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We present a discussion where the choice of the regularization procedure and the routing for the internal
lines momenta are put at the same level of arbitrariness in the analysis of Ward identities involving simple and
well-known problems in quantum field theory. They are the complex self-interacting scalar field and two simple
models where the scalar-vector-vector and axial-vector-vector process are pertinent. We show that, in all these
problems, the conditions to symmetry relations preservation are put in terms of the same combination of diver-
gent Feynman integrals, which are evaluated in the context of a very general calculational strategy, concerning
the manipulations and calculations involving divergences. Within the adopted strategy, all the arbitrariness in-
trinsic to the problem are still maintained in the final results and, consequently, a perfect map can be obtained
with the corresponding results of traditional regularization techniques. We show that, when we require an uni-
versal interpretation for the arbitrariness involved, in order to get consistency with all stated physical constraints,
a strong condition is imposed for regularizations which automatically eliminates the ambiguities associated to
the routing of the internal lines momenta of loops. The conclusion is clean and sound: the association be-
tween ambiguities and unavoidable symmetry violations in Ward identities cannot be maintained if an unique
prescription is required for identical situations in the evaluation of divergent physical amplitudes.

I. INTRODUCTION

The first step in the construction of a quantum field the-
ory (QFT) is the building of the corresponding Lagrangian.
The symmetry content, which means invariance under a set
of transformations, implies in definite relations among the
Green’s functions of the theory. Frequently, these symmetry
relations or Ward identities involve the evaluation of divergent
Green’s functions. It is crucial for the renormalization of the
theory or for the derivation of low-energy theorems that such
relations are preserved at any order of the perturbative evalu-
ation. The role of the regularization technique can be decisive
in the verification of the symmetry relations. Since that, in
spite of the divergences, they must be verified case by case,
there is a self consistent aspect involved in these discussions.
In one hand a consistent technique to handle the divergences
is the one that does not lead to undesirable features like ambi-
guities and/or symmetry relations violations, which means to
destroy the predictive power of the corresponding QFT or to
spoil the renormalizability of the theory. On the other hand,
for the significance of the theory in the perturbative approach
we need to verify the symmetry relations which means to
adopt a philosophy to handle the divergences in a consistent
way. So, when we evaluate a set of divergent Green’s func-
tions using a particular regularization procedure and a certain
symmetry relation involving them is not verified satisfied, in
principle, we cannot conclude in a positive way if the viola-
tion is a consequence of the inconsistency of the employed
method or if we are facing an unavoidable phenomenon of
symmetry breaking like the triangle anomalies seem to be in
QFT. Strictly speaking, we can only classify a violation of
symmetry as an anomaly if we are convinced that does not ex-
ist and must not exist a technique that is capable to avoid the
violation. The eventual violating terms cannot be dependent
on the regularization technique. The same reasoning line can
be applied to the symmetry preserving relations. We, in prin-

ciple, can only convince ourselves that a symmetry relation
is preserved if the verification is clearly not dependent on the
specific aspects of the adopted regularization method. In order
to allow the desirable accommodation of both situations, vio-
lations and preservations of symmetries, no role can be played
by the regularization scheme or equivalent technique. The
ideal situation is to perform the necessary calculations without
the explicit use of a regularization. In certain sense the con-
clusion above is obvious. Since the choice of auxiliary tools
is arbitrary, no dependence on the specific aspects involved is
accepted due to the fact that this implies ambiguity. The real
situation of the problem, however, is somehow different. In
the verification of the preservation of symmetries in pertur-
bative evaluation, the explicit use of regularization philoso-
phies is almost always adopted. In the establishment of the
desirable violations of symmetry relations (anomalies), spe-
cific perturbative aspects (divergences and ambiguities) play
a crucial role. The situation can be summarized in a simple
way. In all the situations where the Dimensional Regular-
ization (DR) [1] technique can be applied we certainly adopt
it. The method provides a prescription that is well-succeeded
in the avoidance of ambiguities and, simultaneously, symme-
try relations violations. However, as is well-known, the DR
technique is not general. There are situations where we can-
not apply it within an universal prescription characterizing the
method. We refer to the situations where the γ5 Dirac matrix
(or the totally antisymmetric tensor εαβµν), or their similars in
other space-time dimensions, play an important role. Since
such objects and their algebra are not extendable, a particular
prescription becomes necessary in each previously chosen di-
mension. Given the fact that such prescriptions are not unique,
new types of ambiguities may arise in the perturbative calcu-
lations, associated to the employed regularization technique,
which introduces more undesirable ingredients in a problem
complicated by self. In consequence, we are forced to have
recourse to other methods which may not be consistent con-
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cerning the avoidance of ambiguities and symmetry relations
violations. In other words, to treat a problem where the DR
cannot be applied, we adopt a procedure that, if applied to
treat a problem where the consistent results are achieved by
the DR, may lead to unacceptable results. This is precisely
the situation of the axial-vector-vector (AVV ) triangle anom-
aly [2] - [6]. Due to the presence of an odd number of γ5 Dirac
matrix, we are prevented to use in a natural way the DR. As
a consequence, ingredients which are automatically excluded
within the context of DR are called to play a decisive role in
the evaluations which is the case of the internal momenta am-
biguities.

