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Pairing and Coherence Transition in La1.82Sr0.18CuO4 Strongly
Two-Dimensional Superconductor
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We report conductivity fluctuation measurements in the La1.82Sr0.18CuO4 high temperature superconducting
material. The conductivity fluctuation analysis was performed by utilizing the concept of the logarithmic deriv-
ative of the conductivity excess. Close and above the critical temperature Tc, we experimentally determine the
occurrence of Gaussian and critical fluctuation regimes. Systematic measurements of conductivity as a function
of temperature were performed for several values of transport current j. Fluctuation analysis close to the zero re-
sistivity temperature Tc0 was performed and we clearly identified a characteristic exponent, which is analyzed by
the dynamical scaling theory and considering a percolation-like transition in a frustrated and disordered system.
The observation of a glass-like behavior in our experiments permits to interpret our results as corresponding to
a vortex-glass regime.
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I. INTRODUCTION

High temperatures, small coherence length and strong
anisotropy enhance the thermal fluctuation effects in high tem-
perature superconductors (HTS). Most studies in R-123 [1],
Bi-based [2] and Hg-based [3] HTS, reveal that the supercon-
ducting transition occurs in a process with two steps. When
temperature is decreased, the superconducting long range or-
der is first reached into the individual grains of polycrystalline
systems. This coherence in the amplitude of the order para-
meter has place for a temperature value according with the
bulk critical temperature Tc, and is currently known as pair-
ing transition [4]. Close and above Tc, the Aslamazov-Larkin
fluctuations [5] follow a quasi-universal behavior, which are
strongly related with Gaussian and genuinely critical fluctua-
tions. Below Tc, near the zero resistance state, the fluctuation
effects are enhanced by the granular-like disorder. This para-
coherent regime precedes the denominated coherence transi-
tion [6], which is characteristic of inhomogeneous systems.

The aim of this work is to synthesize and analyze the fluctu-
ation effects above and below Tc in the HTS La1.82Sr0.18CuO4.
We study carefully the resistive transition in presence of sev-
eral applied current densities, as specified in section II. Using
the logarithmic derivative of the conductivity excess, we ana-
lyze the experimental data and identify the critical regimes in
the normal state and near the zero resistance state.

II. EXPERIMENTAL TECHNIQUES

Polycrystalline samples of La1.82Sr0.18CuO4 were synthe-
sized by the recognized solid-state reaction recipe. A stoichio-
metric mixture of high purity (99.99%) chemical constituents
La2O3, SrO and CuO was mixed thoroughly, palletized and
calcined at temperature of 960 oC for 12 h. The calcined ma-
terial was reground, pressed as circular discs and sintered at
920 oC for 24 h in oxygen atmosphere. Structural analysis of

samples were performed by x-ray diffraction (XRD), which
reveal that this oxide crystallized in a tetragonal perovskite
with cell parameters a=b=3,79(4) Å and c=13,31(8) Å. Con-
ductivity measurements were carrying out by using the con-
ventional four probes DC technique. The temperature was
monitored by means a Pt-100 sensor. We determine that this
material evidenced a normal-superconductor bulk transition
at Tc = 34,5K. In order to study the coherence transition in
this strongly granular and disordered system, transport current
densities of 0.055, 0.555, 0.833, 1.111, 2.222 and 3.331 A/m2

were applied.

III. ANALYSIS METHOD

The analysis of results for the fluctuation contribution on
magnetoconductivity is performed by assuming that the con-
ductivity excess is given by [1]

∆σ = σ−σR, (1)

where σ = σ(T ) = 1
ρ(T ) is the measured conductivity and

σR = 1/ρR
is the regular term extrapolated from the high-

temperature behavior, as shown in Fig. 1. Notice that the fea-
ture of the normal resistivity as a function of temperature is
approximately linear, which permits to perform an easy linear
extrapolation to determine ρR. According to the Aslamazov-
Larkin (AL) proposal, the fluctuation magnetoconductivity di-
verges as a power law of the type

