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We review some recent developments on BPS string solutions and monopole confinement in the Higgs (or
color) superconducting phase ofN = 2 andN = 4 super Yang-Mills theories. In particular, the monopole
magnetic fluxes are shown to be always integer linear combinations of string fluxes. Moreover, a bound for the
threshold length of the string breaking is obtained. When the gauge groupSU(N) is broken toZN , the BPS
string tension satisfies the Casimir scaling law. Furthermore, in theSU(3) case the string solutions are such
that they allow the formation of a confining system with three monopoles.

1 Introduction

It has long been believed that particle confinement at the
strong coupling regime should be a phenomenon dual to
monopole confinement in a (color) superconductor in weak
coupling. Therefore, the study of monopole confinement
in weak coupling may shed some light on particle confine-
ment. Since dualities are better understood for supersym-
metric theories, it is interesting to analyze monopole confi-
nement in these theories.

We shall review the results in [1, 2, 3] where we analyzed
monopole confinement in non-Abelian Yang-Mills-Higgs
theories at the weak coupling regime with two symmetry
breaking. In the first symmetry breaking the theory is in
the Coulomb phase with solitonic monopole solutions which
may fill representations of a non-Abelian group. Then, in
the second symmetry breaking, the theory is in the Higgs
or (color) superconducting phase with strings or flux tubes.
We show explicitly that in these theories always the magne-
tic fluxes of the monopoles are integer multiple of the strings
fluxes. The first symmetry breaking is due to the expectation
value of a complex scalarφ3 in the adjoint representation.
Then, the second symmetry breaking is due to two complex
scalarsφ1 andφ2 in complex conjugated representations. In
order to exist topological string solutions, two possible re-
presentations are considered: in [3]φ1 and φ2 are in the
adjoint representation. On the other hand, in [1, 2]φ1 is in
the representationRsym

kλφ
which is the symmetric part of the

direct product ofk fundamental representationsRλφ
, with

k ≥ 2, and inφ2 in the complex conjugated representation.
In particular, if k = 2, this is exactly the same represen-
tation as that of a diquark condensate, where by quark we
mean a fermion in a fundamental representationRλφ

of the
gauge groupG. We have chosen the potential to be the bo-

sonic part ofN = 4 or N = 2 super Yang-Mill (SYM)
theories with some deformation mass terms. These potenti-
als appear naturally from the BPS string conditions. One of
the main difference between the two analyzed representati-
ons forφ1 andφ2 mentioned above, is the following: when
one considers the representationRsym

kλφ
, during the second

symmetry breaking, just aU(1) factor insideG is broken to
a discrete subgroup, similarly to what happens in a super-
conductor, and it produces a monopole-antimonopole con-
finement. On the other hand, whenφ1 and φ2 are in the
adjoint representation, the full groupG is broken to a dis-
crete subgroup, which produce a color superconductor. For
G = SU(3) we showed that this kind of breaking produces
a confining system with three different monopoles, besides
the monopoles-antimonopole system. We also showed ex-
plicitly for G = SU(N) that the BPS string tensions satisfy
the Casimir scaling law. In [4, 5] was pointed out that this
deformendN = 4 SYM theories should have a weakly cou-
pled Higgs phase with magnetic flux tubes and this phase
should be dual to a strongly coupled confining phase in the
dual theory. One of our aims was to analyze many properties
of these magnetic flux tubes.

When the scalarsφ1 andφ2 are in the same represen-
tation as that of a diquark condensate, one could think of
φ1 andφ2 as being themselves diquark condensates. In this
case, we would have a situation quite similar to the one in
an ordinary superconductor, described by the Abelian-Higgs
theory with the scalar being a Cooper pair. IfG = SU(N),
the scalar(s) in the adjoint representation could also be
thought to be interpreted as quark-antiquark condensate(s).
However it is important to note that all the results described
here do not depend if the scalars are condensates or not. For
G = SU(3), these two kinds of condensates are the color
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sextet and octet. They are expected to exist in the color su-
perconducting phase of (dense) QCD at the weak coupling
[6, 7]. The effective theory describing these condensates are
not well known. One could think that the theory considered
here when the gauge group isG = SU(3), as been a toy mo-
del for an effective theory of these condensates. Then, one
conclude that an effective theory for these condensates could
have monopoles, flux tubes and monopole confinement, de-
pending on the form of the potential. In the dual theory,
one might conjecture that these scalars could be monopole-
monopole and monopole-antimonopole condensates.

