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Pseudo-Orbital SO(6) Symmetry for pf-Shell Nuclei
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This work studies the pseudo-orbital SO(6) symmetry for the first half of the 2p 1
2
-2p 3

2
-1f 5

2
shell (denoted

as the pf-shell). The spectra and beta decay are calculated for nuclei Ni, Cu and Zn with A=58, and the com-
parison to experiment prefers the S̃O(6) limit to the S̃U(3) one. In the calculation of beta decay two types of
transformations are employed and the results seem confirm the adequacy of p-helicity transformation.
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I. INTRODUCTION

The concept of pseudo-spin and pseudo-orbit was intro-
duced in [1, 2] to account for symmetries for nuclei with large
l-s coupling. Later it was shown that pseudo-spin has a root
in the relativistic mean field theory [3], therefore, the study
of pseudo symmetries can be put in a new perspective and
thus appears more attractive. Pseudo-spin and pseudo-orbits
have been employed in several symmetry models. The most
successful example is the pseudo-SU(3) (denoted as S̃U(3))
model (see a recent article [4] and references therein). The
Fermion Dynamical Symmetry Model (FDSM) [5] also uses
pseudo-spin and pseudo-orbits, however, in the FDSM ei-
ther pseudo-spin or pseudo-orbits are deactivated. The S̃U(4)
model [6, 7] combines pseudo-spin and isospin. The explo-
ration of the S̃U(4) symmetry is pursued in two ways. The
first method analyzes the S̃U(4) content of wave functions ob-
tained from a shell model calculation, and the method can be
referred to as ”microscopic analysis”. The second (referred
to as ”application”), by assuming the S̃U(4) symmetry, cal-
culates energies and transitions with group theoretical method
and compares the results to experiments. The two methods
check the validity of the S̃U(4) symmetry in different but
complimentary ways. Ref. [6] followed the first line and it
gave mixed results, whereas ref. [7] used both methods and
concluded the approximate validity of the S̃U(4) classifica-
tion scheme. To be more specific, ref. [7] analyzed micro-
scopically the pf-shell nuclei 58Ni, 60Ni and 60Zn, applied the
model in the study of beta decay, and the S̃U(4) symmetry
was confirmed by both methods.

In this work we intend to explore the S̃U(4) symmetry

along the line of application by employing new symmetry el-
ements. In the application of the S̃U(4) model in ref. [7] the
pseudo-orbital symmetry was taken as S̃U(3). However, we
argue that the pseudo-orbits in this shell are s̃ and d̃, therefore
the maximal pseudo-orbital symmetry should be S̃U(6). As is
well known that the S̃U(6) group has three subgroups (here-
after denoted as limits), i.e. the S̃U(3), S̃O(6) and S̃U(5),
respectively, and the limits of S̃O(6) and S̃U(5) were never
studied before. While the group structure of the three lim-
its is the same as that of the Interacting Boson Model (IBM)
[8], the physical contents are quite different: IBM deals with
boson systems, whereas our model works in a fermion space
and the relevant irreducible representations (irreps) are differ-
ent. It is the goal of this work to study the S̃O(6) pseudo-
orbital limit for the pf-shell nuclei, taking the A=58 nuclei as
an initial step. The spectrum of the S̃O(6) limit is examined
in Section 2 and β-decay calculated in Section 3. Conclusion
and discussion are given in Section 4.

II. THE S̃O(6) SPECTRUM

It is reasonable to expect that there exist substantial differ-
ences between the S̃O(6) and S̃U(3) limits. First we exam-
ine a special case that is the pseudo-orbital wave functions of
the ground state (L̃ = 0) for A=58 nuclei. The pseudo-orbital
wave functions are the same as the normal-orbital ones in the
ds shell (ref. [9]) except that the normal orbits d and s are
replaced by pseudo-orbits d̃ and s̃. The wave functions in the
two limits are:

S̃U(3) : |[2](40)S > =

√
5
9
|(s̃2)S > +

√
4
9
|(d̃2)S >,

S̃O(6) : |[2](200)(00)S > =

√
5
6
|(s̃2)S > −

√
1
6
|(d̃2)S > . (1)

A big difference exists between the wave functions of the two
limits: while in the S̃U(3) limit the two configurations, s̃2 and

d̃2, are mixed with almost equal probability, in the S̃O(6) limit
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the s̃2 configuration is dominant (83% of probability). This
difference can be expected to produce significant differences
in spectra and transitions.