∆σ(T ) = Aε−λ, (2)

where A is a constant, ε = T−Tc
Tc

represent the reduced
temperature and λ is the critical exponent. Analogously to
the Kouvel-Fisher method of analysis of critical phenomena
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[7], the logarithmic temperature derivative of ∆σ is given
by d

dT ln(∆σ). Then, the inverse of logarithmic temperature
derivative is defined as

χσ =− d
dT

ln(∆σ) =
1

∆σ
d (∆σ)

dT
. (3)

By substituting equation (2) in (3) it is obtained that

1
χσ

=
1
λ

[T −Tc] . (4)

Thus, obviating more complex procedures of adjustment,
simple identification of linear temperature behavior in plots
of χ−1

σ as a function of T allows simultaneous determina-
tion of critical temperature Tc of fluctuation regime and the
corresponding critical exponent, λ. At T < Tc, by using the
same analysis method, we denote the critical exponents re-
lated with the paracoherent-coherent transition as λp and the
critical temperature as Tc0.
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FIG. 1: Resistive transition and regular resistivity behavior extrapo-
lated from the normal behavior.

IV. RESULTS AND DISCUSSION

Figure 2 shows the characteristics resistivity, ρ(T), tempera-
ture derivative, dρ(T )/

dT , and logarithmic derivative, χ−1
σ ,

as a function of T close to Tc. It is evident that the transi-
tion occurs in a two steps process. Figs. 2(a) and 2(b) per-
mit to separate two good differenced regimes: first, for high
temperature, we observe one sharp maximum in dρ(T )/

dT ,
which is related with intra-granular fluctuations (fluctuations
in the amplitude of the order parameter). These characteristic
fluctuations define the so called pairing transition [8]. The
temperature value of this maximum is close to the bulk criti-
cal temperature value Tc. For low temperature region a hump,
as a shoulder, is discerned in the temperature derivative of re-
sistivity. This regime corresponds to inter-granular fluctuation

[6], which is known as paracoherent state. At the temperature
value Tc0 the electrical resistivity vanishes and the phase of the
order parameter acquired long range order between the grains
of the system. This critical temperature characterizes the co-
herence transition. Fig. 2(c) exemplifies the analysis method
described in section III to obtain the critical exponents from
equation (4).

Figure 3 shows the fluctuation regimes in the normal state,
obtained from the analysis of the experimental data. Three
Gaussian fluctuation regions were clearly identified above Tc,
in the plot of χ−1

σ (T ). These were labeled by the indices λ2D,
λ3D−2D and λ3D, as specified in table I. We interpreted the
characteristic regimes on the basis of the Aslamazov-Larkin
theory [5], which proposes that the critical exponents are
related with the dimensionality d of the fluctuation system,
through the expression

λ = 2− d
2
. (5)

The exponents λ2D and λ3D correspond to homogeneous 2D
and 3D regimes. As showed in table I, the exponent λ3D−2D do
not corresponds to an integer dimensionality. It was demon-
strated by Char and Kapitulnik [9] that the fluctuation system
can be to develop in a space with fractal topology. In this case,
the fluctuation exponent is given by

λ = 2− d̃
2
, (6)

where d̃ describes the fractal dimensionality of the fluctuation
network.

By assuming that the coherence length of the fluctuation
regimes varies as in the Ginzburg-Landau theory, ξc (T ) =
ξc (0)ε−

1
2 , where ξc(0) represents the coherence length at

T=0, we determine the correlation length for the fluctuation
regimes along the c crystallographic axis. As show in table I,
the correlation length for the homogeneous 3D regime, corre-
sponds with the c lattice parameter. It is possible to infer that
this 3D Gaussian regime, determines the spatial limit for the
obtainment of long range order of the superconductivity in the
material bulk.

Closer to Tc, a fourth power law region is observed in Fig. 3.
This regime, which is labeled as λCR, is expected to be de-
scribes by the 3D-XY model, and corresponds to genuine
critical fluctuations [1]. The critical exponent for fluctuation
conductivity is given by

λCR = ν(2+ z−d +η) , (7)

where ν is the critical exponent for the coherence length, z
represents the dynamical critical exponent, d is the dimen-
sionality of the system and η is the exponent for the order-
parameter correlation function. Renormalization calculations
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TABLE I: Gaussian exponents, dimensionalities, reduced temperatures and coherence lengths for the fluctuation regimes.

