K(z00; z0; T ); could be calculated in the time in-
terval T = t00 � t0. This is because the hardest task in
the SCSP approximation is the calculation of such com-
plex trajectories. It is therefore highly recommended to
developed alternative tools for this problem. We label
here the complex roots by the variables u and � which
are functions of the complex conjugate pair z and z�.
The SCSP approximation is given by

c

~K(z00; z0; T ) = exp

�
�1

2
jz00j2 � 1

2
jz0j2

�X
k

r
1

�k

exp

�
i

~
Sk(�

00; u0; T ) + i�k

�
(5)

d

Relation (5) is an approximation valid for ~ small,

that is ~ small in comparison with other \actions" of

the system (for instance the integral of pdq along a cer-

tain path in phase-space), and �00 and u0 stands for z00 �

and z0 respectively. Also �k is a phase-factor gained af-

ter the time evolution which we will discuss later (sec-

tion IV). The sum over k contains terms that are func-

tions of complex paths connecting the initial and �nal

states jz0 > and jz00 >. These complex trajectories are

described in terms of complex the variables u and �

evolving according to Hamilton equations

i~ _u =
@ ~H

@�
; i~ _� = �@ ~H

@u
; (6)

which obey the boundary conditions u0 = z0 and �00 =

z00 �. The function ~H in Eqs (6) is the \smoothed"

Hamiltonian

~H(q; p) =< zjĤ(q; p)jz > : (7)

To complete the description of Eq. (5), the function

Sk(�
00; u0; T ) is the generalized action of the k-th con-

tributing complex trajectory and is given by

c

S(�00; u0; T ) =

Z T

0

�
i~

2
(� _u� u _�)� ~H

�
dt� i~

2
(�00u00 + �0u0): (8)

Also, in Eq. (5) we have

�k = �i~
��� @2Sk

@u0@�00
����1

exp

 
� i

~

Z T

0

@2 ~H

@u@�

��
k
dt

!
: (9)
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Sk(�
00; u0; T ), ~H and �k are complex functions. The

dynamics generated by Eqs. (6) inhabits a complex

phase space where both position and momentum have

real and imaginary parts. This is a requirement of the

semiclassical approximation ~K(z00; z0; T ) since, from the

point of view of the classical \real" mechanics, it is not

always possible to �nd a classical trajectory linking z0

to z00 during the time interval T . There are simply too

many boundary conditions to be satis�ed. By extend-

ing the dynamics over a complex algebra, it is possible

to satisfy the additional conditions. Therefore, Eq. (5)

gives the transition probability between states labeled

by z0 and z00 that are classically connected by complex

trajectories.

The SCSP was successfully calculated for a variety

of one dimensional systems [11]. In particular, its was

possible to propose a new tunneling time for one dimen-

sional scattering problems [12] where the dwelling time

was simply taken as the time interval of the complex

trajectory within the potential barrier.

III New numerical method for

calculating the complex roots

of the SCSP

We have previously proposed [11] a method based on

the monodromy matrix [13] for the determination of

complex trajectories of the SCSP. Given an initial guess

trajectory, this method iterates the entire initial guess

for a number of times according to the linearized dy-

namics as in the usual Newton's method. Convergence

is attained when the �nal corrected trajectory satis�es

Eq. (6) within a given accurancy range. The advantage

of this method was the determination of the SCSP am-

plitude factor, Eq. (9), as a byproduct of the process.

However, the monodromy method is of somewhat hard

implementation, besides su�ering from lack of conver-

gence if the initial guess orbit is not suÆciently close to

the answer.

Hamilton equations, Eqs. (6), suggests that a next

point predictor method could be used [14], the only dif-

�culty being how to ful�ll the unusual boundary con-

ditions u0 = z0 and �00 = z0 �. Here we present a new

method which implements this idea. In what follows we

work out the main relations for one dimensional systems

only.

