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Interior Problem in a Nonsymmetric Theory of Gravitation
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The field equations of a previous metric nonsymmetric theory of gravitation are considered for the interior of
a static spherically symmetric perfect fluid with a view to a study of stellar equilibrium. The equations are put
into a form of four first-order differential equations which are ready for numerical integration.
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I. INTRODUCTION

In previous papers [1-I,II] a metric nonsymmetric theory of
gravitation has been developed by one of us and the solution
for a point mass source was obtained. The theory was shown
to be consistent with the four classical tests of general rela-
tivity (GR). In [2] it was shown that the theory is definitely
free of ghost-negative radiative modes even when expanded
around a Riemannian GR background space. In a more re-
cent paper [3] the conservation laws of energy and momen-
tum were established. Some application of the results were
made for a static spherically symmetric perfect fluid with a
view to future study of stellar equilibrium. This is the subject
of which we start developing in this paper. The sources of
the field are the energy-momentum-stress tensor Tαβ and the
fermionic current density Sα. For a macroscopic system this
current is taken to be

Sα = Σa fanauα, (1.1)

where fa is the coupling of the fermion specie a to the geom-
etry, na is its rest number density found, for instance, in the
description of the interior of stars (electrons, protons and neu-
trons) and uα is the common velocity.

In this paper we study the interior problem for a static and
spherically symmetric perfect fluid. Therefore, only the com-
ponent S0 will survive. This will be focused with a view to a
study of stellar equilibrium. It would be interesting to analyze
what the modifications of the predictions of GR are for stellar
equilibrium and collapse particularly by the fact that, together
with the stress tensor, the matter current is also a source of
gravitation.

The approach is similar to the one studied by Savaria [4] in
the context of a different nonsymmetric theory. The equations
are put into a form of four first-order differential equations
which are ready for numerical integration. They are ready for
application to the study of white dwarf and neutron stars, to
discuss their stability as compared with the results of GR.

The set of four differential equations involve four quanti-
ties to be determined: the fermionic charge F(r) below the ra-
dial distance r, the two metric coefficients g00(r) and g11(r),
the internal pressure p(r) and or the mass density ρ(r). The
system must be supplemented by an equation of state relat-
ing the pressure and density as in GR, and information about

fana(r).
The paper is organized as follows. In Sec. II the field equa-

tions are presented In Sec. III we set their form for a static
spherically symmetric sphere. In Sec. IV the first-order equa-
tions are written down and in Sec. V the limits at the centre
and boundary are stated. In Sec. VI we present our conclu-
sions and highlight plans for future work.

II. THE FIELD EQUATIONS

The field equations of the theory are [1-I], with κ = 8πG,

Uαβ +Λg(αβ) = κT (αβ) , (2.1)

g(αβ),γ +g(ασ)Γβ
(σγ) +g(βσ)Γα

(σγ)−g(αβ)Γσ
(σγ) = 0 , (2.2)

g[αβ]
,β = 4πSα (2.3)

and

Λg[αβ,γ] = κT [αβ,γ] . (2.4)

We use the notation a(αβ) = (aαβ +aβα)/2 and a[αβ] = (aαβ−
aβα)/2 for the symmetric and antisymmetric parts of aαβ and
the notation a[αβ,γ] = a[αβ],γ + a[γα],β + a[βγ],α for the curl of
a[αβ]. In the first equation

Uαβ = Γσ
(αβ),σ−Γσ

(σα),β +Γρ
(αβ)Γ

σ
(ρσ)−Γρ

(ασ)Γ
σ
(ρβ) , (2.5)

symmetric because the second term is (see (2.12) below) and
containing only the symmetric part of the connection, is the
analogue of the Ricci tensor. Λ is the cosmological constant
and in the right-hand side we have the symmetric part of the
tensor

T αβ = Tαβ−
1
2

gαβT , (2.6)

with T = gαβTαβ. The next two equations involve the sym-
metric and antisymmetric parts of gαβ =

√−ggαβ where
g =det.(gαβ) and gαβ is the inverse of gαβ as defined by

gαβgαγ = gβαgγα = δβ
γ . (2.7)
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Equation (2.4) involves the curl of the antisymmetric part of
the metric and of the tensor in (2.6). The second field equa-
tion, (2.2), can be solved for the symmetric part of the con-
nection [1-I] giving

Γσ
(αβ) =

1
2

g(σλ) (sαλ,β + sλβ,α− sαβ,λ
)

