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We review some recent developments on BPS string solutions and monopole confinement in the Higgs (or
color) superconducting phase &f = 2 and N = 4 super Yang-Mills theories. In particular, the monopole
magnetic fluxes are shown to be always integer linear combinations of string fluxes. Moreover, a bound for the
threshold length of the string breaking is obtained. When the gauge ¢fogpV) is broken toZy, the BPS

string tension satisfies the Casimir scaling law. Furthermore, irb&3) case the string solutions are such

that they allow the formation of a confining system with three monopoles.

1 Introduction sonic part ofV' = 4 or N = 2 super Yang-Mill (SYM)
theories with some deformation mass terms. These potenti-

It has long been believed that particle confinement at theals appear naturally from the BPS string conditions. One of
strong coupling regime should be a phenomenon dual tothe main difference between the two analyzed representati-
monopole confinement in a (color) superconductor in weak ons for¢; and¢, mentioned above, is the following: when
coupling. Therefore, the study of monopole confinement one considers the representatiﬁ*f:.&“;, during the second
in weak coupling may shed some light on particle confine- symmetry breaking, just&(1) factor insideG is broken to
ment. Since dualities are better understood for supersym-5 gjiscrete subgroup, similarly to what happens in a super-
metric theories, it is interesting to analyze monopole confi- conductor, and it produces a monopole-antimonopole con-
nement in these theories. finement. On the other hand, when and ¢, are in the

We shall review the results in [1, 2, 3] where we analyzed agjoint representation, the full grou is broken to a dis-
monopole confinement in non-Abelian Yang-Mills-Higgs  crete subgroup, which produce a color superconductor. For
theories at the weak coupling regime with two symmetry ¢ — 57/(3) we showed that this kind of breaking produces
breaking. In the first symmetry breaking the theory is in 5 confining system with three different monopoles, besides
the Coulomb phase with solitonic monopole solutions which {he menopoles-antimonopole system. We also showed ex-
may fill representations of a.non-Abehan group. Then_, IN plicitly for G = SU(N) that the BPS string tensions satisfy
the second symmetry breaking, the theory is in the Higgs the Casimir scaling law. In [4, 5] was pointed out that this
or (color) superconducting phase with strings or flux tubes. geformendV' = 4 SYM theories should have a weakly cou-
We show explicitly that in these theories always the magne- pjed Higgs phase with magnetic flux tubes and this phase
tic fluxes of the monopoles are integer multiple of the strings spould be dual to a strongly coupled confining phase in the

fluxes. The first symmetry breaking is due to the expectation 45| theory. One of our aims was to analyze many properties
value of a complex scalags in the adjoint representation.  of these magnetic flux tubes.

Then, the second symmetry breaking is due to two complex

scalarsp; and¢, in complex conjugated representations. In When the scalarg; and ¢, are in the same represen-
order to exist topological string solutions, two possible re- tation as that of a diquark condensate, one could think of
presentations are considered: in [8] and ¢, are in the ¢, and¢, as being themselves diquark condensates. In this
adjoint representation. On the other hand, in [1¢2]s in case, we would have a situation quite similar to the one in
the representatioRZ&“; which is the symmetric part of the  an ordinary superconductor, described by the Abelian-Higgs
direct product oft fundamental representatiods, ,, with theory with the scalar being a Cooper pairGlf= SU(N),

k > 2, and ing, in the complex conjugated representation. the scalar(s) in the adjoint representation could also be
In particular, ifk = 2, this is exactly the same represen- thought to be interpreted as quark-antiquark condensate(s).
tation as that of a diquark condensate, where by quark weHowever it is important to note that all the results described
mean a fermion in a fundamental representafian of the here do not depend if the scalars are condensates or not. For
gauge grougz. We have chosen the potential to be the bo- G = SU(3), these two kinds of condensates are the color
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sextet and octet. They are expected to exist in the color su-where
perconducting phase of (dense) QCD at the weak coupling