We first discuss the spectra. A general energy formula in
the S̃O(6) limit can be written as follows,

E = a0 < n̂ > +a1 < M̃ > +aT T (T +1)
+aL L̃(L̃+1)+aJ 〈L̃ · S̃〉
+a5 < CSO5 > +a6 < CSO6 >, (2)

where n̂ and M̃ are the Casimir operators of U(24) and S̃U(6)
groups; S̃,T, L̃ and J the pseudo-spin, isospin, pseudo-orbital

and total angular momenta, and CSO6 and CSO5 the Casimir
operators of the groups S̃O(6) and S̃O(5), respectively. There
is no S̃ term in eq. (2), since it can be taken as complimentary
to T . Concerning the calculation in the pseudo-orbital space,
the group theoretical method of IBM [8] can be used.

As an initial step, in this work we study the S̃O(6) limit for
the three nuclei with A=58. The spectra of 58Cu consists of
two (S̃,T ) pairs, (1,0) and (0,1), while the spectra of 58Ni and
58Zn have only one (S̃,T ) pair, (0,1). There is only one S̃U(6)
irrep involved and the S̃U(6) ⊃ S̃O(6) ⊃ S̃O(5) ⊃ S̃O(3)
branching writes as

[2] ⊃ (200)+(000) ⊃ (20)+(10)+(00)+(00) ⊃ (L̃ =) 0, 2, 4, 2, 0. (3)

The branching is the same for (S̃,T )=(0,1) and (1,0). Note
that the tilde signs of all the pseudo irreps are neglected for
simplicity. The calculated and experimental levels are given
in Figure 1. The theoretical energies contain pure nuclear in-
teraction, and the experimental ones are taken from [10, 11]
and processed such that the Coulomb energy is subtracted and
the result is normalized to the ground state energy of 58Cu.
For every nucleus the Coulomb energy is taken equal for all
the levels. The value of L̃ is given at the right hand side of
each calculated level in order to identify pseudo L-S partners.

Since all the levels of the three nuclei belong to the same
S̃U(6) irrep, the first two terms in eq. (2) can be ignored (note
that these terms are indispensable for A=59 and 60 nuclei).
The rest five parameters can be derived from fitting the sixteen
experimental levels and the results are:

aT = 0.150, aL = −0.008, aJ = −0.220;

a5 = 0.280, a6 = −0.243 (4)

(all the parameters are in MeV).
From a comparison between experiment and calculation,

the following observations can be made. First, all the T =1
states of the three nuclei are reproduced reasonably well ex-
cept the 1+

1 state of 58Ni, which may belong to a higher
S̃U(6) irrep. There exist two almost identical level series,
i.e. 0+

1 − 2+
1 − 4+

1 , in the spectra of 58Ni and 58Cu, which
are the components of an isospin triplet (the 2+

1 −4+
1 states of

58Zn are currently not available). And the energy differences
among the 0+

1 states of 58Ni, 58Cu and 58Zn are less than 100
KeV while the total nuclear energies are around 634 MeV. All

these are consequences of the SU(2)T symmetry. The ratio
ρ=(E4+

1
−E0+

1
)/(E2+

1
−E0+

1
) is calculated as ≈2.4 for Ni and

Cu, that is much closer to its experiment value (≈1.7) than
the S̃U(3) prediction (≈3.3, ref. [8]). Second, the T = 0
states of 58Cu provide an opportunity to verify the validity
of S̃U(4)⊗ S̃U(6) symmetry, since this symmetry unifies the
states of T =0 and 1. The four lowest states, 1+

1 , 3+
1 , 2+

1 and
1+

2 , are reproduced fairly well except that the order of the two
states, 2+

1 and 1+
2 , is reversed. The three states with higher

energies, i.e. 4+
1 , 3+

1 , 5+
1 , are also predicted by the theory,

however there is a considerable discrepancy between the ex-
perimental and theoretical energies. The S̃O(6) limit seems
also preferred concerning the T = 0 states of 58Cu, since the
prediction of L̃ = 4 state in the S̃U(3) limit would be much
higher (than that of S̃O(6)), and consequently the discrep-
ancy in energy between theory and experiment for the states
of 4+

1 , 3+
2 , 5+

1 could be much larger.

For the nuclei with A=59 and 60, the S̃U(6) ⊃ S̃O(6) ⊃
S̃O(5)⊃ S̃O(3) branching can be derived by using the method
of ref. [12]. A study on these nuclei is underway.