In the present work we discuss questions related to the
analysis of Ward identities involving divergent amplitudes.
For this purpose, we select three simple but representative
models and generate the corresponding symmetry relations.
The main aspect is the fact that we can put all the considered
Ward identities in terms of the same condition. After this, we
use a very general calculational strategy [7], concerning the
divergences manipulations and calculations, in order to evalu-
ate the divergent Feynman integrals involved. In the adopted
method, all the arbitrariness intrinsic to the problem are pre-
served and a map with the DR results and with those produced
by the surface’s term analysis is always possible. These two
maps, however, are obtained through conflicting interpreta-
tions for the involved arbitrariness [8, 9]. We show that, when
we require an unique interpretation for the indefinitions, in-
teresting questions about the perturbative origin of the AVV
anomaly emerge [8].

The work is organized as follows. In the section II we de-
rive, in detail, a Ward identity for the self-interacting complex
scalar field. In the section III and IV, we consider a simple
model to the scalar-vector-vector (SVV ) and AVV process, re-
spectively, and their associated symmetry relations. The cal-
culational strategy, used in the treatment of divergent Feyn-
man integrals, is introduced in the section V, whose results
are substituted in all the obtained Ward identities in the sec-
tion VI. In the section VII we use the general results obtained
from our analysis in order to recover the traditional treatment
for the AVV triangle anomaly. Finally, in the section VIII we
present our final remarks and conclusions.

II. THE COMPLEX SCALAR FIELD

Perhaps the most simple QFT where a symmetry relation
can be stated is the λφ4 theory. A Ward identity can be easily
constructed for the complex scalar field due to the existence
of a conserved vector current. In this section, we follow in a
closely related way the ref.[10] in order to state the symmetry
relation. The corresponding Lagrangian can be written as

L = (∂µφ∗)(∂µφ)−µ2(φφ∗)−λ(φφ∗)2, (1)

where µ is the mass of the scalar field and λ is the coupling
constant. The above Lagrangian is invariant under U(1) trans-
formations

φ→ φ
′
= eiα.T φ, (2)

where α is a constant (independent of x) and T is a c-number.
Such invariance gives raise to the conserved vector current

Jµ = i[(∂µφ∗)φ− (∂µφ)φ∗]. (3)

The complex scalar field satisfies the following canonical
commutation relation

[∂0φ†(~x, t),φ(~x′ , t)] =−iδ3(~x−~x′), (4)

which leads us to the following commutators involving the
fields and currents

[J0(~x, t),φ(~x′ , t)] = i[∂0φ†(~x, t),φ(~x′ , t)]φ(~x, t) (5)

= δ3(~x−~x′)φ(~x, t)

[J0(~x, t),φ†(~x′ , t)] = −δ3(~x−~x′)φ†(~x, t). (6)

With these ingredients it is possible to consider a process in-
volving a vector current and two scalar fields and the corre-
sponding symmetry relation. For this purpose let us consider
the Green’s function

Gµ(p,q)=
Z

d4xd4y e(−iq.x−iq.y) < 0|T (Jµ(x)φ(y)φ†(0))|0 > .

(7)
In order to get a symmetry relation we take the four-
divergence in both sides of the equation above and, in the in-
tegrand, use standard manipulations of the current algebra

∂µ
x [(T (Jµ(x)O(y))]= T (∂µJµ(x)O(y))+[J0(x),O(y)]δ(x0−y0).

(8)
After this step we get

qµGµ(p,q)

=−i
Z

d4xd4y e−iq.x−ip.y ∂µ < 0|T (Jµ(x)φ(y)φ†(0))|0 >

=−i
Z

d4xd4y e−iq.x−ip.y
{

< 0|T (∂µJµ(x)φ(y)φ†(0))|0 >

+ < 0|T ([J0(x),φ(y)]δ(x0− y0)φ†(0))|0 >

+ < 0|T ([J0(x),φ†(0)]δ(x0)φ(y))|0 >
}

. (9)

Given the conservation of the vector current the first term in
the equation above vanishes. Using then the commutation re-
lations (5) and (6) we are left with

qµGµ(p,q) = −i
Z

d4xd4y e−i(q+p)x < 0|T (φ(x)φ†(0))|0 >

+ i
Z

d4xd4y e−ipy < 0|T (φ(0)†φ(y))|0 > . (10)

Next, we can identify the two terms on the right hand side as
propagators of the scalar field

∆(p) =
Z

d4x e−ipx < 0|T (φ(x)φ†(0))|0 >, (11)

and then write

−iqµGµ(p,q) = ∆(p+q)−∆(p), (12)
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which is the vector-current Ward identity. The equation above
holds for the corresponding renormalized quantities due to the
fact that the conserved current Jµ(x) is not renormalized as a
composite operator [4]. It is then easy to state the correspond-
ing one-loop version for the eq.(12). For this purpose we de-
fine the amputed Green’s functions, in terms of the renormal-
izable quantities present in the eq.(12); in the following way
[10]