+
(

g(σλ)sαβ−δσ
αδλ

β−δλ
αδσ

β

)
C,λ , (2.8)

with

C =
1
4

ln
s
g

, (2.9)

where sαβ symmetric and with determinant s is the inverse of
g(αβ) as defined by

sαβg(αγ) = δβ
γ . (2.10)

Equation (2.4) came as the result of the equation

Λg[αβ] +Γ[α,β] = κT [αβ] , (2.11)

where Γα = (Γβ
αβ−Γβ

βα)/2 = Γβ
[αβ] is a vector involving con-

tractions of the antisymmetric part of the connection. In de-
riving (2.8) from (2.2) we come across the relation

Γσ
(σα) = (ln

−g√−s
),α , (2.12)

which can be re-obtained from that equation. One then sees
that the second term on the right of (2.5) is in fact symmetric.

The Lagrangian density we end up with in [1-I] is

L = gαβ(Uαβ +Γ[α,β])+2Λ
√−g+LM , (2.13)

where LM is the matter part of the Lagrangian. It is modeled
after the one of GR, containing here the generalized matter
energy-momentum-stress tensor Tαβ and the fermionic current
Sα, as given by

δLM = δLT
M +4πSαδΓα , (2.14)

where

δLT
M =−κ

√−gTαβδgαβ . (2.15)

As δ
√−g = gµνδgµν/2, we have

√−gδgαβ = δgαβ −
gαβgµνδgµν/2, and (2.14) can also be written as

δLM =−κT αβδgαβ +4πSαδΓα. (2.16)

Equations (2.1)-(2.4) can be re-obtained from Eq. (2.13) by
variations with respect to gαβ, Γσ

(αβ) and Γα. The first one
gives Uαβ + Γ[α,β] + Λgαβ = κT αβ, the symmetric and anti-
symmetric parts give (2.1) and (2.11), this last one leading
to (2.4). The second variation gives (2.2) while the one with
respect to Γα gives (2.3).

Together with the down-indices stress Tαβ we will be work-
ing (1-I) with the upper-indices T µν defined by the variation
with respect to gµν,

δLT
M = κ

√−gT µνδgµν , (2.17)

as in GR. This second stress is related to the first one by

Tαβ = gανgµβT µν (2.18)

which follows from the relation δgµν = −gανgµβδgαβ result-
ing from the variation of Eq. (2.7). It should be kept in mind
that Eq. (2.18) does not imply a rule for lowering indices be-
cause this operation is not defined for a nonsymmetric metric.
A better name for the upper-indices stress tensor would proba-
bly be Sµν but we shall use the same T for both tensors. Notice
that the inverse relation is T µν = gµβgανTαβ and that both have
the same trace gαβTαβ = gµνT µν.

We end this section by writing the matter-response equa-
tion. Working directly with δLM [1-I] or going through the
variational principle [3] the equation is of the form

G(gαλTαβ
,β +gλαTβα

,β +2[αβ,λ]Tαβ)+Γ[λ,α]Sα = 0
(2.19)

where

[αβ,λ] =
1
2
(gαλ,β +gλβ,α−gαβ,λ) . (2.20)

Now consider the situation in which we are are interested in,
dealing with a perfect fluid. Then it can be shown [3] that

T µν = (ρ+ p)uµuν− pgµν , (2.21)

ρ being the matter rest density, p the pressure and uµ the ve-
locity.

In the next section we will see the form acquired by the field
equations and of (2.19) in the interior of a static spherically
symmetric perfect fluid.

III. THE STATIC SPHERICALLY SYMMETRIC SPHERE

The static and spherically symmetric metric tensor in polar
coordinates x0 = t, x1 = r, x2 = Θ and x3 = Φ is of the form

g00 = γ(r), g11 =−α(r),

g22 = −r2, g33 =−r2sin2Θ,

g01 = −ω(r) =−g10, (3.1)

and all other components equal to zero. The non-zero compo-
nents of the inverse matrix are then

g00 =
α

αγ−ω2 , g11 =− γ
αγ−ω2 ,

g22 = − 1
r2 , g33 =− 1

r2sin2Θ
,

g01 =
ω

αγ−ω2 =−g10 . (3.2)
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We need also the inverse sαβ to g(αβ), whose non-zero compo-
nents are

s00 =
αγ−ω2

α
, s11 =−αγ−ω2

γ
,

s22 = −r2 , s33 =−r2sin2Θ . (3.3)

