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Nuclear Dependence of the Saturation Scale and its Consequences for the Electron-ion Collider
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We study the predictions of CGC physics for electron-ion collisions at high energies. The nucleus at high
energies acts as an amplifier of saturation effects. We have investigated some observables, using a generalization
for nuclear targets of the Iancu-Itakura-Munier model, and our results indicate that the experimental analysis of
these observables in the future electron-ion collider could discriminate between linear and saturation physics, as
well as constrain the behavior of the saturation scale.
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I. INTRODUCTION

The search for signatures of parton saturation effects has
been subject of an active research in the last years (for recent
reviews see, e.g. [1]). It has been observed that HERA data in
the small x and low Q2 region can be successfully described
with saturation models [2–4]. Moreover, the experimentally
measured total cross sections [5] and charm production cross
section [6] present the property of geometric scaling. The re-
cently observed [7] supression of high pT hadron yields at for-
ward rapidities in dAu collisions at RHIC follows the behavior
anticipated on the basis of CGC ideas [8–11]. All these results
provide strong evidence for saturation at HERA and RHIC.
However, more definite conclusions are not possible due to the
small value of the saturation scale in the kinematical range of
HERA and due to the complexity of dAu collisions, where we
need to consider the substructure of the projectile and the tar-
get, as well as the fragmentation of the produced partons. So
far, other models (without saturation included) are able to de-
scribe the same set of data (see e.g. Refs. [12, 13]). In order to
discriminate between these different models and test the CGC
physics, it would be very important to consider an alternative
search. To this purpose, the future electron-nucleus eRHIC
collider is ideal, because it can probably determine whether
parton distributions saturate or not and constrain the behavior
of the nuclear gluon distribution. After the eRHIC was pro-
posed, it became crucial to have some quantitative estimates
of the impact of saturation effects on observables. Some of
these estimates can be found in [14–16].

In the following section we present the color dipole for-
malism. In the next section we introduce the saturation scale
and its possible nuclear dependences. In sequence, a compar-
ison of the results of the model with available data on FA

2 is
shown, as well as the estimate of saturation effects on the nu-
clear structure function. Finally, we present our conclusions.

II. DIPOLE FORMALISM

At small x, Deep Inelastic Scattering (DIS) is most con-
veniently computed with the dipole formalism. The virtual
photon splits into a quark anti-quark dipole, which interacts
with the target [17]. In this formalism the structure function
of the target can be expressed as:

F2(x,Q2) =
Q2

4π2αem
(σT +σL) (1)

where

σT,L(x,Q2) =
∫ 1

0
dz

∫
d2r|ΨT,L(z,r,Q2)|2σdip(x,r) (2)

with

|ΨT (z,r, Q2)|2 =
6αem

4π2 ∑
f

e2
f ×

[z2 +(1− z)2]ε2 K2
1 (εr)+m2

f K2
0 (εr) (3)

and

|ΨL(z,r, Q2)|2 =
6αem

π2 ∑
f

e2
f ×

{
Q2 z2(1− z)2 K2

0 (εr)
}

(4)

The last two expressions represent the squared photon wave
function for transverse (T ) and longitudinal (L) photons, re-
spectively. The variable r defines the relative transverse sep-
aration of the pair (dipole) and z (1− z) is the longitudinal
momentum fraction of the quark (antiquark). The auxiliary
variable ε2 = z(1− z)Q2 + m2

f depends on the quark mass,
m f . The K0,1 are the McDonald functions and the summation
is performed over the quark flavors.

At high energy [18–20], σdip can be computed in the
eikonal approximation and it is given by:

σdip(x,r) = 2
∫

d2bN (x,r,b) (5)
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where N (x,r,b) is the forward scattering amplitude for a di-
pole with size r and impact parameter b. Here we assume
that the impact parameter dependence of N can be factorized
as N (x,r,b) = N (x,r)S(b). So, σdip(x,r) = σ0 N (x,r), with
σ0 = 2πR2

p (Rp is the proton radius).
In the IIM parametrization [4] the dipole-target forward

scattering amplitude was assumed to have the form:

N =





N0

(
rQs

2

)2
(

γs+
ln(2/rQs)

