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Kondo Spin Splitting with Slave Boson
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The slave boson (SB) technique is employed to study the Zeeman spin splitting in a quantum dot. Unlike
traditional SB method, each spin is renormalized differently. Two geometries are compared: side connected and
embedded. In both cases, it’s shown a non linear behavior of the splitting as a function of the magnetic field
applied. The results are in line with the latest experiments.
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I. INTRODUCTION

When a spin is localized in a quantum dot (QD) coupled to
metallic leads, local spin fluctuations (LSF) produce the spin
of electrons in the leads to screen the localized spin giving
rise to the Kondo Effect (KE) in a similar way as it happens
on a magnetic impurity in a host metal. The KE was first
theoretically proposed in [3] and was observed in quantum
dots in [1, 2]. When this effect takes place, a sharp resonance
in the local density of states is developed at the Fermi level of
the system.

If a magnetic field is applied on the QD, the LSF are
quenched and the Kondo Regime (KR) tends to disappear
which produces the resonance to split in first place and to van-
ish later for a strong enough magnetic field. All these effects
have consequences observable in the differential conductance
of the system.

The way in which the QD is coupled to the leads plays an
important role in the action of the KE on the system. It’s been
considered two geometries depicted in Fig. 1. In an embed-
ded geometry (EG), in which the QD is between two leads,
the resonance provides a channel of conduction and the con-
ductance reaches the value G = 2e2/h = 2G0. On the other
hand, in a side connected geometry (SCG), the QD is coupled
to one site of an infinite linear chain and the resonance pro-
duces a channel of conduction that interferes with the direct
channel of the chain causing the conductance to vanish for a
particular value of the gate potential.

In recent experiments it was possible to do a precise mea-
sure of ∆, the Zeeman spin splitting (ZS), for a QD in the KR
[5, 6]. The main results of these experiments seems to be con-
troversial: while in the former [2] is found ∆ ∼ ∆B = 2gµBB
(where 2∆B is the magnetic Zeeman energy, g is the gyromag-

FIG. 1: Sketch of the geometry of the two topologies considered in
this work. Upper panel, SCG. Lower panel, EG.

netic factor, µB is the Bohr magneton, and B is the magnetic
field) and begins after a critical field is reached (Bc), in the last
the existence of a critical field is also observed, but the split-
ting is larger than ∆B and does not extrapolate to zero at zero
field. As a consequence, ∆B at Bc results significantly lower
than kBTK , being TK the Kondo temperature.

From a theoretical point of view the question was addressed
following different approaches. The splitting was initially pre-
dicted [7] to be±gµBB around the Fermi level, in line with [2].
However, more recent calculations [8] shows that the splitting
will be observable only above Bc, when ∆B becomes compet-
itive with the Kondo temperature kBTK (kB: Boltzmann con-
stant), which defines the strength of the spin screening. In
addition, Moore and Wen [9] were successful in establishing
the relationship between the field induced spin splitting in the
spectral function of the system in equilibrium and the splitting
that appear in the differential conductance when the system is
slightly out of equilibrium. They also predict that the spin
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screening characteristic of the KR should reduce the magnetic
field splitting, i.e ∆ < ∆B. Unfortunately these theories were
not capable of explaining the phenomenology seen in the lat-
est experiments.

In order to obtain the experimental behavior of ∆, it was
employed the SB method in a new way. Unlike traditional
SB [10] and similar X-boson approach [4], each spin species
was renormalized differently. This allows to show in a natural
way how magnetization merges in the system when a mag-
netic field is applied.

In the following section the new slave boson method is ex-
plained and it’s shown the relevant quantities considered in
this proceeding. Next, the results obtained are presented and
it’s given a discussion from them. Finally, the relevant points
are summarized.

II. METHOD

The system is modeled with the Anderson impurity Hamil-
tonian with magnetic field and infinite Coulomb repulsion at
the QD which is labeled as site 0 in both of the geometries.
It can be identified three parts: the leads (HL), the QD (HQD)
and the connection between them (HT ). The leads parts cor-
respond to an infinite linear chain in SCG and to two semi
infinite ones in the EG case. The other two parts reads

HQD = ∑
σ

εσn̂0σ +Un̂0↑n̂0↓; εσ =
{

Vg +B σ =↑
Vg−B σ =↓

HT = ∑
iσ

V (a†
iσa0σ +a†

0σaiσ),

σ = {↑,↓}; n̂0σ = a†
0σa0σ; i =

{ −1,1 EG
1 SCG

where Vg is the gate potential at the QD site, U is the Coulomb
repulsion taken infinite for calculations and V is the hopping
between the QD and the leads. It’s adopted |gµB| = 1 and all
energies are expressed in units of the hopping of linear chain
(t = 1, see Fig. 1), therefore the bandwidth is D = 4.