2 DeformedN = 2 Super Yang-Mills
theories

As is well known, the Abelian-Higgs in the broken phase is
an effective theory for a superconductor with the complex
scalar fieldφ being interpreted as a electron pair conden-
sate. In this theory since theU(1) gauge group is broken to
a discrete subgroup there are topological flux tubes or string
solutions with string tensionsT satisfying

T ≥ 1
2
qφa2 |Φst| , (1)

where

Φst ≡
∫

d2xB3 =
2π

qφ
n , n ∈ Z (2)

is the string magnetic flux andqφ = 2e is the electric charge
of φ. The lower bound in (1) is attained by the BPS string.
If one puts a (Dirac) monopole and antimonopole in a su-
perconductor, their magnetic lines could not spread over
space but must rather form a string which gives rise to a
confining potential between the monopoles. This idea only
makes sense since the (Dirac) monopole magnetic flux is
Φmon = g = 2π/e , which is an integer multiple of the
string’s magnetic flux quantization condition (2), allowing
one to attach to the monopole two strings withn = 1. Then,
using the electromagnetic duality of Maxwell theory one
could map this monopole confining system in the weak cou-
pling regime to an electric charge confining system in the
strong coupling.

Let us generalize some of these ideas to a non-Abelian
theory. Let us consider an arbitrary gauge groupG, without
U(1) factors and such thatΠ0(G) = 0 = Π1(G), like for
exampleG = SU(N). In [1, 2], we considered the Lagran-
gian

L = −1
4
Gµν

a Gaµν +
1
2

(Dµφ3)
∗
a (Dµφ3)a +

+
1
2

2∑

i=1

(
Dµφ†i

)
(Dµφi)− V (φ) (3)

with potential given by

V (φ) =
1
2

(
3∑

p=1

(dp
a)2 +

2∑
m=1

F †mFm

)

where

d3
a =

e

2
(
φ∗3bifbcaφ3c + φ†mσ3

mnTaφm −mRe(φ3a)
)
,

dp
a =

e

2
(
φ†mσp

mnTaφn

)
, p = 1, 2,

F1 = e
(
φ†3aTa − µ

e

)
φ1,

F2 = e
(
φ3aTa − µ

e

)
φ2,

with σp being the Pauli matrices andTa being the genera-
tors ofG. This potential is the bosonic part ofN = 2 super
Yang-Mills with one flavor and a breaking mass term. The
scalarφ3a in the adjoint representation belongs to the vector
supermultiplet and the scalarsφ1 andφ2 belong to a mas-
sive hypermultiplet. The real parameterµ gives a bare mass
to φ1 andφ2 andm gives a bare mass to the real part ofφ3

and therefore breaksN = 2 supersymmetry toN = 0. In
[1], we started with a generic potential and have shown that
in order to obtain the BPS string conditions, the potential is
almost constrained to have this form. We shall consider the
theory in the weak coupling regime, and therefore we shall
not consider the quantum corrections to the potential.

3 Phases of the theory

Let us review very quickly some of the Lie algebra conven-
tions adopted. The Lie algebra generators satisfy the com-
mutation relations

[Hi,Hj ] = 0

[Hj , Eα] = αjEα,

[Eα,E−α] =
2α ·H

α2
,

where the upper index inαj means thej component of the
rootα. Let us denote byαi the simple roots andλi the fun-
damental weights which satisfy the relation

2λi · αj

α2
i

= δij .

The weights states|ω〉 of a representation satisfy

v ·H |ω〉 = v · ω |ω〉 .

As mentioned in the introduction, in [1, 2], we consideredφ1

in Rsym
kλφ

, the symmetric part of the direct product ofk fun-

damental representationsRsym
λφ

, wherek ≥ 2 andλφ is an
arbitrary fundamental weight. This representation possess
in particular the weight state|kλφ〉, which will be responsi-
ble for one of the symmetry breakings as we shall see.