Γµ(p,q) = [i∆R(p+q)]−1GR
µ (p,q) [i∆R(p)]−1, (13)

where the one-loop renormalized propagator is given by

∆R(p)−1 = p2−µ2− Σ̃(p2), (14)

and Σ̃(p2) is the one particle irreducible (1PI) self-energy.
Then the Ward identity (12) assumes the simple form

iqµΓµ(p,q) = [(p+q)2−µ2− Σ̃(p+q)]− [p2−µ2− Σ̃(p].
(15)

Let us now consider the explicit evaluation at tree level and
next at the one-loop level. For this purpose we start by con-
sidering the coupling among the conserved vector current with
the two scalar lines. The corresponding vertex is given by

iδ3LI
δJµ δφ δφ∗

= i2[i(p+q)µ + ipµ] (16)

= −i(2p+q)µ.

The tree level contribution, diagrammatically represented in
the Fig. 1, can be easily evaluated as

iqµΓtree
µ (p,q) = iqµ[−i(2p+q)µ] = 2p.q+q2 = (p+q)2− p2.

(17)
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Figure 1: Diagrammatic representation for the tree level contribution.

The comparison with the expression (15) reveals that, at the
tree level, the identity (12) is preserved. Let us now consider
the one-loop level, diagrammatically represented in the Fig. 2
and Fig. 3.
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Figure 2: Diagrammatic representation for the one-loop contribution
to the vertex correction.

The first two diagrams in the Fig. 3 require the evaluation
of the self-energy at the one-loop level, which is given by

−iΣ(p) =−i
λ
2

Z d4k
(2π)4

i
(k + l)2−µ2 , (18)

where we have adopted an arbitrary routing for the internal
line momentum of the loop. The one-loop renormalization
implies in the addition of the counterterm’s diagrams, Fig. 3.

The contribution of the first two diagrams to the Γµ(p,q) vertex function can be written as

iqµΓµ(p,q) = iqµ
{

(−i)(2p+q)µ
i

(p+q)2−µ2 [Σ(p+q)−Σ(0)]
}

, (19)

which vanishes identically due to the independence of the external momentum of the scalar one-loop self-energy. So, we are left
only with the contribution of the diagram in the Fig. 2. The contribution for the symmetry relation is given by

iqµΓ1 loop
µ (p,q) = iqµ

{Z d4k
(2π)4 (iλ)

i
[(k + k1)2−µ2]

(−i)(2k + k1 + k2)µ
i

[(k + k2)2−µ2]

}
, (20)

which means that

iqµΓ1 loop
µ (p,q) = iλ(k1− k2)µ

{Z d4k
(2π)4

2kµ +(k1 + k2)µ

[(k + k1)2−µ2] [(k + k2)2−µ2]

}
, (21)
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Figure 3: Diagrammatic representation for the one-loop corrections and their counterterms diagrams.

or

iqµΓ1 loop
µ (p,q) = iλ(k1− k2)µ (∆Iµ) . (22)

We have arrived at the main point of this section. Given
the fact that the one-loop scalar self-energy does not have a
finite part, the Ward identity is satisfied by the tree level con-
tribution. This implies that all the contribution of the one-loop
level must cancel. Since two diagrams cancel two others it re-
mains only the contribution of one diagram which must iden-
tically vanish by itself. In the corresponding expression, two
divergent integrals are involved with a degree of divergence
linear and logarithmic. Independent on the details involved,
which we will discuss later, it is clear that if the value for the
specific combination of integrals

∆Iµ = 2(I2)µ +(k1 + k2)µ (I2) , (23)

where we have introduced the definitions,

(
I2; Iµ

2

)
=
Z d4k

(2π)4
(1;kµ)

[(k + k1)2−m2][(k + k2)2−m2]
, (24)

does not vanish, the Ward identity which we have stated will
be violated. Due to the divergences the evaluation of the ex-
pression (23) requires the adoption of a regularization tech-
nique or an equivalent philosophy. Before such discussions
let us state other kinds of Ward identities.

III. S→VV PROCESS

Let us now consider a theory where the scalar and the vector
fermionic densities are coupled to a scalar and a vector field,

respectively. In this section we perform the discussions in a
similar way to that of the ref.[11]. The interaction Lagrangian
can be written as

LI = iGs(Ψ̄Ψ)φ−Gv
(
Ψ̄γµΨ

)
Aµ, (25)

where Ψ is a massive 1
2 spin fermion, φ is a scalar field and Aµ

a vector field. The fermionic vector current obeys

∂µV µ = ∂µ
(
Ψ̄γµΨ

)
= 0, (26)

i.e., due to the presence of only one specie of massive fermion
the scalar and vector currents are not connected. So, if we
define the S→VV Green’s function