[6, 7]. The effective theory describing these condensates areq? = g (05 frca®se + d1,05 Tadm — mRe(¢34))
not well known. One could think that the theory considered :

here when the gauge groupds= SU(3), asbeenatoymo- d? = - (qunangaqsn) , p=1,2

del for an effective theory of these condensates. Then, one 2

conclude that an effective theory for these condensates couldF;, = e ( gaTa — H) o1,

have monopoles, flux tubes and monopole confinement, de- Z

pending on the form of the potential. In the dual theory, Fo» = e ((bgaTa - *) P2,

one might conjecture that these scalars could be monopole- €

monopole and monopole-antimonopole condensates. with o being the Pauli matrices arf, being the genera-

tors of G. This potential is the bosonic part &f = 2 super
. Yang-Mills with one flavor and a breaking mass term. The
2 Deformed/\/ =2 SUper Yang'M”IS scalargs, in the adjoint representation belongs to the vector
theories supermultiplet and the scalats and ¢, belong to a mas-
sive hypermultiplet. The real paramejegives a bare mass

As is well known, the Abelian-Higgs in the broken phase is 10 #1 and¢, andm gives a bare mass to the real parggf
an effective theory for a superconductor with the complex and therefore breaky” = 2 supersymmetry td" = 0. In
scalar fielde being interpreted as a electron pair conden- [1], we started with a generic potential and have shown that
sate. In this theory since tié(1) gauge group is brokento N order to obtain the BPS string conditions, the potential is

a discrete subgroup there are topological flux tubes or string@/Most constrained to have this form. We shall consider the
solutions with string tensior satisfying theory in the weak coupling regime, and therefore we shall

not consider the quantum corrections to the potential.

1
T > §q¢a2 |‘I’st| , (1)
where 3 Phases of the theory
_ 2 . 2'IT
Pt = /d 2By = in’ ne’ 2) Let us review very quickly some of the Lie algebra conven-

tions adopted. The Lie algebra generators satisfy the com-

is the string magnetic flux ang, = 2e is the electric charge mutation relations

of ¢. The lower bound in (1) is attained by the BPS string.
If one puts a (Dirac) monopole and antimonopole in a su-

perconductor, their magnetic lines could not spread over [Hi Hj] = 0_
space but must rather form a string which gives rise to a [Hj, Es] = o’Eq,
confining potential between the monopoles. This idea only 200- H
makes sense since the (Dirac) monopole magnetic flux is [EaE-a] = a2

®mon = g = 27m/e, which is an integer multiple of the

string’s magnetic flux quantization cgnditio_n (2), allowing where the upper index in’ means thg component of the
one to attach to the monopole two strings witk= 1. Then, roota. Let us denote by the simple roots and; the fun-

using the electromagnetic duality of Maxwell theory one damental weights which satisfy the relation
could map this monopole confining system in the weak cou-

pling regime to an electric charge confining system in the 2\ - o

strong coupling. 2 = i
Let us generalize some of these ideas to a non-Abelian !

theory. Let us consider an arbitrary gauge gréypvithout

U(1) factors and such thdly(G) = 0 = II; (G), like for

exampleG = SU(N). In [1, 2], we considered the Lagran-

The weights statelsy) of a representation satisfy

v-Hw)=v wlw).

gian
1 0 1 R As mentioned in the introduction, in [1, 2], we consideged
L = =G Gaw + 5 (Dugs), (D"é3), + in R\, the symmetric part of the direct product/efun-
12 damental representatiod®”", wherek > 2 and ., is an
+3 Z <DM(]§ZT ) (D"¢;) =V (9) (3) arbitrary fundamental weight. This representation possess
i=1 in particular the weight staté ), which will be responsi-

ble for one of the symmetry breakings as we shall see.
Returning to our physical problem. The vacua must be
solutions ofV (¢) = 0 which is equivalent to

with potential given by

1 3 2
V(e) =3 (Z (d5)” + F;Fm>

p=1 m=

" =0=F,. @)
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In order to the topological string solutions to exist, we look IIy(G/G,,) = Z, there exist magnetic monopoles. The sta-

for vacuum solutions of the form ble or fundamental BPS monopoles are those with lowest
magnetic charge [9]. These fundamental monopoles, are
o1 = alkdy), believed to fill representations of the gauge subgréilp
PR = 0 (5) [10, 11]. The magnetic charges of monopoles for a gene-
vac  _ py\ L fH ral symmetry breaking has been obtained long time ago in
\?,’ac o h [12, 9]. In particular for the first symmetry breaking in (6)
w,= =0, or (7), the magnetic charge for the fundamental monopoles,

wherea is a complex constant arids real. As explained in can be written as [2]

detail in [8, 1, 2], the above vacuum configuration produce _ 1 dS;Re(¢%) B 2w 27k )
‘gb\?/)ac‘ 3