Returning to our physical problem. The vacua must be
solutions ofV (φ) = 0 which is equivalent to

dp = 0 = Fm . (4)
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In order to the topological string solutions to exist, we look
for vacuum solutions of the form

φvac
1 = a |kλφ〉 ,

φvac
2 = 0 (5)

φvac
3 = bλφ ·H,

W vac
µ = 0 ,

wherea is a complex constant andb is real. As explained in
detail in [8, 1, 2], the above vacuum configuration produce
a symmetry breaking

G → Gφ3 ≡ [K × U(1)]/Zl →
→ Gφ1 ≡ [K × Zkl]/Zl (6)

whereK is a subgroup ofG andZl is a discrete subgroup
of U(1) andK. In the particular caseG = SU(N) and
λφ = λ1, the fundamental weight of theN dimensional re-
presentation, we have the symmetry breaking

SU(N) → Gφ3 ≡ [SU(N − 1)× U(1)]/ZN−1 →
→ Gφ1 ≡ [SU(N)× Zk(N−1)]/ZN−1 (7)

The first symmetry breaking is due toφvac
3 , with b 6= 0, and

the second is due toφvac
1 , with a 6= 0.

From the vacuum equations (4) one can conclude that

|a|2 =
mb

k
,

(
kbλ2

φ −
µ

e

)
a = 0 .

There are three possibilities:

(i) If mµ < 0 ⇒ a = 0 = b and the gauge groupG
remains unbroken.

(ii) If m = 0, µ 6= 0 ⇒ a = 0 andb can be any constant.
In this case,φvac

3 produces the first symmetry breaking
in (6) or (7) which corresponds to the Coulomb phase.

(iii) If mµ > 0 ⇒

|a|2 =
mµ

k2eλ2
φ

, b =
µ

keλ2
φ

(8)

and it happens the second symmetry breaking, which
corresponds to the Higgs or superconducting phase.

Let us analyze each of these phases.

4 Coulomb phase

This phase occurs whenG is broken toGφ3 . TheU(1) fac-
tor in Gφ3 is generated byφvac

3 . As we have seem, that
symmetry breaking can happen only whenm = 0 and
therefore theN = 2 symmetry is restored sincem was
a supersymmetry breaking parameter. In this phase, since

Π2(G/Gφ3) = Z, there exist magnetic monopoles. The sta-
ble or fundamental BPS monopoles are those with lowest
magnetic charge [9]. These fundamental monopoles, are
believed to fill representations of the gauge subgroupKv

[10, 11]. The magnetic charges of monopoles for a gene-
ral symmetry breaking has been obtained long time ago in
[12, 9]. In particular for the first symmetry breaking in (6)
or (7), the magnetic charge for the fundamental monopoles,
can be written as [2]

g ≡ 1
|φvac

3 |
∫

dSiRe(φa
3)Ba

i =
2π

e|λφ| =
2πk

qφ
(9)

where the integral is taking over the closed surface surroun-
ding the monopole,Ba

i ≡ −εijkGa
jk/2 are the non-Abelian

magnetic fields and

qφ = ek|λφ| . (10)

is electric charge ofφvac
1 [2]. In Eq. (9) appears the real

part ofφ3a since the vacuum configurationφvac
3 which pro-

duces the first symmetry breaking, only the real part is non-
vanishing.

These monopoles fill supermultiplets ofN = 2 su-
persymmetry and satisfy the mass formula

Mmon = |φvac
3 ||g| . (11)

In particular for the symmetry breaking

SU(N) → [SU(N − 1)× U(1)]/ZN−1,

since|λφ| = |λ1| =
√

(N − 1)/N , then1

g =
2π

e

√
N

N − 1
.

In this case, the fundamental monopoles are expected to fill
the(N − 1) representation ofSU(N − 1) [10, 11].

5 Higgs or superconducting phase

5.1 The BPSZk-string solutions

This phase occurs whenG is broken toGφ1 . Moreover,
sincem 6= 0, N = 2 supersymmetry is broken toN = 0.
In this phase, theU(1) factor in Gφ3 is broken to the dis-
crete subgroupZk and, like in the Abelian-Higgs theory,
the magnetic flux lines associated to thisU(1) factor can-
not spread over space. However, sinceG is broken in such
a way thatΠ1(G/Gφ1) = Zk, these flux lines may form
topologicalZk−strings. In [1], aZk string ansatz was cons-
tructed, associated to each of the(k − 1) non trivial group
elements of the discrete groupZk. We have also obtained
the BPS string conditions. Putting the ansatz into these BPS
conditions we obtained that the functions which appear in
the ansatz must satisfy exactly the same differential equati-
ons with same boundary conditions as for the BPS string in
the Abelian-Higgs theory. The existence of non trivial so-
lutions for these differential equations has been proven by
Taubes[13].