T S→VV
µν (p, p′;q) = i

Z
d4x1d4x2 eipx1+ip′x2

×< 0|T (Vµ(x1)Vν(x2)S0(0))|0 >, (27)

following the standard procedure of the current algebra, we
must get the Ward identities

{
pµT S→VV

µν = 0
p′νT S→VV

µν = 0.
(28)

The lowest order perturbative contribution for the S→VV
process is given by the triangle diagram. The summation of
the direct and crossed diagrams is required by the Bose final
state symmetrization. In the evaluation of these contributions,
we will assume the routings of the internal lines as the most
general ones. For the direct channel, Fig.4(a), we adopt the
internal lines momenta as being related to the external ones
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by their differences as follows




k3− k2 = q = p+ p′
k3− k1 = p
k1− k2 = p′.

(29)

The crossed diagram can be constructed by changing µ and ν
and adopting for the internal lines the arbitrary momenta as

l1, l2 and l3, satisfying





l3− l2 = q = p+ p′
l3− l1 = p′
l1− l2 = p.

(30)

The expression for the direct diagram can be written as

T SVV
µν (k1,k2,k3;m) =

Z d4k
(2π)4 Tr

{
1̂

1
(6 k + 6 k3)−m

γµ
1

(6 k + 6 k1)−m
γν

1
(6 k + 6 k2)−m

}
. (31)
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Figure 4: Diagrammatic representation for the SVV three-point function and for the SV two-point function, Figs.(a) and (b) respectively.

Contracting with the vector’s vertexes momenta we can obtain a condition for the corresponding Ward identities

(k3− k1)µT SVV
µν =

Z d4k
(2π)4 Tr

{
1̂

1
(6 k + 6 k1)−m

γν
1

(6 k + 6 k2)−m

}
(32)

−
Z d4k

(2π)4 Tr
{

1̂
1

(6 k + 6 k3)−m
γν

1
(6 k + 6 k2)−m

}
,

where we have used in the traces level the identity

(6 k3− 6 k1) = [ 6 k+ 6 k3−m]− [6 k+ 6 k1−m]. (33)

Let us now define the two-point function of the right hand side
as (see Fig.4(b))

TV S
µ (k1,k2;m)=

Z d4k
(2π)4 Tr

{
γµ

1
(6 k + 6 k1)−m

1̂
1

(6 k + 6 k2)−m

}
,

(34)

and

T S→VV
µν = T SVV

µν (k1,k2,k3;m)+T SVV
νµ (l1, l2, l3;m) , (35)

in order to write the Ward identities as

pµT S→VV
µν = TV S

ν (k1,k2;m)−TV S
ν (k3,k2;m)+TV S

ν (l3, l2;m)−TV S
ν (l3, l1;m) (36)

p′νT S→VV
µν = TV S

µ (k3,k2;m)−TV S
µ (k3,k1;m)+TV S

ν (l1, l2;m)−TV S
ν (l3, l2;m) . (37)

The conditions for the symmetry relations maintenance are put in terms of the value for the SV two-point function structure. If
the traces involved are performed we get

TV S
µ = 4m

{Z d4k
(2π)4

2kµ

[(k + k1)2−m2][(k + k2)2−m2]

+(k1 + k2)µ

Z d4k
(2π)4

1
[(k + k1)2−m2][(k + k2)2−m2]

}
, (38)
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which means that

TV S
µ = 4m

{
(k1 + k2)µI2 +2(I2)µ

}
, (39)

or, given the definition (23),

TV S
µ = 4m(∆Iµ) . (40)

If we look at the equation (22) of the preceding section we can
see that the condition we have found for the Ward identities
involved in the S→VV process is the same one we found for
the complex scalar theory Ward identity. Only if the structure
(40) is obtained identically vanishing, the symmetry relations
are preserved by the one-loop perturbative calculation. Before
the analysis let us now consider another (and more interesting)
set of symmetry relations.

IV. A→VV PROCESS

A more interesting situation involving Ward identities
emerges when we want to consider the process where an

Axial-Vector is connected with two vectors. Such a process
can be constructed by coupling the appropriate fermionic den-
sities with the external fields. Similar discussions can be
found in the ref.[11] (see also ref.[10] and [12]). The inter-
action Lagrangian can be written as

LI = iGP(Ψ̄γ5Ψ)π− eV
(
Ψ̄γµΨ

)
Aµ− eA

(
Ψ̄γ5γµΨ

)
W A

µ .
(41)

Here, Ψ is the massive 1
2 fermion, W A

µ is an Axial-Vector field
and π is a pseudo-scalar one. The fermionic currents obey

{
∂µV µ = ∂µ

(
Ψ̄γµΨ

)
= 0

∂µAµ = ∂µ
(
Ψ̄γ5γµΨ

)
= 2mi(Ψ̄γ5Ψ) = 2miP.