a symmetry breaking Tl e
G — Gy =|KxUW)/2Z — where the integral is taking over the closed surface surroun-
3 — . .
. ding the monopoleB{ = —e¢;;1,G%,/2 are the non-Abelian
= Go =K x Zul/Z ®)  magnetic fields and !
where K is a subgroup oy andZ; is a discrete subgroup qe = ek|\y| . (10)
of U(1) and K. In the particular cas& = SU(N) and ) . vac
As = A1, the fundamental weight of th& dimensional re- IS electric charge 06*° [2]. In Eq. (9) appears the real
presentation, we have the symmetry breaking part of ¢3, since the vacuum configurati@®?® which pro-
duces the first symmetry breaking, only the real part is non-
SU(N) — Gy, =[SUN —1)x U1)]/ZNn-1 — vanishing.

These monopoles fill supermultiplets &f = 2 su-

= N) x Z Zn— 7 .
= G = SUW) < Zyvnl/Zn-1 (1) persymmetry and satisfy the mass formula

The first symmetry breaking is due ¢§2°, with b # 0, and Mimon = |6%|g] - (11)
the second is due 02, with a # 0. _ 3 _
From the vacuum equations (4) one can conclude that In particular for the symmetry breaking
o = mb SU(N) — [SUN -1)xU(1)]/Zn-1,
ko since|Ag| = [\i| = /(N — 1)/N, thert
(32 -L)a = 0.
e _ 21 N
I= VN T

There are three possibilities:
. In this case, the fundamental monopoles are expected to fill
@) f mp <0 = a =0 = bandthe gauge grou’  the(N — 1) representation a§U (N — 1) [10, 11].
remains unbroken.

@iy fm=0,u#0 = a=0andbcan be any constant. 5 H|ggs or Superconducting phase
In this caseg?° produces the first symmetry breaking

in (6) or (7) which corresponds to the Coulomb phase. 5.1 The BPSZ,-string solutions

(i) 1f mp >0 = This phase occurs whef is broken toGg,. Moreover,
) mpu M sincem # 0, N' = 2 supersymmetry is broken t§" = 0.
la|” = er)\é ;b= keAZ 8) In this phase, thé/(1) factor in G, is broken to the dis-

crete subgrou;, and, like in the Abelian-Higgs theory,

and it happens the second symmetry breaking, whichthe magnetic flux lines associated to thig1) factor can-
corresponds to the Higgs or superconducting phase. NOt spread over space. However, siliéés broken in such

a way thatll, (G/Gy,) = Zy, these flux lines may form

Let us analyze each of these phases. topologicalZ, —strings. In [1], aZ;, string ansatz was cons-
tructed, associated to each of ttie— 1) non trivial group

elements of the discrete grouf),. We have also obtained

4 Coulomb phase the BPS string conditions. Putting the ansatz into these BPS
conditions we obtained that the functions which appear in
This phase occurs wheH is broken toG,;,,. TheU (1) fac- the ansatz must satisfy exactly the same differential equati-

tor in G4, is generated by}?°. As we have seem, that ons with same boundary conditions as for the BPS string in
symmetry breaking can happen only when = 0 and the Abelian-Higgs theory. The existence of non trivial so-

therefore theN' = 2 symmetry is restored since: was lutions for these differential equations has been proven by
a supersymmetry breaking parameter. In this phase, sincefaubes[13].

INote that forG = SU(2), this result is obtained considering thai | = 1/+/2. However, for this group it is usually adopted the conventior] = 1/2,
which results the standard charge= 47 /e for the stable monopole.
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5.2 Z,-string magnetic flux, monopole confi- It is interesting to note that, unlike the Abelian-Higgs
nement and the string tension theory, in our theory the bare magsof ¢; and ¢, is not
required to satisfy:> < 0 in order to happen the spontane-
In this phase, the monopole’s magnetic lines associated topys symmetry breaking. Therefore, since one could inter-
the brokenU (1) factor can no longer spread radially over pret ¢;and ¢, as monopole condensates (when= 2) in
space. However, thegé(1) could form flux tubes and the  the dual theory, the monopole mass do not need to satisfy
monopole get confined. In order for that to happen, the mo-the problematic condition/2,,, < 0 mentioned by 't Hooft
nopole flux®mon in this U(1) direction, which is equal to  [16]. The same thing happens in the theory where all the

the magnetic charge (9), must be an integer multiple of the scalar are in the adjoint, analyzed in the next sections.
string fluxes®; in thisU (1) direction. We define