1Note that forG = SU(2), this result is obtained considering that|λ1| = 1/
√

2. However, for this group it is usually adopted the convention|λ1| = 1/2,
which results the standard chargeg = 4π/e for the stable monopole.
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5.2 Zk-string magnetic flux, monopole confi-
nement and the string tension

In this phase, the monopole’s magnetic lines associated to
the brokenU(1) factor can no longer spread radially over
space. However, theseU(1) could form flux tubes and the
monopole get confined. In order for that to happen, the mo-
nopole fluxΦmon in this U(1) direction, which is equal to
the magnetic charge (9), must be an integer multiple of the
string fluxesΦst in thisU(1) direction. We define

Φst ≡ 1
|φvac

3 |
∫

d2x Re(φa
3)Ba

3 (12)

similarly to the monopole magnetic flux definition (9), but
with surface integral taken over the plane perpendicular to
the string. We obtained for our BPSZk string solutions that

Φst =
2πn

qφ
, n ∈ Zk (13)

where each valuen is associated to aZk group elements
used to construct the(k − 1) solutions.

Therefore we can conclude thatΦmono can be equal for
example tok timesΦst for n = 1. This can be interpre-
ted that for one monopole we could attachk Zk-strings with
n = 1. That is consistent with the fact the setk Zk−strings
with n = 1 belongs to the trivial sector ofΠ1(G/Gφ1) and
therefore can terminate at some point. However, since it
has a non-vanishing magnetic flux it must terminate in a
magnetic source, i.e., a monopole. It is important to stress
the fact that being in the trivial topological sector does not
mean that this set of strings has total vanishing flux. For
the particular caseG = SU(2) and k = 2, the fieldφ1

is in the three dimensional representation which is the ad-
joint of SU(2). Then we can see that all these results are
consistent with some well-known results for theZ2 string of
SU(2) Yang-Mills-Higgs theory, as explained in [14, 15]. In
this theory there are at least two complex scalars in the ad-
joint representation which produce the symmetry breakings
SU(2) → U(1) → Z2. In the Higgs phase, the stable
Z2 string has flux2π/e. In this phase, two strings get atta-
ched to a ’t Hooft-Polyakov monopole with magnetic charge
g = 4π/e, and can produce the monopole-antimonopole
confinement.

We have shown that the string tension must satisfy the
bound [1]

T ≥ me

2
|φvac

3 | |Φst| = 1
2
qφ|a|2|Φst|, (14)

where|a| given by Eq. (8) is the modulus ofφvac
1 , which pro-

duces the second symmetry breaking. That result is very si-
milar to theU(1) result given by Eq. (1). The string tension
bound hold for the BPS string. Since the tension is constant,
it produces a confining potential between monopoles increa-
sing linearly with their distance. From string tension bound
one can obtain easily that the threshold lengthdth for the set
of strings to break producing a new monopole-antimonopole
pair, with masses (11), satisfies the bound[2]

dth ≤ 4
me

.

It is interesting to note that, unlike the Abelian-Higgs
theory, in our theory the bare massµ of φ1 andφ2 is not
required to satisfyµ2 < 0 in order to happen the spontane-
ous symmetry breaking. Therefore, since one could inter-
pret φ1andφ2 as monopole condensates (whenk = 2) in
the dual theory, the monopole mass do not need to satisfy
the problematic conditionM2

mon < 0 mentioned by ’t Hooft
[16]. The same thing happens in the theory where all the
scalar are in the adjoint, analyzed in the next sections.

6 DeformedN = 4 (or N = 2∗) super
Yang-Mills theories

Let us now analyze the monopole confinement in the the-
ory with three complex scalarsφs, s = 1, 2, 3, in the ad-
joint, as considered in [3]. Once more we shall consi-
der a gauge groupG without U(1) factors and such that
Π0(G) = 0 = Π1(G). Let us consider the Lagrangian

L = −1
4
GaµνGµν

a +
1
2

(Dµφ∗s)a (Dµφs)a − V (φ).

We shall consider the potential

V (φ) =
1
2

[
(da)2 + f†safsa

]
(15)

where
da ≡ e

2
(φ∗sbifabcφsc −mRe(φ3a)) , (16)

and

f1 ≡ 1
2

(e [φ3, φ1]− µφ1) ,

f2 ≡ 1
2

(e [φ3, φ2] + µφ2) , (17)

f3 ≡ 1
2

(e [φ1, φ2]− µ3φ3) .