. (42)

In such theory we can define the Green’s functions

T A→VV
µνλ (p, p′;q) = i

Z
d4x1d4x2 eipx1+ip′x2 < 0|T (Vµ(x1)Vµ(x2)Aλ(0))|0 >, (43)

T P→VV
µν (p, p′;q) = i

Z
d4x1d4x2 eipx1+ip′x2 < 0|T (Vµ(x1)Vν(x2)P0(0))|0 > . (44)

The standard procedure of current algebra can be used to state
the Ward identities

p′νT A→VV
λµν = 0, (45)

pµT A→VV
λµν = 0, (46)

qλT A→VV
λµν = 2mT P→VV

µν . (47)

The lowest order perturbative calculation of the AVV process
requires the evaluation of the one-loop triangle diagrams of
the Fig.5(a) and (b). The definitions for the external and inter-
nal lines follow the same conventions of the preceding section.
So, we write for the direct channel (see Fig.5(a))

T AVV
λµν (k1,k2,k3;m) =

Z d4k
(2π)4 Tr

{
iγλγ5

1
(6 k + 6 k3)−m

γµ
1

(6 k + 6 k1)−m
γν

1
(6 k + 6 k2)−m

}
. (48)
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Figure 5: Diagrammatic representation for the AVV and PVV three-point functions and for the AV two-point function, Figs.(a), (b) and (c),
respectively.

Contracting with the external momenta we can derive con-
ditions to be fulfilled in order to get the respective Ward identi-

ties preserved. First we contract with the external momentum
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(k3− k2)λ and use the identity

(6 k2− 6 k3)γ5 = (6 k+ 6 k2−m)γ5 +γ5(6 k+ 6 k3−m)+2mγ5, (49)

in the interior of the traces, to get

(k3− k2)λT AVV
λµν = −2mi

Z d4k
(2π)4 Tr

{
γ5

1
[6 k+ 6 k3−m]

γµ
1

[6 k+ 6 k1−m]
γν

1
[6 k+ 6 k2−m]

}

−
Z d4k

(2π)4 Tr
{

iγνγ5
1

[6 k+ 6 k3−m]
γµ

1
[6 k+ 6 k1−m]

}

+
Z d4k

(2π)4 Tr
{

iγµγ5
1

[6 k+ 6 k1−m]
γν

1
[6 k+ 6 k2−m]

}
. (50)

If we define the two-point functions on the right hand side as (see Fig. 5(c))

T AV
ξρ (ki,k j;m) =

Z d4k
(2π)4 Tr

{
iγξγ5

1
(6 k + 6 ki)−m

γρ
1

(6 k + 6 k j)−m

}
, (51)

we can write (see Fig.6)

(k3− k2)λT AVV
λµν =−2imT PVV

µν −T AV
νµ (k3,k1;m)+T AV

µν (k1,k2;m) , (52)

where we have defined (see Fig.5(b))

T PVV
µν (k1,k2,k3;m) =

Z d4k
(2π)4 Tr

{
γ5

1
(6 k + 6 k3)−m

γµ
1

(6 k + 6 k1)−m
γν

1
(6 k + 6 k2)−m

}
. (53)
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Figure 6: Diagrammatic representation for the identity (52).

Now if we take the contractions of the AVV function with the vector’s momenta we immediately identify (see Fig.7)

(k3− k1)µT AVV
λµν = T AV

λν (k1,k2;m)−T AV
λν (k3,k2;m). (54)

Also, in a similar way we can state (see Fig.8)

(k1− k2)νT AVV
λµν = T AV

λµ (k3,k2;m)−T AV
λµ (k3,k1;m). (55)
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Figure 7: Diagrammatic representation for the identity (54).
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Figure 8: Diagrammatic representation for the identity (55).
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The inclusion of the crossed channel allows us to write the following expressions

qλT A→VV
λµν = −2imT P→VV

µν +T AV
µν (k1,k2;m)−T AV

νµ (k3,k1;m)+T AV
νµ (l1, l2;m)−T AV

µν (l3, l1;m), (56)

pµT A→VV
λµν = T AV

λν (k1,k2;m)−T AV
λν (k3,k2;m)+T AV

λν (l3, l2;m)−T AV
λν (l3, l1;m), (57)

p′νT A→VV
λµν = T AV

λµ (k3,k2;m)−T AV
λµ (k3,k1;m)+T AV

λµ (l1, l2;m)−T AV
λµ (l3, l2;m). (58)

The conditions for Ward identities preservation are now put in terms of the AV two-point functions. They are the same ones
we can find in the ref.[10], [11] and [12]. The evaluation of the traces leads us to the expression

T AV
µν (k1,k2;m) = −4εµναβ

{
kβ

2

Z d4k
(2π)4

kα

[(k + k1)2−m2][(k + k2)2−m2]

+kα
1

Z d4k
(2π)4

kβ

[(k + k1)2−m2][(k + k2)2−m2]

+kα
1 kβ

2

Z d4k
(2π)4

1
[(k + k1)2−m2][(k + k2)2−m2]

}
. (59)

We can use the properties of the totally antisymmetric tensor
εµναβ in order to put the equation above into the form

T AV
µν (k1,k2;m) = 2εµναβ(k1− k2)β {

(k1 + k2)αI2 +2(I2)
α}

.
(60)

This means that, given the definition (23), we have

T AV
µν (k1,k2;m) = 2εµναβ(k1− k2)β (∆Iα) , (61)

which means that the condition is the same one as those found
in the preceding sections. Now it is time to study the divergent
integrals that appeared in the three amplitudes considered and
their symmetry relations.