The determinants have values

g =−(αγ−ω2)r4sin2Θ (3.4)

and

s =− (αγ−ω2)2

αγ
r4sin2Θ . (3.5)

From (2.3) we have Sα
,α = 0 guaranteeing the conservation

of the fermionic charge. For the static sphere we have ui =
0 so according to (1.1) only the zero component survives in
(2.3). From (3.2) and (3.4) that equation yields

ωr2

(αγ−ω2)1/2 = F(r) , (3.6)

where

F(r) =
Z r

0
4π

√
αγ−ω2S0ŕ 2dŕ . (3.7)

is the conserved fermionic charge contained in a sphere of
radius r. From (3.6) we have

ω2

αγ
=

F2

F2 + r4 . (3.8)

With this result and equations (3.4) and (3.5), we have s/g =
r4/(F2 + r4) and equation (2.9) yields

C,λ= δλ,1
F2−ξr4

r(F2 + r4)
, (3.9)

where for short

ξ =
F2 ′

4r3 . (3.10)

For future use we note that from (3.7) we have

F ´= 4π
√

αγ−ω2S0r2 . (3.11)

By multiplication by F and using (3.6) we obtain

F2 ′ = 8πωS0r4 (3.12)

and, from (3.10),

ξ = 2πωS0r . (3.13)

Let us go now to the calculation of the symmetric part of the
connections, from (2.8). Putting the abbreviation B = F2 + r4

a straightforward calculation yields (a
′
= da/dr)

Γ0
(01) =

γ′

2γ
+

F2−ξr4

rB
,

Γ1
00 =

γ′

2α
+

γ
α

F2−ξr4

rB
,

Γ1
11 =

α′

2α
+

F2−ξr4

rB
,

Γ1
22 = − (1+ξ)r

α
,

Γ1
33 = − rsin2Θ

α
,

Γ2
(12) = Γ3

(13) =
(1+ξ)r3

B
,

Γ2
33 = −sinΘcosΘ ,

Γ3
(23) = cotΘ , (3.14)

and all other components vanishes. Using all this information
the nonzero components of Uαβ are

U00 =

(
γ′

2α
+

γ
α

F2−ξr4

rB

)′

+

(
γ′

2α
+

γ
α

F2−ξr4

rB

)(
α′

2α
− γ′

2γ
+

2(1+ξ)r3

B

)
, (3.15)

U11 =−
(

γ′

2γ
+

F2 +2r4 +ξr4

rB

)′

+

(
γ′

2γ
+

F2−ξr4

rB

)(
α′

2α
− γ′

2γ

)

+
2(1+ξ)r3

B

(
α′

2α
+

F2− r4−2ξr3

rB

)
, (3.16)

U22 =−
(

(1+ξ)r
α

)′

+1

− r(1+ξ)
α

(
γ′

2γ
+

α′

2α
+

2F2−2ξr4

rB

)
(3.17)

and U33 = U22 sin2 Θ.
From (2.18) and (2.21) equation (2.6) gives

T αβ = (ρ+ p)gανgµβuµuν +
1
2

gαβ(p−ρ) . (3.18)

As our fluid is in hydrostatic equilibrium we have

T (αβ) = (ρ+ p)(g(α0)g(β0) +g[α0]g[β0])u
0u0
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+
1
2

g(αβ)(p−ρ) , (3.19a)

T [αβ] = (ρ+ p)(g(α0)g[0β]−g(β0)g[0α])u
0u0

+
1
2

g[αβ](p−ρ) (3.19b)

and, from uαuα = 1,

u0 =
1√γ

. (3.19c)

From now on we will neglect the contribution of the cosmo-
logical constant as in GR. For the relevant components of
(2.1) we then have from (3.19a),

U00 =
1
2

κγ(ρ+3p) , (3.20)

U11 =
1
2

κα(ρ− p− 2(ρ+ p)ω2

αγ
) (3.21)

and

U22 =
1
2

κr2(ρ− p) . (3.22)

On the other hand (2.11) becomes (with Λ = 0)

Γ[α,β] = κ{(ρ+ p)(g(α0)g[0β]−g(β0)g[0α])u
0u0

+
1
2

g[αβ](p−ρ)} . (3.23)

Only the 0,1 antisymmetric component of this relation is non-
vanishing, giving

Γ0́ =−κω(ρ+3p) . (3.24)

The matter-response equation (2.19) acquires [3] the simple
form

ṕ =−1
2
(ρ+ p)