This is the potential of the bosonic part ofN = 4 super
Yang-Mills (SYM) theory with some mass term deforma-
tions which break completely supersymmetry. If we set
m = 0, N = 1 supersymmetry is restored and we obtain
the potential considered in [4]. If furtherµ3 = 0 we reco-
ver the potential ofN = 2 with a massive hypermultiplet in
the adjoint representation. Finally, if alsoµ = 0, we obtain
N = 4. As usual, we shall denote byN = 2∗, N = 1∗
andN = 0∗ to the theories which are obtained by adding
deformation mass terms toN = 4 SYM theory.

7 Phases of the theory

The vacua of the theory are solutions of

Gµν = Dµφs = V (φ) = 0 . (18)

The conditionV (φs) = 0 is equivalent to

da = 0 = fsa . (19)
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We are looking for vacuum solutions which produce the
symmetry breaking

G → U(1)r → CG,

wherer is the rank ofG andCG its center. For the particu-
lar case ofG = SU(N), that corresponds to the symmetry
breaking

SU(N) → U(1)N−1 → ZN .

For the first phase transition magnetic monopoles will ap-
pear. Then, in the second phase transition magnetic flux
tubes or strings (ifCG is non-trivial) will appear and the
monopoles will become confined. In order to produce this
symmetry breaking we shall look for vacuum solutions of
the form

φvac
1 = a1T+ ,

φvac
2 = a2T− , (20)

φvac
3 = a3T3 ,

W vac
µ = 0 ,

wherea1 anda2 are complex constants,a3 is a real constant,
and

T3 = δ ·H , δ ≡
r∑

i=1

2λi

α2
i

=
1
2

∑
α>0

2α

α2
,

T± =
r∑

i=1

√
ciE±αi ,

with αi andλi being simple roots and fundamental weights,
respectively, and

ci ≡
r∑

j=1

(
K−1

)
ij

,

with Kij = 2αi ·αj/α2
j being the Cartan matrix. The gene-

ratorsT3, T± form the so called principalSU(2) subalgebra
of G. The vacuum configurationφvac

3 breaksG into U(1)r

and thenφvac
1 or φvac

2 breaks it further toCG. Let

αv
i ≡

2αi

α2
i

, λv
i ≡

2λi

α2
i

,

be the simple coroots and fundamental coweights, respecti-
vely. Then using the relations

λv
j = αv

i

(
K−1

)
ij

,

λv
i · αj = δij ,

we obtain from the vacuum equationsda = 0 = fsa, that
(
a3 − µ

e

)
ai = 0 , for i = 1, 2 ,

a1a2 =
µ3a3

e
,

ma3 = |a2|2 − |a1|2 .

Independently of the values of the mass parameters, this
system always has the trivial solutiona1 = a2 = a3 = 0,

which corresponds to the vacuum in which theG is unbro-
ken. In [3] the symmetry breakings produced by the vacuum
configuration given by Eq. (20) were analyzed depending
on the values of mass parameters. We concluded that in the
N = 4 andN = 2∗ theory (whereµ 6= 0), the gauge group
G can be broken toU(1)r which corresponds to the Cou-
lomb phase. Then, the gauge group can be further broken to
CG, if we add to theN = 2∗ theory, aN = 1 or N = 0
deformation (or both). Let us analyze each of these phases
in the next sections.

8 Coulomb phase

In this phaseG is broken toU(1)r and there exist solitonic
monopole solutions. As we have seen, this phase can only
occur for theN = 4 andN = 2∗ cases. That could happen,
for example, for energy scales in which one can consider
µ3 = 0 = m. In this phasea1 = 0 = a2 anda3 6= 0. In
principlea3 is an arbitrary non-vanishing constant. Howe-
ver, we shall fix

a3 =
µ

e

in order to have the same value as in the Higgs phase. The
vacuum solutionφvac

3 is the generator of a particularU(1) di-
rection which we callU(1)δ. Since for any rootα, δ ·α 6= 0,
we can construct a monopole solution for each rootα. The
associated monopole magnetic charge is

g ≡ 1
|φvac

3 |
∫

dSi Re(φa
3)Ba

i =
2π

e

δ · αv

|δ| . (21)

Clearly g is equal to the monopole magnetic flux in the
U(1)δ direction,Φmon. Similarly one can define magnetic
fluxesΦ(i)

mon associated to eachU(1) factor of the unbroken
groupU(1)r which gives

Φ(i)
mon =

2π

e
λv

i · αv. (22)