V. THE CALCULATIONAL STRATEGY

If the explicit evaluation of perturbative (divergent) ampli-
tudes is in order we need to specify some philosophy to handle
the mathematical indefinitions involved. Usually the calcula-
tions become reliable only after the adoption of a regulariza-
tion technique. After this, in the intermediary steps, we invari-
ably assume some specific consequences for the results intrin-
sically associated to the properties attributed for the divergent
integrals resulting from the (arbitrary) choices for the math-
ematical indefinitions implied by the adopted regularization.
In the final form this way obtained, for the amplitudes in gen-
eral, it is not possible to specify in a clear way what are the
particular effects of the adopted regularization for the result
or, in other words, to evaluate in what sense the expression is
dependent on the adopted technique. In order to perform a as
safe as possible analysis of the properties of the divergent am-
plitudes, including their symmetry relations and the question
of the ambiguities related to the arbitrariness involved in the
routing of the loop internal lines momenta, we need to avoid
as much as possible specific choices in the intermediary steps
so that all the possibilities still remain contained in the final
results. If it is possible, we can change the usual focus of the
analysis, which is the verification by testing the consistency of

the proposed regularization technique, for the identification of
the eventual properties such a technique should have in order
to be consistent. The implication of the preceding arguments,
which will become clear in what follows, will play an impor-
tant role in the discussion we want to perform.

To explicitly evaluate the divergent integrals involved we
will adopt an alternative strategy to handle the divergences.
The referred method, introduced in ref. [7], has been used
recently in the literature in different contexts. It allows us a
clear and universal point of view for the divergences of per-
turbative calculations in QFT. The strategy is simple: instead
of the specification of some regularization, to justify all the
necessary manipulations, we will assume the presence of a
regulating distribution only in an implicit way. Schematically

Z d4k

(2π)4 f (k) →
Z d4k

(2π)4 f (k)

{
lim

Λ2
i →∞

GΛi

(
k,Λ2

i
)
}

=
Z

Λ

d4k

(2π)4 f (k). (62)

Here Λ′is are parameters of the generic distribution G(Λ2
i ,k)

that, in addition to the obvious finite character of the modified
integral, must have two other very general properties. It must
be even in the integrating momentum k, due to Lorentz invari-
ance maintenance, as well as a well-defined connection limit
must exists, i.e.,

lim
Λ2

i →∞
GΛi

(
k2,Λ2

i
)

= 1. (63)

The first property imply that all odd integrals vanish. The sec-
ond one guarantees, in particular, that the value of the finite
integrals in the amplitudes will not be modified. Having this
in mind, we manipulate the integrand of the divergent inte-
grals to generate a mathematical expression where all the di-
vergences are located in internal momenta independent struc-
tures. This goal can be achieved by the use of an adequate



Brazilian Journal of Physics, vol. 35. no. 2B, June, 2005 573

identity like

1
[(k + ki)2−m2]

=
N

∑
j=0

(−1) j (k2
i +2ki · k

) j

(k2−m2) j+1

+
(−1)N+1 (

k2
i +2ki · k

)N+1

(k2−m2)N+1
[
(k + ki)

2−m2
] , (64)

where ki is (in principle) an arbitrary choice for the routing of
a loop internal line momentum. The value for N must be ad-
equately chosen. The minor value must be the one that leads

the last term in the above expression to be present in a finite
integral and therefore, by virtue of the well-defined connec-
tion limit assumptions, the corresponding integration can be
performed without any restrictions and free from the specific
effects of the eventual regularization. All the remaining struc-
tures become independent on the internal lines momenta. We
then eliminate all the integrals with odd integrand, as a trivial
consequence of the even character of the regulating implicit
distribution. In the divergent structures obtained this way no
additional assumptions are taken. They are organized in five
objects, namely

¤αβµν =
Z

Λ

d4k

(2π)4

24kµkνkαkβ

(k2−m2)4 −gαβ

Z

Λ

d4k

(2π)4
4kµkν

(k2−m2)3 (65)

−gαν

Z

Λ

d4k

(2π)4

4kβkµ

(k2−m2)3 −gαµ

Z

Λ

d4k

(2π)4

4kβkν

(k2−m2)3 ,

∆µν =
Z

Λ

d4k

(2π)4
4kµkν

(k2−m2)3 −
Z

Λ

d4k

(2π)4
gµν

(k2−m2)2 , (66)

∇µν =
Z

Λ

d4k

(2π)4
2kνkµ

(k2−m2)2 −
Z

Λ

d4k

(2π)4
gµν

(k2−m2)
, (67)

Ilog(m2) =
Z

Λ

d4k

(2π)4
1

(k2−m2)2 , (68)

Iquad(m2) =
Z

Λ

d4k

(2π)4
1

(k2−m2)
. (69)

This systematization is sufficient for discussions in fundamen-
tal theories at the one-loop level. In the non-renormalizable
ones new objects can be defined following this philosophy. In
the two (or more) loop level of calculations new basic diver-
gent structures can be equally defined in a completely analo-
gous way. The main point is to avoid the explicit evaluation
of such divergent structures in which case a regulating distri-
bution needs to be specified.