κλY

)

rQs ≤ 2

1− exp−a ln2 (brQs) rQs > 2
(6)

where Qs is the saturation scale discussed in the next section.
The expression in the second line of Eq. (6) has the correct
functional form for r À 2/Qs, as obtained either by solving
the BK equation [18, 21] or from the theory of the CGC [1].
This is strictly valid only to LO accuracy, but here it is used
merely as a convenient interpolation. The details of this in-
terpolation are unimportant for the calculation of σγ∗p. The
coefficients a and b are determined uniquely from the condi-
tion that N (rQs,Y ) and its slope be continuous at rQs = 2.
The overall factor N0 in the first line of Eq. (6) is ambiguous,
reflecting an ambiguity in the definition of Qs. The coeffi-
cients γs and κ are fixed to their LO BFKL values: γs = 0.63
and κ = 9.9.

III. SATURATION SCALE

The saturation momentum, Qs(x), is the value of the trans-
verse momentum below which saturation effects are expected
to be important in the gluon distribution. It can be estimated
in a simple geometrical way. Let’s assume that the trans-
verse area of one gluon in the target is approximately given
by αs/Q2 and that the number of gluons (per unit rapidity)
“seen” by an external probe is xG(x,Q2). The area occupied
by all these gluons is αs/Q2 xG(x,Q2). When this area be-
comes comparable to the total geometrical area of the target,
πR2

p, saturation sets on. This matching of areas gives an equa-
tion, which can be solved for Q yielding the especial value
Qs:

Q2
s (x)' αs

xG(x,Q2
s )

πR2
p

= Q2
0

(x0

x

)λ
(7)

where x0 = 0.3×10−4 and λ = 0.29. For a nuclear target we
expect that, in a first approximation, xG(x,Q2)→AxG(x,Q2),
Rp → RA = RpA1/3 and thus, from (7) we have:

Q2
s (x)→ A1/3×Q2

s (x) (8)

Moreover, we may generalize the IIM model to nuclear col-
lisions assuming the following basic transformation for the
parameter σ0:

σ0 → σA
0 = A2/3×σ0 (9)

These two transformations define what we call model IIM1.
For comparison we also consider another A-dependence of

the saturation momentum, which was suggested in [22]

Q2
s (x)→ Q2

s,A = [A1/3]1/δ×Q2
s (x) (10)

where δ = 0.79. Notice that, with this choice for δ the A de-
pendence of Qs becomes stronger. This feature arises from the
inclusion of the impact parameter in all calculations, as done
in [22]. The transformations (9) and (10) define the model
IIM2. Further studies of the A-dependence of Qs can be found
in Refs. [23, 24].

IV. RESULTS AND DISCUSSION

In this section we calculate the ratio:

R≡ 2FA
2

AFD
2

(11)

where D = deuteron, with the models IIM1 and IIM2 and
compare the results with the experimental data, taken by
the Fermilab E665 collaboration, using inelastically scattered
muons of average incident momentum 470 GeV/c [25]. These
data, taken over a wide kinematic range, have shown that the
proton and neutron structure functions are modified by a nu-
clear environment. The modifications depends on the parton
momentum fraction: for momentum fractions x < 0.1 and
0.3 < x < 0.7, a depletion is observed in the nuclear struc-
ture functions. The low x (shadowing region) and the larger
x (EMC region) are bridged by an enhancement known as an-
tishadowing for 0.1 < x < 0.3. We refer to the entire phe-
nomena as the nuclear shadowing effect [27]. As shown in
Ref. [26] these effects can be described by the DGLAP evolu-
tion equation with a suitable set of nonperturbative initial con-
ditions. Another possibility to describe the small-x behavior
of the ratio R is to consider multiple scattering of the projec-
tile on several target nucleons using Glauber-Gribov approach
[24]. Here we are interested in the low-x region (x < 10−3),
where it is believed that the behavior of R should be deter-
mined by high density QCD and parton saturation effects.
In our approach we do not include higher-x corrections and
rather try to understand the behavior of R in terms of parton
saturation. Strictly speaking, our formalism is valid only in
the very low x region, whereas the available data exist only
in the intermediate x region. In order to have an idea of how
well our results can reproduce the data we have to extrapo-
late them to intermediate x region. In doing this, we move
to the region dominated by the linear regime, where satura-
tion is not important and the dipole scattering amplitude is
dominated by the first line of expression (6). In this regime,
denoted color transparency regime, the scattering amplitude
should behave as (r Qs)2. However a careful analysis of this
expression shows that the parenthesis in the exponent never
becomes equal to one (!) and thus the (r Qs)2 behavior is
never really reached. This is a limitation of the IIM para-
metrization which is only valid in the saturation and extended
geometric scaling regimes. In our present exercise we insist
on the comparison with data, which are in general outside of
these regimes. Therefore we have some freedom to play a bit
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FIG. 1: Ratio R(x,Q2)≡ FA
2 (x,Q2)/F p