1
®a= / 2 Re(62) B 12 6 DeformedN =4 (or N' = 2*) super
similarly to the monopole magnetic flux definition (9), but Yang-MIIIS theories
with surface integral taken over the plane perpendicular to

; ; . ) Let us now analyze the monopole confinement in the the-
the string. We obtained for our BR%,; string solutions that Y b

ory with three complex scalaks;, s = 1,2, 3, in the ad-
2mn joint, as considered in [3]. Once more we shall consi-
Dst = Ev n € Z (13) der a gauge groug: without U(1) factors and such that
II4(G) = 0 = II; (G). Let us consider the Lagrangian
where each value is associated to & group elements
used to construct thg — 1) solutions.

Therefore we can conclude thét,on, can be equal for
example tok times &g for n = 1. This can be interpre- . .
ted that for one monopole we could attdelt;,-strings with Ve shall consider the potential
n = 1. That is consistent with the fact the ¢ef/;, —strings 1
with n = 1 belongs to the trivial sector a1, (G/Gy,) and Vig)=< [(da)2 + £ fea (15)
therefore can terminate at some point. However, since it 2
has a non-vanishing magnetic flux it must terminate in a \here
magnetic source, i.e., a monopole. It is important to stress d, = €
the fact that being in the trivial topological sector does not 2
mean that this set of strings has total vanishing flux. For gnd
the particular cas€&; = SU(2) andk = 2, the field ¢,

L= Guu G+ 1 (D), (D60, ~ Vo)

(¢:bifabc¢sc - mRe(¢3u)) ’ (16)

is in the three dimensional representation which is the ad- fi = 1 (e[ds, d1] — peb1)

joint of SU(2). Then we can see that all these results are % ’ 7

consistent with some well-known results for the string of _ 1 17
SU(2) Yang-Mills-Higgs theory, as explained in [14, 15]. In fo = glelts @]+ pd2), (47
this theory there are at least two complex scalars in the ad- 1

3

5 (elor, g2] — pas) -

joint representation which produce the symmetry breakings
SU(2) — U(1) — Zy. Inthe Higgs phase, the stable . , .
Z, string has flixer /e. In this phase, two strings get atta- 11iS IS the potential of the bosonic part of — 4 super

ched to a 't Hooft-Polyakov monopole with magnetic charge Yang-Mills (SYM) theory with some mass term deforma-
g = 4n/e, and can produce the monopole-antimonopole tions which break completely supersymmetry. If we set

[\

confinement. m = 0, N' = 1 supersymmetry is restored and we obtain
We have shown that the string tension must satisfy the th€ potential considered in [4]. If further; = 0 we reco-
bound [1] ver the potential of\" = 2 with a massive hypermultiplet in
the adjoint representation. Finally, if algo= 0, we obtain
me 1 N = 4. As usual, we shall denote by = 2*, N’ = 1*
T > — |02 |Ps| = = qolal®| s, 14 - ’ _ , 0 :
- 2 (957 | 2q¢|a| s (14) and A = 0* to the theories which are obtained by adding

where|a| given by Eq. (8) is the modulus g#2¢, which pro-  deformation mass terms #" = 4 SYM theory.

duces the second symmetry breaking. That result is very si-
milar to theU (1) result given by Eq. (1). The string tension
bound hold fo(r 'zhe BPSgstring.ySir?cé t%e tension g constant,7 Phases of the theory
it produces a confining potential between monopoles increa-
sing linearly with their distance. From string tension bound
one can obtain easily that the threshold lengftfor the set

of strings to break producing a new monopole-antimonopole
pair, with masses (11), satisfies the bound[2]

4
dthgi' da:O:fsa- (19)

me

The vacua of the theory are solutions of
G,uu = Du¢s = V(¢) =0. (18)

The conditionV/ (¢,) = 0 is equivalent to
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We are looking for vacuum solutions which produce the which corresponds to the vacuum in which thés unbro-

symmetry breaking
G—-UQ1) — Cg,

wherer is the rank ofG andC¢ its center. For the particu-
lar case ofG = SU(N), that corresponds to the symmetry
breaking

SU(N) — U(l)N_l — ZN.