These are BPS monopoles with masses given by the
central charge of theN = 2 algebra [17, 18]. For mo-
nopoles with vanishing fermion number, their masses are
Mmon = |g||φvac

3 |. Not all of these monopoles are stable.
The stable or fundamental are the ones with lightest masses.
For the present symmetry breaking, their masses are

ML
mon =

2π

e|δ| |φ
vac
3 |. (23)

Note that, sinceG is completely broken toU(1)r, differently
from from the monopoles considered in the previous secti-
ons, here the fundamental monopoles do not fill representa-
tions of a non-Abelian unbroken group.
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9 Higgs or color superconducting
phase

In the Higgs or color superconducting phase,G is broken
to its centerCG. That can happen whenN = 2∗ is bro-
ken by anN = 1 or N = 0 deformation term (or both).
In this phase, the monopole chromomagnetic flux lines can-
not spread out radially over space. A phenomenon like that
is expected to happen in the interior of very dense neutron
stars [6]. However, since

Π1 (G/CG) = CG, (24)

if CG = ZN , these flux lines can form topologically nontri-
vial ZN strings. Then, the monopoles ofN = 2∗ become
confined in this phase, as shown below.

The string tension bound given by Eq. (14) holds forφ1

andφ2 in an arbitrary representation. In particular it holds
for the adjoint representation, which is the case we are con-
sidering here. Therefore, since|φvac

3 | = µ|δ|/e in this phase,
it results that [3]

T ≥ me

2
|φvac

3 | |Φst| = mµ

2
|δ| |Φst| (25)

where,Φst is the string flux, given by Eq. (12). The bound
in Eq. (25) holds for the BPS strings which satisfies the
equations [3]

B3a = ∓da, (26)

D∓φs = 0, (27)

fs = 0, (28)

Eia = B1a = B2a = D0φs = D3φs = 0, (29)

In order to have finite string tension, the string solution
must satisfy the vacuum equations asymptotically, which
implies that

φs(ϕ, ρ →∞) = g(ϕ)φvac
s g(ϕ)−1,

WI(ϕ, ρ →∞) = g(ϕ)W vac
I g(ϕ)−1 − 1

ie
(∂Ig(ϕ)) g(ϕ)−1,

whereρ is the radial coordinate and capital Latin lettersI, J
denote the coordinates1 and2; φvac

s andW vac
I are given by

Eq. (20) andg(ϕ) ∈ G. In order for the field configuration
to be single valued,g(ϕ + 2π)g(ϕ)−1 ∈ CG. Considering

g(ϕ) = exp iϕM ,

thenexp 2πiM ∈ CG. That implies thatM must be diago-
nalizable and we shall consider that

M = ω ·H.

Then, in order toexp 2πiω ·H ∈ CG,

ω =
r∑

i=1

liλ
v
i ,

where li are integer numbers; that is,ω must be a vector
in the coweight lattice ofG, which has the fundamental

coweightsλv
i as basis vectors. In principle, we could have

other possibilities forM which however we shall not discuss
here.

From this asymptotic configuration, in [3] we construct
a string anstaz and obtained that

Φst =
2π

e

δ · ω
|δ| (30)

Similarly to the monopole, we can define string fluxes
Φ(i)

st associated with the generators of eachU(1) factor of
U(1)r which results

Φ(i)
st =

2π

e
λv

i · ω . (31)

Let us now check if the magnetic fluxes of the monopoles are
compatible with the ones of the strings. Since an arbitrary
corootαv can always be expanded in the coweight basis as
αv =