III. β DECAY AND THE P-HELICITY
TRANSFORMATION

Beta decay provides a serious check on wave functions.
The Gamow-Teller operator in the pseudo formalism can be
written as,

M̂GT = ∑
q
�τ(q)�̃σ(q) = − 1

3 ∑
q
�τ(q)�σ(q) − 2

√
10

3 ∑
q
�τ(q)

[
C(2)

λ (q)⊗�σ(q)
](1)

(≡ M̂S
GT + M̂LS

GT), (5)
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FIG. 1: The S̃O(6) spectra of the Ni-Cu-Zn nuclei with A=58. The theoretical energies are pure nuclear interactions. The experimental levels
are taken from ref. [10, 11] and they are processed such that the Coulomb energy is subtracted and the result is normalized to the ground state
energy of 58Cu. (S̃,T ) is the (pseudo-spin)-isospin quantum number pair. L̃ at the r.h.s. of each calculated level is the pseudo-orbital angular
momentum. Jπ, the total angular momentum and parity, is given at the l.h.s. for each experimental level and also for the calculated levels
which have no experimental counterpart.

where q is particle index, and C(2)
λ (q) is a rank-2 operator

whose concrete form depends on the normal→pseudo trans-
formation. When the r-helicity transformation (λ= r) [13] is
employed, eq. (5) is the same as eq. (6) in ref. [7]. The two
terms in the above equation are called the spin term (M̂S

GT) and
the spin-orbit coupling term (M̂LS

GT), respectively.
In ref. [7] the r-helicity transformation is used. However, it

was pointed out recently in ref. [14] that the r-helicity trans-
formation may be only a good approximation for heavy nu-
clei, and the correct transformation is that of p-helicity (λ=p)
[15, 16]. In this work we calculate the Gamow-Teller matrix
elements by using the p-helicity transformation and compare
the result to the r-helicity one. The zero-th component of the
C(2)

p operator writes as follows,√
3
2

(�p×�p)(2)
0

p2 = − 3
2

�2∇2
z

p2 − 1
2
, (6)

in which the denominator p2 takes a numerical value for
eigenstate as is given by the Schrödinger equation:

p2 = 2µ(E −V (r)), (7)

where µ is the nucleon mass, and E and V (r) are the single-
particle total and potential energies, respectively. In this

TABLE I: Reduced matrix elements of the quadrupole operator for
A=58 nuclei

Helicity < 0||C(2)||2 > < 2||C(2)||0 > < 2||C(2)||2 >

r 0.775 0.775 -1.195
p -0.088 0.055 1.842

work we restrict ourselves to a schematic calculation on C(2)
p ,

and thus we use the harmonic oscillator wave functions for
pseudo-orbits with parameters being taken following ref. [17].

In Table 1 the reduced matrix elements are listed for the r-
and p-helicity cases, respectively. There exists a drastic differ-
ence between the two helicity cases: while the reduced matrix
elements in p-helicity are close to zero for the case of un-
equal initial and final angular momenta, their counterparts in
r-helicity are of the order of 1. As a consequence, the calcu-
lated beta transitions for the two helicity cases will be sub-
stantially different.

The Gamow-Teller transition rates are calculated by using
the group theoretical method, and the relevant formulas are
listed in Appendix. In Table 2, four Gamow-Teller transitions
are listed, and a Fermi transition is given for comparison. In
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TABLE II: Beta decay of Ni-Cu-Zn nuclei with A=58

No. Transition Jπ
i Ti Ei Jπ

f Tf E f Limit-helicity Contributing Term log(ft)th log(ft)exp

1 58Cu →58 Ni 1+
1 0 0.0 0+

1 1 0.0 M̂S
GT 4.51 4.87

2 1+
1 0 0.0 2+

1 1 1.454 S̃O(6)-r M̂LS
GT 4.05 ∼ 4.40 6.2

S̃U(3)-r M̂LS
GT 3.95 ∼ 4.56

S̃O(6)-p M̂LS
GT 6.84 ∼ 6.27

S̃U(3)-p M̂LS
GT 4.81 ∼ 4.75

3 58Zn →58 Cu 0+
1 1 0.0 1+

1 0 0.0 M̂S
GT 4.03 4.3

4 0+
1 1 0.0 1+

2 0 1.052 S̃O(6)-r M̂LS
GT 3.57 ∼ 3.93 4.1

S̃U(3)-r M̂LS
GT 3.48 ∼ 4.08

S̃O(6)-p M̂LS
GT 6.37 ∼ 5.79

S̃U(3)-p M̂LS
GT 4.34 ∼ 4.28

5 0+
1 1 0.0 0+

1 1 0.203 M̂F 3.46 3.48

the first column of the table a number is given to represent
each transition. Jπ

i ,Ti,Ei and Jπ
f ,Tf ,E f are the (total angular

momentum)-parity, isospin and experimental energy for the
initial and final states, respectively. M̂S