γ́
γ
− 1

4G
Γ́0S0 . (3.25)

On account of the previous equation and of (3.13) this equa-
tion becomes

ṕ =−1
2
(ρ+ p)

γ́
γ

+
ξ
r
(ρ+3p) . (3.26)

IV. THE FIRST-ORDER EQUATIONS

As in GR we can obtain from (3.20) and (3.21) a relation
involving only first-order derivatives of the metric by multi-
plying the first one by α/γ and adding the result to second

one. The calculation is delineated in Appendix A. After mul-
tiplication of the whole thing by B/2αr2 we obtain

− r(1+ξ)́
α

+
r(1+ξ)

α
(

γ′

2γ
+

α′

2α
− F2−ξr4

r(F2 + r4)
)

=
1
2

κ(ρ+ p)r2 . (4.1)

This result would hold even if Λ were present.
Next we use Eq. (3.17) in (3.22) and add and subtract to

(4.1). After some algebra (see Apendix A) we obtain

1− 4(1+ξ)
α

+
3(1+ξ)2r4

α(F2 + r4)

−2r(1+ξ)́
α

− r(1+ξ)(
1
α

)́ = κρr2 (4.2)

and

−1+
(1+ξ)

α

(
2+

rγ́
γ
− (1+ξ)r4

F2 + r4

)
= κpr2 . (4.3)

Using equations (1.1), (3.8) and (3.13) in (3.11) we obtain

F (́r) = 4πr2√α(1+
F2

r4 )−1/2Σa f 2
a na . (4.4)

Equations (4.2), (4.3), (4.4) and (3.26) are the equations that
define the behavior of the interior of our system. As promised
they constitute a system of equations for the two metric coef-
ficients γ(r) and α(r), the fermionic charge F(r) below r,the
density ρ, the pressure p and the fermionic coupling-density
number fana(r) for each component. This last quantity to-
gether with an equation of state f (ρ, p) = 0, as in GR, are
required for the solution of the system of equations.

These equations can be put in a more interesting form by
noticing that the last two terms on the left-hand side of (4.2)
can be condensed as −r(1 + ξ)−1((1 + ξ)2/α)́. Motivated by
the form of α in GR we then introduce the variable m(r) de-
fined by

(1+ξ)2

α
= 1− 2Gm(r)

r
. (4.5)

When ξ is null, that is, when ω is null this becomes the GR
relation with m(r) equals the mass within a sphere of radius r.
In terms of this quantity our four equations can be written as

ḿ = (1+ξ)
(

4πρr2− 3
2G

(1− 2Gm(r)
r

)(1+
F2

r4 )−1
)

− ξ
2G

+
3

2G
(1− 2Gm(r)

r
) , (4.6)

r
γ́
γ

=−2+(1+ξ){1+
F2

r4
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+(1− 2Gm(r)
r

)−1(1+8πGr2 p)} (4.7)

r ṕ =−(ρ+ p)(1+ξ){(1− 2Gm(r)
r

)−1(4πGr2 p+
Gm(r)

r
)

− F2

F2 + r4 }+2pξ (4.8)

and

F (́r) = 4πr2(1+ξ)(1− 2Gm(r)
r

)−1/2

×(1+
F2

r4 )−1/2Σa f 2
a na . (4.9)

The coefficient α is obtained from (4.5) and ω comes from
(3.8)

ω =
√

γ(1+ξ)(1− 2Gm(r)
r

)−1/2 F
r2 (1+

F2

r4 )−1/2 . (4.10)

Having all this the total mass of the star can be calculated
from equation (5-10) of [3], which is,

M =
Z √−g

(
T0

0−Ti
i−κ−1g[0i]Γ0,i

)
drdΘdφ (4.11)

where

Tα
σ ≡ 1

2
(gανT σν +gναT νσ) . (4.12)

We give the details of the calculation in Appendix B, quoting
here the final result. We have

M = 4π
Z R

0

√γ(1+ξ)

(1− 2Gm(r)
r )1/2

(1+
F2

r4 )1/2(ρ+3p)r2dr .

(4.13)
As it will be discussed in the next section, this quantity can

also be calculated from the continuity of α across the surface
boundary R of the star.

V. CONDITIONS AT THE CENTER AND BOUNDARY

Because of divergent terms at r = 0 we expand the equa-
tions around that point. This will permit to perform the nu-
merical integration from near the center on, all the way up to
the radius R of the star.