Let us denote the complex phase-space variables by

q = x1 + ip2;

p = p1 + ix2; (10)

where x1, p2,p1 and x2 are real numbers. If we restrict

ourselves to analytical Hamiltonians [11], we can show

that Eqs. (6) become

_x1 =
@ ~H1

@p1
; _x2 =

@ ~H1

@p2
;

_p1 = �@ ~H1

@x1
; _p2 = �@ ~H1

@x2
; (11)

We see that the one dimension problem (two degrees of

freedom in classical phase-space) was transformed into

a two dimensional one (four degrees of freedom in com-

plex phase-space). In Eqs. (11) we have

~H1 = <[ ~H ]: (12)

Further, the boundary conditions to Eqs. (11) are

x01 �
�
b

c

�
x02 = q0; x001 +

�
b

c

�
x002 = q00;

p01 +
�c
b

�
p02 = p0; p001 �

�c
b

�
p002 = p00; (13)

In order to integrate Eqs. (11) by Runge-Kutta

methods for instance, we need the initial conditions

x1(0), p1(0), x2(0) and p2(0). These are unfortunately

unknown since only the propagator labels q0, p0, q00, p00

and the total time T are given. Let us however �nd

a way out. First we choose the initial variables x1(0)

and p1(0) as the initial guess for each trajectory to be

integrated. According to (13) we have

x2(0) =
c

b
(x1(0)� q0);

p2(0) =
b

c
(p0 � p1(0)); (14)

that is, given the pair (x01; p
0

1), the complete set of initial

conditions is determined. Integrating Eqs. (11) using

these initial conditions led to a trajectory that often fail

to satisfy the �nal boundary conditions

x1(T ) +

�
b

c

�
x2(T ) = q00;

p1(T )�
�c
b

�
p2(T ) = p00; (15)

Let us de�ne the function
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D(x01; p
0

1; T ) =

s�
x1(T ) +

b

c
x2(T )� q00

�2
+
h
p1(T )� c

b
p2(T )� q00

i2
(16)

d

which is calculated after integrating Eqs. (11) under

the initial conditions (14) and (15). This function ac-

tually measures the distance of the initial guess (x01; p
0

1)

to the answer. Therefore, looking for an answer to the

complex root problem under (13) was converted into a

search for the zeros of (16). This process is illustrated

in Fig.1.

Figure 1. Schematic representation of the search for zeros
of D in the space of initial guesses (x0

1; p
0

1)

In the space of initial variables (x01; p
0

1), we start

from an initial guess and calculate the gradient vector

of D,

~rD =

�
@D

@x01
;
@D

@p01

�
; (17)

which points to the negative of the decreasing values

of D. The initial variables are updated at every j-th

iteration step according to

x
(j)
1 (0) = x(j�1) � �

@D(j)

@x01
;

p
(j)
1 (0) = p(j�1) � �

@D(j)

@p01
; (18)

with � a small distance in the space (x01; p
0

1). In order

to fasten convergence, the value of the gradient of D is

only updated when its value in a given iteration surpass

the value of a previous one. Also, to attain accuracy

and convergence, the value of the distance should be de-

creased proportionally to D. Iteration continues until

the value of D becomes smaller than a certain Æ > 0.

Before presenting some examples of the method at

work, we give the relations of the SCSP as function of

the dynamical variables (x01; p
0

1) which label the com-

plex root for a given boundary condition. The prefac-

tor, Eq. (9), contains the second derivative of Sk which

is

@2S

@u0@�00
= ~

��
b

c

�
@p001
@q0

�
�c
b

� @x001
@p0

� i

�
@x001
@q0

+
@p001
@p0

��
(19)

After �nding a root, the function (19) is found by calcu-

lating the sensitivity of the �nal trajectory coordinates

x001 and p001 under changes in q0 and p0. Writing the com-

plex action, Eq. (8) in the form

S(�00; u0; T ) = Is + f;

with

Is =

Z T

0

�
i~

2
(� _u� u _�)� ~H

�
dt;

f = � i~

2
(�00u00 + �0u0);

then

Is =
1

2

Z
[p2dx2 + p1dx1 � (x1dp1 + x2dp2)]+

+i
1

2

Z
[x2dx1 + p1dp2 � (x1dx2 + p2dp1)]+

[ ~H1(x1; p1; x2; p2) + i ~H2(x1; p1; x2; p2)]T; (20)

since ~H is a constant of motion. Also

c

f =
1

2
[q00p001 + p0x01 � (p00x001 + q0p01)]�

��c
b

�
(q00x001 + q0x01) +

�
b

c

�
(p00p001 + p0p01)

�
+

i~

2
(jz00j2 + jz0j2) (21)

Finally, in Eq. (9), the phase of the exponential is
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Z T

0

@2H

@u@�
dt =

1

2

Z T

0

 
b2
@2 ~H1

@x21
+ c2

@2 ~H1

@p21

!
dt� i

2

Z T

0

 
b2

@2 ~H1

@x1@p2
+ c2

@2 ~H1

@x2@p1

!
dt (22)

d

where we use the fact that ~H is an analytic function of

q and p.