Regime λ d ε ξc (Å)
λ2D 0.95±0.02 2.0 0.347 ≤ ε≤ 0.391 3.7 ≤ ξ≤ 3.9
λ3D−2D 0.73±0.04 2.5 0.086 ≤ ε≤ 0.140 6.1 ≤ ξ≤ 7.9
λ3D 0.54±0.07 3.0 0.028 ≤ ε≤ 0.032 12.9≤ ξ≤13.7
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FIG. 2: Superconducting transition in La1.82Sr0.18CuO4: (a) resistiv-
ity, ρ(T), (b) temperature derivative, dρ(T )/dT , and (c) logarithmic
temperature derivative, χ−1

σ .

for the 3D-XY model supply the values ν=0.67 and η=0.03
[1]. Our result λCR=0.32±0.08, implies that z = 1.5, which is
in agreement with the model-E (dynamical universality class
for the superfluid transition in 4He and for extreme type II
superconductors [10]).

As shown in Fig. 4, below Tc, in the approach to the zero
resistance state, we observe a characteristic scaling in χ−1

σ (T )
curves, for experimental data, in absence of magnetic field
and for several values of transport current density. This result
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FIG. 3: Fluctuation regimes identified in χ−1
σ as a function of tem-

perature.

has the characteristic feature of the high temperature super-
conductors for low applied magnetic fields [1,8].
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FIG. 4: Scaling regime, which is characteristic of the coherence tran-
sition for several transport current densities.

For the analysis of this fluctuation regime, we assume that
∆σ is given by equation (2), but using the critical exponent s
and the reduced temperature ε = T−Tc0

Tc0
. Thus, the critical ex-

ponent s for the fluctuation conductivity is given by equation
(7) for a system with relevant disorder. For the percolation-
like transition of granular superconductors [11], and in other
disordered and frustrated systems [12], it has been proposed
that ν=1.3. For d = 3 and assuming that η=0, the value s = 2
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would be correspond to a vortex-glass-like behavior, with ν=2
and z = 3 [13]. This picture is consistent with the expectations
from the 3D-XY model for disordered systems [14]. The ob-
servation of glass-like behavior in our experiments at zero ap-
plied fields suggests that frustration arises from possible cur-
rent generated self-field, which may attain non-negligible val-
ues near current constrictions in these granular samples.

V. CONCLUSION

We performed conductivity fluctuation measurements in the
La1.82Sr0.18CuO4 high temperature superconducting material.
Close and above Tc, the conductivity fluctuation analysis re-
veal the occurrence of two fluctuation regimes characterized
by the critical exponents λ3D = 0.54 and λ2D = 0.95, respec-
tively. These regions were interpreted as corresponding to 3D
and 2D Gaussian regimes, respectively. Another intermedia-
te regime was identified, which is related with fluctuations
develop in spaces with fractal topology between three and
two dimensionalities. A genuinely critical fluctuation region
with λCR = 0.32 was identified closer to Tc. This exponent
value corresponds to a critical dynamic exponent, which is
characteristic of the known as 3D-XY-E-model. This is the

dynamical universality class for the superfluid transition in
4He and also for extreme type II superconductors. Systematic
measurements of ∆σ as a function of temperature where per-
formed for several values of transport current j. Fluctuation
analysis close to Tc0 was performed and we clearly identified
a characteristic exponent λp = 2.0, which is analyzed by the
dynamical scaling theory and considering a percolation-like
transition in a frustrated and disordered system. The obser-
vation of a glass-like behavior in our experiments permits to
interpret our result as corresponding to a vortex-glass regime.
This is indeed suggestive of a percolation-like transition asso-
ciated to the connective nature of the granular array in cuprate
high temperature superconductors. The vortex feature was at-
tributed to current loops around the grains of material. These
loops produce vortices of the Josephson type, which frustrate
the granular system in similar form of low magnetic fields.
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