For the first phase transition magnetic monopoles will ap-

ken. In [3] the symmetry breakings produced by the vacuum
configuration given by Eqg. (20) were analyzed depending
on the values of mass parameters. We concluded that in the
N =4 andN = 2* theory (whereu # 0), the gauge group

G can be broken td/(1)” which corresponds to the Cou-
lomb phase. Then, the gauge group can be further broken to
Cg, if we add to the\" = 2* theory,aN =1 orN = 0
deformation (or both). Let us analyze each of these phases
in the next sections.

pear. Then, in the second phase transition magnetic flux

tubes or strings (ilC is non-trivial) will appear and the

monopoles will become confined. In order to produce this
symmetry breaking we shall look for vacuum solutions of 8  Coulomb

the form
\I/ac — a1T+,
Py = aT_, (20)
PFC = asTs,
Wlac 0,

wherea; anda, are complex constants; is a real constant,
and

T

2 12
T3 = (51?7 6EZ¥:§Z£,
=1 a>0
T, = ZﬁEia,i,
i=1

with a; and\; being simple roots and fundamental weights,
respectively, and

T

= Z (K*I)ij ,

j=1

with K;; = 2ay - aj/af being the Cartan matrix. The gene-
ratorsT3, Ty form the so called principaddU (2) subalgebra
of G. The vacuum configuration}2® breaksG into U(1)"
and thenp}2° or p¥2°¢ breaks it further ta’. Let

2\
>, A=

2
a (&%

phase

In this phase&7 is broken toUU(1)" and there exist solitonic
monopole solutions. As we have seen, this phase can only
occur for the\V = 4 and A\ = 2* cases. That could happen,
for example, for energy scales in which one can consider
13 = 0 = m. In this phasei; = 0 = a; andag # 0. In
principle as is an arbitrary non-vanishing constant. Howe-
ver, we shall fix

i

as = —
e

in order to have the same value as in the Higgs phase. The
vacuum solutio¥?¢is the generator of a particul&i(1) di-
rection which we calU (1)s. Since for any rooty, 6 -« # 0,

we can construct a monopole solution for each o he
associated monopole magnetic charge is

27 6 - oY

9]

(21)

g= L / d5; Re(¢2) B
e

Clearly g is equal to the monopole magnetic flux in the
U(1); direction, ®mon. Similarly one can define magnetic

fluxes i, associated to eadl(1) factor of the unbroken
groupU (1)" which gives

(22)

mon —

o) = Q—W)\\l’ o
e

be the simple coroots and fundamental coweights, respecti-

vely. Then using the relations

)‘\JI' = O‘\Z'I(K_l)ij7
)‘\i/'aj = 5ij7

we obtain from the vacuum equatiods = 0 = f,,, that

(ag—%)ai — 0, fori=1,2,
pu3asz
ajaz = s
e
2 2
mas = |az|” —la1]” .

These are BPS monopoles with masses given by the
central charge of the/ = 2 algebra [17, 18]. For mo-
nopoles with vanishing fermion number, their masses are
Mmon = |g]|¢%529. Not all of these monopoles are stable.
The stable or fundamental are the ones with lightest masses.
For the present symmetry breaking, their masses are

2

Mrlﬁon = 6|5|

|65, (23)

Note that, sincé is completely broken t&/(1)", differently
from from the monopoles considered in the previous secti-

Independently of the values of the mass parameters, thisons, here the fundamental monopoles do not fill representa-

system always has the trivial solutian = as = a3 = 0,

tions of a non-Abelian unbroken group.
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9 Higgs or color superconducting
phase

In the Higgs or color superconducting phaégjs broken
to its centerCs. That can happen wheR™ = 2* is bro-
ken by anN' = 1 or A/ = 0 deformation term (or both).

In this phase, the monopole chromomagnetic flux lines can-
not spread out radially over space. A phenomenon like that
is expected to happen in the interior of very dense neutron

stars [6]. However, since

I, (G/C¢q) = Caq, (24)
if Ce = Zn, these flux lines can form topologically nontri-
vial Zy strings. Then, the monopoles &f = 2* become
confined in this phase, as shown below.