We can say that this procedure furnishes an universal point
of view for the calculated amplitudes since it become possible
to map the final expressions obtained this way into the corre-
sponding results of other techniques. All the steps followed
and all the assumptions are perfectly valid in the reasonable
regularization prescriptions, including the DR. All we need,
to extract from our results those of a specific technique, is to
evaluate the divergent structures, remaining at the final expres-
sion, according to the specific chosen prescription. Another
important fact we call the attention is that no shifts or expan-
sions are used in the intermediary steps. We assume the more
general routing for all amplitudes. The potentially ambiguous
terms are still present in the final result. Consequently, it is
possible to make contact with those results corresponding to
explicit evaluation of surface’s terms involved when shifts in
the integrating momenta are performed. This is an important

aspect of our analysis because we want to make contact with
the traditional approach used to justify the triangle anomalies.

In order to clarify the above described method, to handle the
divergences, let us apply the calculational strategy in the treat-
ment for some divergent integrals. For this purposes we take
two of them that will play an important role in our analysis.
They are two-point function structures defined in eq.(24). The
I2 integral, is a logarithmically divergent structure while (I2)µ
is linearly divergent. In this structures k1 and k2 represents,
in principle, arbitrary choices for the internal lines momenta.
Then we can expect a dependence on k1 and k2 other than the
difference between them only for the (I2)µ integral.

Taken first the I2 integral we choose, in the identity (64),
N = 1 to rewrite both denominators. Then we get

I2 =
Z

Λ

d4k
(2π)4

1
(k2−m2)2 (70)

−
Z d4k

(2π)4
(k2

1 +2k1 · k)2

[(k2−m2)2][(k + k1)2−m2]

−
Z d4k

(2π)4
(k2

2 +2k2 · k)2

[(k2−m2)2][(k + k2)2−m2]

+
Z d4k

(2π)4
(k2

1 +2k1 · k)(k2
2 +2k2 · k)

[(k2−m2)2][(k + k1)2−m2][(k + k2)2−m2]
.
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The right hand side exhibits the desirable form. The divergent
term is located in an internal momenta independent structure
which we can identify as Ilog

(
m2

)
, defined in eq.(68). The

remaining structures are finite ones and we use what we call
the connection limit existence to drop the Λ subscript on the
integral, or, equivalently, to remove the eventual regulating
distribution under the argumentation that the integration and
the connection limit can be perfectly interchanged. The thus
obtained finite Feynman integrals can be solved without any
problem. The answer can be written as

I2 = Ilog(m2)−
(

i
(4π)2

)
Z0((k1− k2)2;m2), (71)

where we have introduced (in short hand notation) the two-
point functions structures [7]

Zk(λ2
1,λ

2
2,q

2;λ2)=
Z 1

0
dzzkln

(
q2z(1− z)+(λ2

1−λ2
2)z−λ2

1
(−λ2)

)
.

(72)

Integration over parameter z can be easily performed however
for our present purposes this is not necessary.

Following the procedure we can evaluate also the Iµ
2 inte-

gral. The first step is the same: the use of the identity (64) to
rewrite the integrand, now to the form

(I2)µ =−1
2
(k1 + k2)α

Z

Λ

d4k
(2π)4

4kαkµ

(k2−m2)3 (73)

+
Z d4k

(2π)4
(k2

1 +2k1 · k)2kµ

[(k2−m2)3][(k + k1)2−m2]

+
Z d4k

(2π)4
(k2

2 +2k2 · k)2kµ

[(k2−m2)3][(k + k2)2−m2]

+
Z d4k

(2π)4
(k2

1 +2k1 · k)(k2
2 +2k2 · k)kµ

[(k2−m2)2][(k + k1)2−m2][(k + k2)2−m2]
.

In the above expression, we have dropped two odd k integrals,
by virtue of the even character of the implicit regulating dis-
tribution as well as the Λ subscript in the last three terms due

to the finite character. After the integration of the finite terms
we are lead to the result

(I2)µ = −1
2
(k1 + k2)α (∆αµ)− 1

2
(k1 + k2)µ

{
Ilog(m2)

−
(

i
(4π)2

)
Z0((k1− k2)2;m2)

}

= −1
2
(k1 + k2)α (∆αµ)− 1

2
(k1 + k2)µ (I2) .