GT, M̂LS
GT are the spin

term and spin-orbit coupling term of the Gamow-Teller oper-
ator, and M̂F is the Fermi transition operator, respectively. The
log( f t)exp values are taken from refs [18, 19]. In our calcula-
tion a hindrance factor of 0.53 is used following ref. [20].

A prominent feature of the Gamow-Teller matrix ele-
ments (for A=58) is that, for each transition, the contribu-
tion of either M̂S

GT or M̂LS
GT is zero. Transitions 1 and 3 are

driven solely by the term M̂S
GT, thus they are independent

of the pseudo-orbital wave functions, i.e. the initial and fi-
nal pseudo-orbital wave functions are identical (the S̃O(6)
state |[2](200)(00)0 >). The calculated decay rates of these
two transitions are close to experiments. Transitions 2 and
4 are produced by the spin-orbit coupling term, M̂LS

GT, thus
the transition rate depends on the pseudo-orbital wave func-
tions. In the S̃O(6) limit, the two transitions have the same
initial pseudo-orbital state (|[2](200)(00)0 >) and the same fi-
nal state (|[2](200)(10)2 >), however, a difference in S̃, T and
J makes difference in decay rates. The decay rates are calcu-
lated for the p-helicity as well as r-helicity cases. For a com-
parison, corresponding results are also given for the S̃U(3)
limit. In Table 2 the symbol S̃O(6)-r means that the pseudo-
orbital wave function is in the S̃O(6) limit and the calculation
is done for the r-helicity case, etc. Two boundary values are
given for each case corresponding to the two choices of phase
in the coefficients of fractional parentage (cfp) of S̃O(6) [21]
and S̃U(3) [7], respectively. One notices that, for the r-helicity
case, the results of the two limits, S̃O(6) and S̃U(3), are very
close, despite that the wave functions in the two limits are
quite different. It is not yet known if this near equality of
decay rates of the two limits for the r-helicity case is a com-
mon phenomenon or just a coincidence for the case of A=58,
thus further study is needed. In the p-helicity case the tran-

sition rates of the S̃O(6) and S̃U(3) limits are very different.
While the S̃O(6) limit explains well transition 2, the S̃U(3)
limit gives a better result for transition 4. From the spectrum
(Fig. 1) one may assume that the 1+

2 state (T =0) of 58Cu has
a considerable mixing with other states since the order of the
states 1+

2 and 2+
1 is reversed and there are many (uncertain)

states nearby [10] which could facilitate a mixing. Should this
assumption be correct, the calculation of transition 4 would
be less reliable. From transition 2, one can assert that the p-
helicity transformation is more proper for the nuclei studied,
and the S̃O(6) limit is preferred to the S̃U(3). However, this
statement needs to be checked by more studies, in particular
by a consistent calculation with mixed symmetry on both the
energy and beta decay concerning the 1+

2 state of 58Cu.
Finally we note that the four Gamow-Teller transitions

listed in Table 2 are among three nuclei, and they are calcu-
lated in an unified way with the same set of parameters. The
transition rates are reproduced qualitatively well, which is an
encouraging sign for the S̃U(4)⊗ S̃U(6) symmetry.

IV. CONCLUSIONS AND DISCUSSION

This work discusses the pseudo-orbital SO(6) limit that
was not studied before. As an initial step the spectra and
Gamow-Teller transitions of the nuclei 58Ni, 58Cu and 58Zn
are analyzed in the S̃O(6) limit. The spectra of the three
nuclei are described by a single formula. At first glance, it
seems not appealing by using five parameters to fit sixteen
levels. However, considering that we are dealing with three
nuclei which are of different type (even-even and odd-odd),
the agreement should be considered as reasonable. The ratio
of (E4+

1
−E0+

1
)/(E2+

1
−E0+

1
) is better predicted by the S̃O(6)

limit than the S̃U(3) one. Moreover the lowest T =0 states of
58Cu are reproduced fairly well by the S̃O(6) limit. All these
seem prefer the S̃O(6) limit to the S̃U(3) one. We note that in
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this work the S̃O(6) limit was chosen on an ad hoc basis, and
the study of the S̃U(5) limit is equally important. In particu-
lar, a comparison among the three limits may reveal essential
differences among them. Probably, a mixing of limits may be
needed to obtain quantitative agreement with experiment.