2 (x,Q2) as a function of x (a)
and Q2 (b). The predictions of the EKS parametrization are also
shown.

with the parameters of (6). Making use of this freedom, we
have multiplied the ratio R by a constant so that, at the point
x = 0.1, it coincides with one, in agreement with experimental
data. Since F2 is a function of Q2 this adjust has to be done
for each value of Q2.

In Fig. 1, we show the ratio R computed with both models,
IIM1 and IIM2, as a function of x [Fig. 1(a)] and Q2 [Fig.
1(b)] for a lead nucleus (A = 208). As expected the IIM2
model has a stronger dependence with A and therefore a larger
deviation from R = 1. For comparison we also show the ratio
R calculated with the EKS parametrization [26] of the ratio of
nuclear structure functions. This parametrization comes from
a global fit of the nuclear experimental data using DGLAP
evolution. Notice that, as mentioned above, at x = 0.1 the
EKS curve approaches one. Our curves IIM1 and IIM2 were
constrained to pass through this point as well.

The main difference between the predictions is the behavior
of the ratio R at small x. EKS predicts that the ratio is constant,
and the IIM1 and IIM2 predict that the ratio still decreases in
this limit (small x). We can see that for R as a function of
Q2, the predictions differ significantly. This behavior arises
because EKS is directly related to DGLAP evolution and the
IIM1 and IIM2 models are associated to the saturation and
geometric scaling regimes.

The deviation of R from one in the region 0.01 < x < 0.1
comes from the non-trivial A dependence of the dipole cross
section [Eqs. (8) and (10)]. In this region our Ansatz, (8) or
(10), leads to results similar to those obtained with for with the
Glauber-Gribov approach [27], although they are independent
from each other.

In Fig. 2 we show the ratio R as a function of x for a lead
nucleus A = 208. On the top of the figure we have included
the values of Q2, which are different for each x. The model
IIM1 (IIM2) is represented by the dashed (dash-dotted) line.
As it can be seen both models agree reasonably well with the
data, especially considering that, apart from a normalization
factor there was no free parameter.
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FIG. 2: Comparison of the results of the models IIM1 and IIM2 with
experimental data at small x for the ratio of Pb (lead) to D (deuteron),
from E665 Collaboration [25].
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FIG. 3: Ratio of the full to the linear predictions for the nuclear struc-
ture function as a function of x.

In order to obtain a more precise estimate of modification
in the observables F2 and FL by saturation physics, in Fig. 3
and Fig. 4 we present the ratios RF2 and RFL of full to linear
predictions for nuclear structure function FA

2 and FA
L . We con-

sider two typical values of the atomic number. As expected,
the contribution of the saturation physics increases at larger
nuclei and smaller values of x. In particular, for values of x
around 10−5, we predict a reduction of about 50% in the total
and longitudinal structure functions.

V. SUMMARY & CONCLUSIONS

In this work we have studied the predictions of CGC
physics for electron-ion collisions at high energies, using
a generalization for nuclear targets of Iancu-Itakura-Munier
model. We have estimated the ratio of the nuclear to the
deuteron (or proton) structure functions. We have compared
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FIG. 4: Ratio of the full to the linear predictions for the longitudinal
nuclear structure function as a function of x.

our results with experimental data from the E665 collabora-
tion and also with the EKS parametrization. Although the
EKS formula does not include saturation physics and although
the E665 data are taken at too low energy (for saturation ef-
fects to be dominant), the reached values of x and Q2 fall
already in the saturation domain, justifying the comparison.
For the sake of a preliminary estimate of saturation efects in
an electron-ion collider we have computed, with the existent
nuclear dependent saturation scales, the ratio of the F2 and
FL structure functions, finding a strong reduction (' 50 %)
of these ratios. The impact of these results encourages us to
further study the subject.
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Lett. 86, 596 (2001).
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