∑r
i=1 niλ

v
i whereni are integer numbers, one can

conclude that the magnetic fluxes (21) or (22) of the mono-
poles can be expressed as an integer linear combination of
the string fluxes (30) or (31). Therefore, in the Higgs phase,
the monopole magnetic flux lines can no longer spread radi-
ally over the space, sinceG is broken to the discrete group
CG. However, they can form one or more flux tubes or
strings, and the monopoles can become confined. In the
next section, some concrete examples are given for the case
G = SU(3). We shall call this set of strings attached to a
monopole as confining strings. This set of confining strings
must have total flux given by Eq. (30) or (31) withω = αv.
That means that this set of confining magnetic strings be-
longs to the trivial topological sector ofΠ1(G/CG) since
exp 2πiαv · H = 1 in G. The fact that the set of confining
strings must belong to the trivial sector is consistent with the
fact that the set is not topologically stable and therefore can
terminate at some point, like for the strings which appear in
the other type of symmetry breaking. Once more, it is im-
portant to stress the fact that a string configuration belonging
to the topological trivial sector does not imply that its flux
must vanish as we can see from Eq. (30). Again all these re-
sults are generalizations of some results for theZ2 string of
SU(2) Yang-Mills-Higgs theory. In the Higgs phase, string
configurations can in principle exist with flux2πn/e for any
integern, although only the ones withn = ±1 are topolo-
gically stable. The ones with oddn belong to the topolo-
gically nontrivial sector while the ones with evenn belong
to the trivial sector. Therefore string configurations belon-
ging to the same topological sector do not have necessarily
the same flux and therefore are not related by (nonsingular)
gauge transformations [14, 19]. As we mentioned before,
the string configuration withn = 2, belonging to the trivial
sector and which can be formed by two strings withn = 1,
is the one which can terminate in the ’t Hooft-Polyakov mo-
nopole with magnetic chargeg = 4π/e. In more algebraic
terms one can say that this set of integer numbersn forms
the coweight latticeΛw of SU(2), the subset of even num-
bers2n form theSU(2) coroot latticeΛr, and the quotient
Λw/Λr ' Z2 corresponds to the center ofSU(2). Therefore
this quotient has two elements which are represented by the
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cosetsΛr and1 + Λr. Each coset corresponds to a string
topological sector, withΛr been the trivial one.

In [3], this result was generalized for an arbitraryG. Let
us for simplicity consider the caseG = SU(N). Since
SU(N) is simply laced (i.e.,α2 = 2 for all rootsα), we
do not need to distinguish between weights and coweights,
roots and coroots. In this case, the string topological sectors
are given by

Π1 (SU(N)/ZN ) = ZN

and are associated with theN cosets

Λr(SU(N)) andλi + Λr(SU(N)), i = 1, 2, ... , N − 1
(32)

where λi are the fundamental weights ofSU(N) and
Λr(SU(N)) is the root lattice ofSU(N). The coset
Λr(SU(N)) corresponds to the trivial topological sector.

Since the confining string configuration linking a mo-
nopole to an antimonopole belongs to the trivial topologi-
cal sector, it can break when it has enough energy to create
a new monopole-antimonopole pair. As was done for the
previous example of monopole confinement, one can obtain
a bound for the threshold lengthdthfor the string breaking,
using the relation

2ML
mon = Eth = Tdth ≥ me

2
|φvac

3 | |Φst| dth , (33)

whereEth is the string threshold energy andML
mon is the

mass of the lightest monopoles, given by Eq. (23). In the
above relation we used the string bound given by Eq. (25)
and did not consider a possible energy term proportional to
the inverse of the monopole distance, known as the Lucher
term. The modulus of the string flux,|Φst|, must be equal
to the modulus of the magnetic charges|g| of each confined
monopoles. Let us consider that|g| = 2π|δ ·βv|/|δ| with βv

being an arbitrary coroot. Therefore one can conclude from
Eq. (33), using Eq. (23), that

dth ≤ 4
me|δ · βv| .

10 Monopole confinement forSU(3)
broken to Z3

Let us considerG = SU(3). We have seen that the mag-
netic lines of a given monopole can form a set of flux tu-
bes or strings. However, there are countless different string
configurations with this magnetic flux. It is not clear at the
moment which could be the preferable one. The most “eco-
nomical” sets would be the ones formed by a strings and an
antistring as we shall see now.

For SU(3), the different string topological sectors are
associated with the cosets

Λr(SU(3)), λ1 + Λr(SU(3)) andλ2 + Λr(SU(3)).

One can, for example, construct string solutions associated
with each of the three weightsλ1, λ1−α1, λ1−α1−α2 of
the three dimensional fundamental representation. Since all

of them belong to the cosetλ1 +Λr(SU(3)), these string so-
lutions belong to the same topological sector. However, one
can observe from Eq. (30) that they do not have the same
flux Φst, similarly to theZ2 strings ofSU(2) theory. There-
fore these string solutions arenot related by gauge transfor-
mations sinceΦst is gauge invariant. One can construct the
corresponding antistring solutions associated with the nega-
tive of these weights, which form the complex-conjugated
representation3 and which belong to the cosetλ2 +Λr. The
magnetic fluxes of the monopoles associated with the six
non-vanishing roots ofSU(3) can easily be written using
these strings in the following way: for the monopoleα1

we can attach the stringsλ1 and−λ1 + α1. For the mono-
poleα2 we can attach stringsλ1 − α1 and−λ1 + α1 + α2.
For the monopoleα1 + α2 we can attach the stringsλ1 and
−λ1+α1+α2. And similarly for the other three monopoles
associated with the negative roots, just changing the signs.
The remaining three combinations of strings and antistring
have vanishing fluxesΦ(i)

st .