The Gamow-Teller transitions are calculated in the p-
helicity as well as the r-helicity cases. One finds that there
exists a drastic difference between these two helicities for the
transitions that are driven by the term M̂LS

GT. For transitions 2
in Table 2, the p-helicity calculation gives better results than
the r-helicity one, which seems confirm that the appropriate
transformation is the p-helicity one. Although the calculation
in this work is only schematic, the qualitative feature of the
matrix elements of C(2)

p (as is shown in Table 1) will probably
remain in a more realistic calculation, since the operator ∇2

z
has a small expectation value on all states. However, a more

realistic pseudo-orbital wave function may change the matrix
elements of C(2)

p quantitatively, and in turn the transition rates
could be changed considerably. The study of the S̃O(6) limit
for A=58 nuclei is only an initial step, it would be interesting
to see if the conclusion of this work will persist for nuclei with
A=59 and 60, and the study is currently underway.

Appendix

With an expansion in the one-body cfp of the relevant group
chain, the matrix elements of the Gamow-Teller operator are
derived for a general case (which applies to all the three
pseudo-orbital limits). The results are,

< M̂GT > =

√
2Jf +1

(2T ′ +1)
〈T MT 1ν |T ′

MT ′ 〉〈[ f
′
] ∦ τσ ∦ [ f ]〉 (−1)Jf +S+L

3

{
Ji Jf 1
S
′

S L
′

}
δL′Lδ[ f ][ f ′ ] − 2

√
10
3

 L
′

L 2
S
′

S 1
Jf Ji 1

 F2
L

 , (8)

where the (pseudo-spin)-isospin factor reads,

〈[ f
′
] ∦ τσ ∦ [ f ]〉 = n

N[ f ′′ ]√
N[ f ]N[ f ′ ]

∑
β′′S′′T ′′

〈[ f
′′
]β

′′
S
′′
T

′′
; [1] 1

2
1
2 |}[ f

′
]β

′
S
′
T

′ 〉

〈[ f
′′
]β

′′
S
′′
T

′′
; [1] 1

2
1
2 |}[ f ]βST 〉(−1)S

′′
+ 1

2 +S
′
+1

√(
2S′ +1

)
(2S +1)

{
S S

′
1

1
2

1
2 S

′′

}
(−1)T

′′
+ 1

2 +T
′
+1

√(
2T ′ +1

)
(2T +1)

{
T T

′
1

1
2

1
2 T

′′

}
〈 1

2
1
2 ∦ τσ ∦ 1

2
1
2 〉, (9)

and the pseudo-orbital factor F
(2)
L is

Fk
L = ∑

α′′L′′
l′ l

〈[ f̃ ′′ ]α
′′
L
′′

; [1̃]l |}[ f̃ ]αL〉〈[ f̃ ′′ ]α
′′
L
′′

; [1̃]l
′ |}[ f̃ ′ ]α

′
L
′ 〉

(−1)L
′′
+l+L

′
+k

√(
2L′ +1

)
(2L+1)

{
L L

′
k

l
′

l L
′′

}
〈l ′ ‖Ck ‖ l〉 (k = 0,2), (10)

where N[ f ] is the dimension of the symmetric group
irrep [f], etc; 〈[ f

′′
]β′′

S
′′
T

′′
; [1] 1

2
1
2 |}[ f ]βST 〉 is the

SU(4) ⊃ SU(2)S ⊗ SU(2)T cfp [2]; 〈[ f̃ ′′ ]α′′
L
′′

; [1̃]l |}[ f̃ ]αL〉
is the cfp of the relevant pseudo-orbital group chain, re-
spectively. In the present work the cfp with α is that of
the group chain SU(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) where
α is an abbreviation of the quantum numbers of the groups
of SO(6) and SO(5). The quantities without prime, with
single and double primes correspond to the initial, final and

intermediate states, respectively. We note that all the tilde
signs in Appendix means conjugation in representations.
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