The string tension bound given by Eq. (14) holdsder
and ¢, in an arbitrary representation. In particular it holds

for the adjoint representation, which is the case we are con--1

sidering here. Therefore, sing#2°| = 1|d|/e in this phase,
it results that [3]
me m
T2 |60 [oud = - 0l [0 (25)
where,®; is the string flux, given by Eq. (12). The bound

in Eq. (25) holds for the BPS strings which satisfies the
equations [3]

B3, Fdq (26)
Dz¢s = 0, (27)
fo = 0, 28)

Eis = Bia= B = Do¢s = D395 =0, (29)

In order to have finite string tension, the string solution
must satisfy the vacuum equations asymptotically, which
implies that

9(0)9 ()71,
g(@)W%%(p)~!

bs(p, p — 00)
L Or9(0)) o),

Wi(e,p — o0) — =

wherep is the radial coordinate and capital Latin lettérs
denote the coordinatdsand2; ¢ andWy* are given by
Eg. (20) andy(¢) € G. In order for the field configuration
to be single valuedj(p + 27)g(p)~! € Cg. Considering

g(p) = expipM ,

thenexp 2miM € Cg. That implies that\/ must be diago-
nalizable and we shall consider that

M=w-H.

Then, in order texp 27miw - H € Cg,

w = i ZZ>\\Z/,
i=1

wherel; are integer numbers; that is, must be a vector
in the coweight lattice of7, which has the fundamental

Marco A. C. Kneipp

coweights)\Y as basis vectors. In principle, we could have
other possibilities fod/ which however we shall not discuss
here.

From this asymptotic configuration, in [3] we construct
a string anstaz and obtained that

_2mdw

Py = (30)

Similarly to the monopole, we can define string fluxes

<I>§§) associated with the generators of edchl) factor of
U(1)" which results

(&

oy : (31)

Let us now check if the magnetic fluxes of the monopoles are
compatible with the ones of the strings. Since an arbitrary
coroota can always be expanded in the coweight basis as
« Z;”:l n;\Y wheren, are integer numbers, one can
conclude that the magnetic fluxes (21) or (22) of the mono-
poles can be expressed as an integer linear combination o
the string fluxes (30) or (31). Therefore, in the Higgs phase,
the monopole magnetic flux lines can no longer spread radi-
ally over the space, sindg is broken to the discrete group
C¢. However, they can form one or more flux tubes or
strings, and the monopoles can become confined. In the
next section, some concrete examples are given for the case
G = SU(3). We shall call this set of strings attached to a
monopole as confining strings. This set of confining strings
must have total flux given by Eq. (30) or (31) with= «".

That means that this set of confining magnetic strings be-
longs to the trivial topological sector df;(G/C¢) since
exp2mia’ - H = 1in G. The fact that the set of confining
strings must belong to the trivial sector is consistent with the
fact that the set is not topologically stable and therefore can
terminate at some point, like for the strings which appear in
the other type of symmetry breaking. Once more, it is im-
portant to stress the fact that a string configuration belonging
to the topological trivial sector does not imply that its flux
must vanish as we can see from Eq. (30). Again all these re-
sults are generalizations of some results forAhestring of
SU(2) Yang-Mills-Higgs theory. In the Higgs phase, string
configurations can in principle exist with fl@«n /e for any
integern, although only the ones with = +1 are topolo-
gically stable. The ones with odd belong to the topolo-
gically nontrivial sector while the ones with everbelong

to the trivial sector. Therefore string configurations belon-
ging to the same topological sector do not have necessarily
the same flux and therefore are not related by (nonsingular)
gauge transformations [14, 19]. As we mentioned before,
the string configuration withh = 2, belonging to the trivial
sector and which can be formed by two strings with- 1,

is the one which can terminate in the 't Hooft-Polyakov mo-
nopole with magnetic charge= 4x/e. In more algebraic
terms one can say that this set of integer numbefsrms

the coweight lattice\,, of SU(2), the subset of even num-
bers2n form the SU(2) coroot latticeA,, and the quotient
Aw/Ar ~ Z, corresponds to the center 8t/ (2). Therefore

this quotient has two elements which are represented by the

~
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cosetsA; and1 + A,. Each coset corresponds to a string
topological sector, with\; been the trivial one.

In [3], this result was generalized for an arbitr&ry Let
us for simplicity consider the cas@ = SU(N). Since
SU(N) is simply laced (i.e.a®> = 2 for all rootsa), we
do not need to distinguish between weights and coweights,
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of them belong to the cosat + A;(SU(3)), these string so-
lutions belong to the same topological sector. However, one
can observe from Eq. (30) that they do not have the same
flux @, similarly to theZ, strings ofSU(2) theory. There-
fore these string solutions anet related by gauge transfor-
mations sincebg; is gauge invariant. One can construct the

roots and coroots. In this case, the string topological sectorscorresponding antistring solutions associated with the nega-

are given by
IL (SU(N)/Zn) =

and are associated with thé cosets

ZN

))7 N -1

(32)
where \; are the fundamental weights U (V) and
A(SU(N)) is the root lattice of SU(N). The coset
A(SU(N)) corresponds to the trivial topological sector.