The new SB method consists in defining a boson field as-
sociate to each electron spin which introduces states that can
only be occupied by a spin σ but not by σ̄. This way, the
fermion operators are replaced by a product of a new fermion
(c) and a boson (b) operators

a†
0σ 7→ c†

0σb†
σ. (1)

In order to avoid double occupancy in the QD, it must be
imposed two constrain conditions

2n̂0σ +b†
σ̄bσ̄−b†

σbσ +b†
σbσb†

σ̄bσ̄ = 1. (2)

Note that when both of the spins species are equivalent, the
above equations merges in the usual constrain of the SB for-
malism [10] where the probability that the site is empty is
the product of the probabilities of being empty of spin up and
spin down. Next, mean value is taken in (2) and the boson
operators are treated in mean field approximation; defining

zσ = 〈bσ〉 and taking the Fermi energy εF = 0 to compute
〈n̂0σ〉= n0σ, the above equation results

2n0σ + z2
σ̄− z2

σ + z2
σz2

σ̄ = 1. (3)

Incorporating (3) to the Hamiltonian through Lagrange
multipliers γ↑ and γ↓, two more conditions are obtained (one
for each spin specie) minimizing it respect to zσ:

KV 〈a†
1σc0σ〉+ z2

σ̄(γσ + γσ̄)+ γσ̄− γσ = 0; K =
{

1 SCG
2 EG

(4)
This way, a non linear system of 4 equations is posed. This

system is numerically solved and the parameters γσ and zσ are
obtained. These values determine the Hamiltonian and then
diagonal and non diagonal elements of the Green function are
calculated. Particularly, it’s specialized the Green function at
the QD

G0σ(E) = 1/[E − εσ−2γσ−K (V zσ)2 gL(E)], (5)

which presents a resonance at the Fermi level due to the renor-
malization of the energy. This resonance has a width given by

W = K
[

(V z↓)2

1− (K−1)(V z↓)2 +
(V z↑)2

1− (K−1)(V z↑)2

]
(6)

what will be useful to discriminate the Kondo Regime.
In the expression of G0σ(E) (5), gL(E) is the undressed

Green function of the leads which in each geometry is explic-
itly:

gL(E) =





EG : SCG :
E+
√

E2−4t2

2t2
1√

E2−4t2
: E <−2t

E−i
√

4t2−E2

2t2
−i√

4t2−E2
:−2t < E < 2t

E−
√

E2−4t2

2t2
−1√

E2−4t2
: 2t < E

. (7)

Observe that, inside the band, gL(E) has real and imaginary
part for the EG but is purely imaginary for the SCG case. Due
to this, the renormalized energies of the QD level

Eσ =
εσ +2γσ

1− (K−1)(V zσ)2 , (8)

has a factor correction only for the EG. The quantity

Γσ =
2γσ

1− (K−1)(V zσ)2 , (9)

can be interpreted as the renormalization of the energy level
by the interaction. This interaction dependent renormalization
is different for up and down levels what gives an additional
contribution to the splitting

∆ = E↓−E↑ =
Vg +B+2γ↓

1− (K−1)(V z↓)2 −
Vg +B+2γ↑

1− (K−1)(V z↑)2 .

(10)
From this last expression, it can be noted that in the SCG (K =
1), Vg doesn’t affect the splitting ∆.

Once all elements are gathered, the transmission T (E)
through the system is quantified.
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FIG. 2: Embedded geometry. From left to right and top to bottom: Three solutions found for ∆ and the average as a function of B, parameter
evolution with B and values for ∆Γ magnetization ∆n, resonance width and splitting compared, transmission as a function of E for three
magnetic field values. Vg =−0.5 in all panels except the first. The fields at which transmission is plotted are indicated with vertical lines.

III. RESULTS

The values of V were chosen in both geometries in such a
way they gave approximately the same Kondo resonance (0.35
in the EG and 0.65 in the SCG).

In the first panel of Figs. 2 and 3 is plotted the splitting ∆ as
a function of B. When the gate potential is not much low, the
solution is unique corresponding to the magnetization aligned
with the magnetic field applied but, when the gate potential
was low enough, it was found a magnetic field value below
which there were three solution regimes. One of them cor-
responds to a solution in which the magnetization is aligned
with the magnetic field and has the lowest energy; the solution
with the magnetization opposed to the field has the highest en-
ergy and the last one, which corresponds to a solution with low
magnetization, has an intermediate value of energy. This or-
der changes at zero field; the lowest energy is for the solution
with low magnetization while the other two have the same en-
ergy. It can be seen that in both of the geometries there are
three solutions with Vg =−0.5 and only one with Vg =−0.3.

The final solution was obtained averaging each quantity
weighted with a Boltzmann factor introducing a little temper-
ature kBT = 10−6 much less than the width of the resonance

(6)

〈A〉 = ∑3
i=1 CiAi

∑3
i=1 Ci

; Ci = e−(Ei−Emin)/kT , (11)

Ai = {zσi,εσi,nσi,∆Γi,∆ni}. (12)

Here, i labels each one of the three found solutions.
The results in Figs. (2) and (3) show that ∆ grows much

more fast at low fields than expected when Vg is lowered. This
is due to the different renormalization produced by the inter-
action in each spin energy level.