IV Examples of SCSP determi-

nation

The complete determination of the SCSP in Eq. (5)

also requires to �nd the phase �k which arises from the

phase of the amplitude term (19). A given complex

function z(t) can be represented in Cartesian notation

z(t) = a(t)ib(t); (23)

with a(t) and b(t) real functions. However, one can also

write z(t) in the polar form

z(t) = r(t) exp(i�(t) + in�); (24)

with n = [0; 2; 4; :::] and the phase

�(t) = arctan

�
b(t)

at)

�
: (25)

Suppose that we take
p
z(t). A phase factor arises in

the polar representation since

p
z =

p
r exp

�
i�(t)

2
+

in�

2

�

and the \true" phase is clearly underestimated since

using (25)

��

2
� �(t) � �

2
:

So, in order to correctly retrieve the phase, we have to

follow the sign of the functions a(t) and b(t). Let us

call the \true" phase '(t) and further assume that z(t)

is a periodic function of t with period � . Table I gives

the correct phase in terms of the sign of a(t) and b(t).

Moreover, every time that t > m� with m an integer

number, the phase ' ! ' + 2�. We take the number

z(t) as the complex function (19)

@2S

@u0@�00
= a(T ) + ib(T );

so that

�(T ) =
1

2
�(T ) + s

�

2
+ ��; (26)

with s = 0; 1; 1; or 2 according to the line case in Table

1 (1,2,3 or 4, respectively) and � = 1; 2; 3; ::: as T be-

comes larger than a multiple of the period of function

(19). Note that the phase (26) and the assumption of

periodicity is valid for closed systems (such as quantum

wells). In the case of opened system (scattering prob-

lems) � = 0: Each complex trajectory contributing to

(5) has its proper phase factor.

Table I: Relation between the phase � and the true
phase ' of the complex number z as a function of the
sign in �(t) and b(t). Four cases are distinguished.

�(t) b(t) � '
> 0 � 0 0 � � � �=2 ' = � (1)
< 0 � 0 �=2 < � � � ' = �+ � (2)
< 0 � 0 � � � < 3�=2 ' = �+ � (3)
> 0 � 0 3�=2 < � � 2� ' = �+ 2�(4)

To illustrate the application of the method and the

excellence of the SCSP in comparison to the exact cal-

culation of the CSP we present some examples. We

restrict to one dimensional Hamiltonians of the type

(harmonic and quartic terms)

H(q; p) =
1

2
p2 +

1

2
�q2 + �q4; (28)

with � � 0: If � = 0 we obtain the simple harmonic

oscillator for which the SCSP is exact. The smoothed

Hamiltonian is easily found to be

~H
1

2
p2+

1

2
(�+6�b2)q2+�q4+

1

4
(c2+�b2+3�b4); (29)

where the \zero point" energy appears as a constant.

The coherent state nature of the initial state also mod-

i�es the harmonic potential so that the new harmonic

frequency is

! = !classical

r
1 +

�b2

�

in the presence of the quartic potential (� 6= 0).
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Figure 2. Perspective view in phase-time space of a complex
trajectory in the quartic oscillator. (a) and (b) are the real
and imaginary parts respectively.

In Fig.2 we see an example of complex trajectory
calculated for the purely quartic system (� = 0) and
� = 0:2 using the method exposed in section III.
This �gure shows the time evolution of the coordinates
(x1; p1) (part a) and (x2; p2) (part b) along t. The
CSP labels are q0 = 8; 0; q00 = 6:0; p0 = p00 = 15:0
and T = 3:5. This orbit is closed to a real trajec-
tory for which x2(t) = p2(t) = 0:0 (q0 = q00 = 8:0;
p0 = p00 = 15:0) in which case the primitive period is
1.003. Therefore in the (x1; p1) graph, the trajectory
shows three distinct turns along t with a structure that
closely resemble the phase-space trajectory of quartic
systems. A similar time evolution is seen in the imagi-
nary part (b). The trajectory has 1000 points and the
�nal value of the D function was 8:6�10�12. The initial
coordinates which generate this trajectory are

x1(0) = 6:68642954;

p1(0) = 14:9244986

In order to gain con�dence in the accuracy of the SCSP,
we must calculate the \exact" CSP and compare it to
its semiclassical version. The exact CSP is obtained
by its expansion in terms of the system eigenfunctions
weighted by an amplitude factor that depends on the

system eigen energies:

K(z00; z0; T ) =
X
N

< z00jn >< njz0 > exp

�
� iEnT

~

�
:

(30)
In Eq.(30), < zjn > is the Husimi function of the n-th
eingenstate and En is the corresponding eigen energy.
Both jn > and En are easily calculated by the diagonal-
ization of Hamiltonian (28) in a suitable basis [15] and
performing the projection integrals into the coherent-
state representation.