α α + α2 1 2

λλ − α1 1 1 λ −α −α1 1 1 1

α α + α2 1 2

λλ − α1 1 1 λ −α −α1 1 1 1 2

α1

λ1 1λ − α1 λ −α −α2

Figure 1. Strings attached to monopoles forG = SU(3).

α1

λ1

1 1

1 1λ − α 

−α −α1 2 α2
λ − α − α2

Figure 2. Confined system of three monopoles forG = SU(3).

One could draw the above set of strings attached to mo-
nopoles as shown in Fig.1, where the circles represent the
monopoles and the arrows are the string fluxΦ(i)

st . We repre-
sented the strings associated with weights in the fundamen-
tal representation by an arrow going out of the monopole
and for the antistrings we reversed the sense of the arrow
and simultaneously changed the sign of the weight. Then, in
addition to the monopole-antimonopole pairs one could also
conjecture about the formation of a confined system with the
monopolesα1, α2 and−α1 − α2 as shown in Fig. 2. Note
that since these monopoles are not expected to fill the th-
ree dimensional fundamental representation ofSU(3), that
system is not exactly like a baryon. With this configuration
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of monopoles with strings attached, one could also think of
putting one string in the north pole and the on the other in
the south pole, forming a configuration similar to the bead
described in [19]. One can easily extend this construction of
strings attached to monopoles and monopole confined sys-
tem to theSU(N) case[3].

11 String tension and Casimir scaling
law

The string tension is one of the main quantities to be deter-
mined in quark confinement in QCD. In these last 20 years
quite a lot of work has been done trying to determine this
quantity. There are mainly two conjectures for the string
tension: the “Casimir scaling law” [20] and the “sine law”
[21]. In these two conjectures the gauge groupG = SU(N)
is considered and a string in the representation associated
with the fundamental weightλk which can be obtained by
the antisymmetric tensor product ofk fundamental repre-
sentations associated withλ1. For the Casimir scaling con-
jecture, the string tension should satisfy

Tk = T1
k(N − k)

N − 1
, k = 1, 2, ..., N − 1, (34)

whereT1 would be the string tension in theλ1 fundamental
representation. On the other hand, for the sine law conjec-
ture,

Tk = T1

sin
(

πk
N

)

sin
(

π
N

) , k = 1, 2, ..., N − 1.

All these conjectures are concerned with the chromoelectric
strings. However, as we mentioned in the introduction, one
expects that chromomagnetic strings could be related to ch-
romoelectric strings by a duality transformation. Therefore
one could ask if the tensions of our chromomagnetic strings
satisfy one of the two conjectures.

For the caseG = SU(N), for a string associated with
the weightω, such that

ω = λk − βω,

whereλk is a fundamental weight ofSU(N) and βω ∈
Λr(SU(N)), the string tension bound, given by Eq. (25),
can be written as

Tλk−βω ≥
mµπ

e

∣∣∣∣
1
2

[C(λk)− λk · λk]− δ · βω

∣∣∣∣ , (35)

where
C(λk) = λk · (λk + 2δ)

is the quadratic Casimir associated with the fundamental re-
presentationλk. That expression can be also written as

Tλk−βω ≥
mµπ

e

∣∣∣∣∣
1
2

(
(N − 1)2

2N

k (N − k)
N − 1

)
− δ · βω

∣∣∣∣∣
(36)

Therefore the first term on the right-hand-side of this ine-
quality or, equivalently, the BPS string tension associated
with ω = λk can be written as

T BPS
λk

= T BPS
λ1

k (N − k)
N − 1

, k = 1, 2, ..., N − 1, (37)

where

T BPS
λ1

=
mµπ

2e

(N − 1)2

2N

is the BPS string tension associated withω = λ1. Hence
we explicitly showed that the BPS string tensions associated
with an arbitrarySU(N) fundamental weightλk satisfy the
Casimir scaling conjecture, given by Eq. (34).
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