Since the confining string configuration linking a mo-

nopole to an antimonopole belongs to the trivial topologi-
cal sector, it can break when it has enough energy to creat
a new monopole-antimonopole pair. As was done for the

A(SU(N)) andA; + A(SU(N)), i=1,2, ...,

previous example of monopole confinement, one can obtain

a bound for the threshold lengtif*for the string breaking,
using the relation
2ML _ Eth —_ Tdth

mon —

|¢“a°| | d™,  (33)

where E™ is the string threshold energy ard),,, is the

mass of the lightest monopoles, given by Eq. (23). In the
above relation we used the string bound given by Eq. (25)
and did not consider a possible energy term proportional to

the inverse of the monopole distance, known as the Lucher

term. The modulus of the string fluyPg|, must be equal

to the modulus of the magnetic charggsof each confined
monopoles. Let us consider that = 2|0 - 5Y|/|d| with 5"
being an arbitrary coroot. Therefore one can conclude from
Eq. (33), using Eq. (23), that

4
~ meld- BV

th

10 Monopole confinement forSU (3)
broken to Z;

Let us considelG = SU(3). We have seen that the mag-
netic lines of a given monopole can form a set of flux tu-

bes or strings. However, there are countless different string

configurations with this magnetic flux. It is not clear at the
moment which could be the preferable one. The most “eco-

tive of these weights, which form the complex-conjugated
representatiof and which belong to the coskf + A;. The
magnetic fluxes of the monopoles associated with the six
non-vanishing roots obU(3) can easily be written using
these strings in the following way: for the monopale

we can attach the strings and—\; + «;. For the mono-
poleas we can attach strings; — «; and—A; + a; + as.

For the monopoley; + a2 we can attach the stringg and

— A1 + a1 +as. And similarly for the other three monopoles
associated with the negative roots, just changing the signs.
The remaining three combinations of strings and antistring

drave vanishing quxeé( ),

o

Figure 1. Strings attached to monopoles@be= SU (3

Figure 2. Confined system of three monopolesGose SU(3).

One could draw the above set of strings attached to mo-
nopoles as shown in Fig.1, where the circles represent the

monopoles and the arrows are the string mii? We repre-

nomical” sets would be the ones formed by a strings and ansented the strings associated with weights in the fundamen-

antistring as we shall see now.
For SU(3), the different string topological sectors are
associated with the cosets

A(SU(3)), A1+ A(SU(3)) and s + A(STU(3)).

tal representation by an arrow going out of the monopole

and for the antistrings we reversed the sense of the arrow
and simultaneously changed the sign of the weight. Then, in
addition to the monopole-antimonopole pairs one could also
conjecture about the formation of a confined system with the
monopolesy;, ap; and—a; — as as shown in Fig. 2. Note

One can, for example, construct string solutions associatedhat since these monopoles are not expected to fill the th-

with each of the three weights, \; — oy, A\ — a3 — ag Of

ree dimensional fundamental representatiob&f3), that

the three dimensional fundamental representation. Since alkystem is not exactly like a baryon. With this configuration
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of monopoles with strings attached, one could also think of where

putting one string in the north pole and the on the other in gps  mum (N — 1)2

the south pole, forming a configuration similar to the bead "= % N

described in [19]. One can easily extend this construction of . . . . .

strings attached to monopoles and monopole confined syslS the B.P.S string tension assomateq with= .)‘1' Hencg

tem to theSU (V) case[3)]. we expllcnly showed that the BPS string tensions associated
with an arbitrarySU (V) fundamental weight,, satisfy the

Casimir scaling conjecture, given by Eq. (34).

11 String tension and Casimir scaling
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The string tension is one of the main quantities to be deter-
support.

mined in quark confinement in QCD. In these last 20 years
quite a lot of work has been done trying to determine this
guantity. There are mainly two conjectures for the string
tension: the “Casimir scaling law” [20] and the “sine law”
[21]. In these two conjectures the gauge grélip- SU (V)

is considered and a string in the representation associated™]
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