Starting with (4.5) we see that m(0) = 0 to have α(0) finite.
Thus, from (4.9) we see that F near the origin goes as r3 be-
cause F(0) = 0 from (3.7).Then, from (3.10) it follows that ξ
goes as r2. Then (4.6) tell us that m goes as r3, ρ(0) being
finite. Next, from (4.8) p goes as p(0) plus a term of order r2.
Finally, (4.7) tell us that γ goes as γ(0) plus a term of order r2.
We fix now the coefficients. Calling

n0 =
4π
3

Σa f 2
a na (5.1)

we have

F(r) = n0r3 +O(r4) , (5.2)

ξ(r) =
3
2

n0
2r2 +O(r4) , (5.3)

m(r) = (
4π
3

ρ(0)− n0
2

2G
)r3 +O(r4) , (5.4)

γ = γ(0)(1+br2)+O(r3) , (5.5)

where

b = 4πG(p(0)+
1
3

ρ(0))+
3
2

n0
2 , (5.6)

and

p(r) = p(0)− er2 +O(r3) (5.7)

where

e = 2πG[ρ(0)+ p(0)][
1
3

ρ(0)+ p(0)] (5.8)

−1
2

n0
2(2p(0)−ρ(0)) .

Having (5.3) and (5.4), equation (4.5) gives for α(r)

α(r) = 1+(
8πG

3
ρ(0)+2n0

2)r2 +O(r3). (5.9)

At the surface the parameters ρ, p and S0 or ξ all vanish.
Having α(r) inside, the mass of the star can be calculated from
the continuity at r = R. We have

α(R) = α(R)ext . (5.10)

The exterior value is determined by the solution obtained out-
side in [1-II],

α(R)−1
ext = (1+

F2(R)
R4 )[1− 2GM

R
(1+

F2(R)
R4 )−1/2] . (5.11)

VI. CONCLUSIONS

The field equations of the metric nonsymmetric theory of
gravitation developed in [1-I,II] have been analyzed for the
interior of a static spherically symmetric perfect fluid with a
view to a study of structure of stars.

The field equations have been reduced to a set of four first-
order differential equations which is ready for numerical inte-
gration.

The obtained set of equations is appropriate to the study
of the behavior of white dwarf and neutron stars. It will be
interesting to see what the modifications of the prediction of
GR are for their state of equilibrium.

Another topic for future work would be to establish the
form of the field equations for a non-rotating perfect fluid aim-
ing as a model to the study of stellar collapse.



Brazilian Journal of Physics, vol. 36, no. 2B, June, 2006 581

APPENDIX. A: PROOF OF (4.1)-(4.3)

After multiplication of (3.15) by α/γ, a differentiation by
parts of its first term gives

α
γ

U00 =
(

γ́
2γ

+
F2−ξr4

rB

)′

+(
γ′

2γ
+

F2−ξr4

rB
)(

2(1+ξ)r3

B
− ά

2α
− γ́

2γ
) . (A1)

When added to (3.16) we obtain

α
γ

U00 +U11 =−2r3(1+ξ)́
B

+
2(1+ξ)r3

B
(

γ́
γ

+
ά
α
−F2−ξr4

rB
) . (A2)

From (3.20) and (3.21) we find, using (3.8),

α
γ

U00 +U11 = κα
(ρ+ p)r4

B
. (A3)

Using (A2) and multiplying the whole thing by B/2αr2 equa-
tion (4.1) follows.

Next, from (A3) and (3.22) we find

B
2αr2 (

α
γ

U00 +U11)±U22 = κr2{ρ
p} . (A4)

Using (3.7) and (A2), equations (4.2) and (4.3) follow.

APPENDIX. B: PROOF OF (4.13)

In our case only the g[01] component survives in the last
term inside the parenthesis of (4.11). From (2.21) equation
(4.12) gives

Tα
σ = g(αν)(ρ+ p)uσuν− pδσ

α . (B1)

Thence, for our hydrostatic fluid, T0
0 = ρ and Ti

i = −3p.
Next, using (3.8) in the last relation of (3.2) we have

g[01] =
F2

ωr4 . (B2)

Taking this together with (3.24) in (4.11) gives

M =
Z √−g(ρ+3p)(1+

F2

r4 )drdΘdφ . (B3)

From (3.4) and (3.8)

√−g =
√

αγ(1+
F2

r4 )−1/2r2sinΘ . (B4)

Using here (4.5) and taking the result into (B3) equation (4.13)
follows.
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