The resonance width (6) resulted to lie between approxi-
mately (0.1−0.12) in EG and between (0.09−0.1) in SCG,
which is in line with the Kondo temperature obtained with the
formula [11]

kBTK = Dexp
(
− x|Vg|

2KV 2

)
; x =

{
2π SCG
π EG (13)

since it is approximately kBTK ≈ 0.08. Therefore, it can be
said that the resonance width is practically the Kondo temper-
ature.

This averaged solution shows a fast growth and saturates to
the aligned solution. Parameters also vary quickly at first and
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FIG. 3: Side connected geometry. From left to right and top to bottom: Three solutions found for ∆ and the average as a function of B,
parameter evolution with B and values for ∆Γ magnetization ∆n, resonance width and splitting compared, transmission as a function of E for
three magnetic field values. Vg =−0.5 in all panels except the first. The fields at which transmission is plotted are indicated with vertical lines.

then continue evolving asymptotically z↑→ 1 and z↓→ 0. The
magnetization

∆n = n0↑−n0↓ (14)

and the difference

∆Γ = Γ↑−Γ↓ =
2γ↑

1− (K−1)(V z↑)2 −
2γ↓

1− (K−1)(V z↓)2

(15)
also show the same initial fast growth and then a slow varia-
tion.

The conductance is as it was expected: in the EG reaches
the value 2G0 = 2e2/h at E = 0 for B = 0 what indicates that
the quantum dot favors the conduction while, in the SCG, it
tends to vanish at E = 0 as the field decrease.

In order to quantify the moment at which the splitting can
be appreciated, it was plotted together the averaged solution
and the resonance width. In the EG, the field value at which
the splitting is well resoluted results to be approximately the
same field at which the solution with spin opposed to the field
disappears. On the other hand, in SCG, the splitting is well
defined practically from beginning. This behavior is under-
stood analyzing the splitting (10): in the EG (K = 2) there’s a

negative contribution to ∆ that comes from Vg but, in the SCG
(K = 1) there’s no contribution from Vg and the splitting is
appreciable long before that in the EG case.

IV. SUMMARY

We have developed a new slave boson formalism that takes
into account the spin polarization in a magnetic field. The
Kondo resonance with this new method is wider respect to
the traditional SB method since the boson’s occupation in this
last one is the product of the occupation for the boson up and
boson down in our SB scheme.

Under the action of a magnetic field, the energy levels up
and down undergo a different renormalization by effect of the
interactions. This gives an additional contribution to the split-
ting ∆, with the interactions as its origin, and whose precise
value depends on the topology of the circuit.

For both geometries (SCG and EG), the additional contribu-
tion to the splitting tends to be a constant which moves the lin-
ear relation splitting vs magnetic field that exists in the usual
Zeeman effect upwards. In both of the cases, the global ap-
pearance of that relation is a linear function which doesn’t
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intercepts the origin. As a result of this, the critical field at
which the splitting of Kondo resonance begins to be seen, is
lower than that expected from comparing the Zeeman energy
with the scale of energy associated to the Kondo Temperature
kBTK . This critical field also resulted strongly dependent of
the circuit topology. For the EG, there’s an additional con-
tribution proportional to the gate potential which makes the
levels separation to be slower than in the SCG, making grow
this way the critical field.

All this is in line with the results of the last experiments
[5, 6].

Acknowledgments

Financial support by the Argentinian CONICET and UBA
(grant UBACYT x115) and the spanish program Ramon y
Cajal of MCyT are gratefully acknowledged. Also fund-
ing from Generalitat Valenciana, GV05/152 and to grant
FIS200402356 of MCYT are gratefully acknowledged.

[1] D. Goldhaber-Gordon, H. S. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. KASTNER, Nature 391, 156
(1998).

[2] S.M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science 281, 540 (1998).

[3] T.K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
[4] R. Franco R, M. S. Figueira, and E. V. Anda, Phys. Rev. B 67,

155301 (2003)
[5] A. Kogan, S. Amasha, D. Goldhaber-Gordon, G. Granger, M.

A. Kastner, and H. Shtrikman, Phys. Rev. Lett. 93, 166602
(2004).

[6] S. Amasha et.al, cond. mat. 0411485 (2005).

[7] Y. Meir, N.S. Wingreen, and P.A. Lee Phys. Rev. Lett. 70, 2601
(1993).

[8] T.A. Costi, Phys. Rev. Lett. 85, 1504 (2000).
[9] J.E. Moore and X.-G. Wen, Phys. Rev. Lett. 85, 1722 (2000)

[10] P. Fulde, in Electron Correlations in Molecules and Solids
Springer; 3 edition (April 25, 2003)

[11] D.M. Newns and N. Reads, Advances in Physics, 1987, 36, 799
(1987). A.C. Hewson, in The Kondo Problem to Heavy Fermi-
ons, Cambridge Studies in Magnetism, edited by D. Edwards
(Cambridge Univ. Press, 1993).