Using the relations presented in section III for the
SCSP, we have calculated the time evolution of both
conventional CSP and SCSP for di�erent values of �
and � using ~ = 1:0 and b = 1:0. In Fig.3 we show the
case � = 1:0 and � = 0:01. The �gure shows the perfect
agreement between the exact CSP (line) and its semi-
classical counterpart (circles) for both real and imagi-
nary components from T = 0:0 to T = 10:0. In this case
q0 = q00 = 0:0 and p0 = p00 = 1:0. At every propagator
time T , a single complex trajectory with 3000 points
is used to calculate the SCSP until D � 10�12. In or-
der to obtain a faster convergence, the (x01; p

0

1) pair of a
given trajectory is used as initial guess for the following
one. In fact the number of time points between T = 0:0
and T = 10:0 is 1000 but we only show a sample with
50 points in Fig. 3 and 4.

Figure 3. Time evolution of the real and imaginary parts
of the exact (lines) and SCSP (circles) for the harmonic +
quartic oscillator. The agreement is excellent.

The agreement between the exact CSP and the
SCSP for ~ = 1:0 shows that the method is valid even
outside the semiclassical range. As we previously said,
the SCSP for the harmonic oscillator is exact, that is, it
completely agrees with the CSP calculated by the con-
ventional approach. This raises the question of whether
the agreement in Fig. 3 could be explained by the per-
turbative character (a harmonic oscillator slightly per-
turbed by a quartic term) of the system at hand. To
show that this is not the case, we calculated the time
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evolution of a purely non linear system with � = 0:0
and � = 0:1.

Figure 4. Time evolution of the real and imaginary parts
of the exact (lines) and SCSP (circles) for a purely quartic
oscillator. The agreement is excellent.

Fig. 4 shows the results from T = 0:0 to T = 3:0
Again the agreement between the real and imaginary
parts of exact CSP and SCSP is excellent. This case
was simulated with the same parameters of Fig. 3,
q0 = q00 = 0:0; p0 = p00 = 1:0 and b = 1:0. The same
convergence approach was used, each time point (along
1000 points) is built from a single complex trajectory
whose initial guess is taken from the previous (x01; p

0

1)
pair.

We would like to point out here that, in order to get
the SCSP value for longer times in the quartic case, it is
necessary to include contributions from several complex
trajectories. These are generated by families of real tra-
jectories at higher energies. Due to the dynamical char-
acter of the quartic potential, the shorter the period of
its classical trajectories the higher their energies. Thus
close to the propagator time T = 0, an in�nite number
of complex trajectories exist but their contributions ap-
proach zero (the imaginary part of their complex action
is very large) and the only relevant root is the so called
\free" complex trajectory. Close to T = 0, the initial
coherent packet behaves as a free particle and the SCSP
is therefore constructed by free complex paths.

V Conclusion

We have shown here that the semiclassical approxima-
tion in the coherent-state representation leads to accu-
rate values of the CSP amplitudes even far from the
semiclassical domain (large values of ~). The excel-
lence and importance of the method is therefore con-
�rmed. This importance is justi�ed by the possibility of
extending the semiclassical method over multi dimen-
sional systems which would lead to interesting results
mainly in the �eld of molecular dynamics.

We have presented a new method based on a simple
Runge-Kutta algorithm that allows a quick and easy
calculation of complex trajectories. Special care must

be exercised with the phase factor [16] of the SCSP am-
plitude which arises from the amplitude factor of the
semiclassical propagator.

The relative role of each complex trajectory in the
SCSP amplitude (depending on the system) still needs
to be further clari�ed. In the case of the quartic poten-
tial, the number of contributing complex trajectories
grows with T as the number of turns of real trajectory
families increases. This is not the case with other kinds
of potentials where the orbit period - energy relation is
di�erent . The role of complex trajectories is specially
important in the semiclassical determination of spectra
by Fourier transform of the CSP diagonal elements. A
work in this direction will be presented elsewhere in the
future.
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