It is important, at this point, to emphasize the general aspects
of the method. No shifts has been performed and, in fact, no
divergent integrals calculated. All the final results produced
by this approach can be mapped in those of any specific tech-
nique. The finite parts are the same as should be by physical
reasons. The divergent parts can be easily obtained. All we
need is to evaluate the remaining divergent structures accord-
ing to the chosen prescription. By virtue of this general char-
acter, the present strategy can be used simply to systematize
the procedures, even if one wants to use traditional techniques.
Let us now to use the above obtained results to calculate the
physical amplitudes involved in our present discussions.

VI. DIVERGENCES, AMBIGUITIES AND WARD
IDENTITIES

Given the results obtained in the preceding section we can
evaluate the combination of Feynman integrals which revealed
being crucial for all the Ward identities we have studied. Sub-
stituting the results (71) and (74) in the expression (23) we
get

∆Iµ = (k1 + k2)α (4αµ) , (74)

and consequently,

TV S
µ (k1,k2;m) = −4m(k1 + k2)α (4αµ) , (75)

T AV
µν (k1,k2;m) = 2εµναβ(k1− k2)α

{
(k1 + k2)ξ

(
4β

ξ

)}
.(76)

The Ward identities we studied in the sections II, III and IV
can be written into the following form

iqµΓ1loop
µ (p,q) = iλ(k1− k2)

µ (k1 + k2)
α (4αµ) , (77)

qλT A→VV
λµν = −2mi[T P→VV

µν ]+2εµναβ

[
(k1− k3)β(k1 + k3)ξ +(k2− k1)β(k1 + k2)ξ

](
4α

ξ

)
(78)

−2εµναβ

[
(l1− l3)β(l1 + l3)ξ +(l2− l1)β(l1 + l2)ξ

](
4α

ξ

)
,

pµT A→VV
λµν = 2ελναβ

[
(k2− k1)β(k1 + k2)ξ +(k3− k2)β(k2 + k3)ξ

](
4α

ξ

)
(79)

+2ελναβ

[
(l3− l1)β(l1 + l3)ξ +(l2− l3)β(l2 + l3)ξ

](
4α

ξ

)
, (80)
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p′νT A→VV
λµν = 2ελµαβ

[
(k3− k1)β(k1 + k3)ξ +(k2− k3)β(k2 + k3)ξ

](
4α

ξ

)
(81)

+2ελµαβ

[
(l2− l1)β(l1 + l2)ξ +(l3− l2)β(l2 + l3)ξ

](
4α

ξ

)
,

pµT S→VV
µν = 4m(k3− k1)ξ (4ξν

)
+4m(l1− l2)ξ (4ξν

)
= 8mpξ (4ξν

)
, (82)

p′νT S→VV
λµν = 4m(k1− k2)ξ (4ξµ

)
+4m(l3− l1)ξ (4ξµ

)
= 8mp′ξ

(4ξµ
)
. (83)

There are two types of undefined quantities in the expressions
above. This means that in order to get definite results for the
involved amplitudes it becomes necessary to assume some (ar-
bitrary) choices for them. Such choices must be obviously
guided by the consistency we want to get in perturbative cal-
culations, in spite of the divergent character. Having this in
mind we can ask for the existence of eventual physical con-
straints to be used in order to get the adequate choices for
the arbitrariness present in the results above. Clearly, there
are two types of constraints which we must fulfill. The first

one refers to the Ward identities themselves, i.e., we want to
make choices that lead, in principle, to their preservation. For
the second, we cannot forget that the conditions (78)-(83) are
obtained after the evaluation of the AV and SV two-point func-
tions, so that our choices for the arbitrariness must not imply
in non-physical results for these amplitudes. In addition, we
note that these two amplitudes are deeply related. There is an
identity at the traces level relating them, namely (see Figure
9):

T AV
µν =− 1

2m
εµναβ(k1− k2)α (

TV S)β
. (84)

=• •
¾

-k + ki

k + k j

iγµγ5 γν
1

2m εµναβ(k j− ki)α • •
¾

-k + ki

k + k j

1 γβ

Figure 9: Diagrammatic representation for the identity (84).

The identity is valid before any calculations have been
made, i.e., independent of the divergences related aspect in-
volved. It must be valid after all the calculations are per-
formed independent of the adopted regularization philosophy.
Within our calculational strategy, the above identity is pre-
served before any choices for the arbitrariness involved. Both
amplitudes are, in principle, ambiguous quantities. The iden-
tity (84) is not ambiguous and should be maintained after the
adopted interpretations for the arbitrariness involved. Given
this observation it is natural to start by the analysis of the
SV and AV two-point functions. First, by unitarity reasons
(Cutkosky’s rules), both two-point functions should have an
imaginary part arising at the kinematical point (k1 − k2)2 =
4m2. If a nonzero value for the referred amplitudes is at-
tributed, independent of the possible choices involved, such
a threshold will not be present. For the second, Lorentz and
CPT arguments also require the vanishing value. Otherwise,
a transition between a vector into a scalar particle and be-
tween an axial into a vector particle seems to be possible
through the SV and AV two-point functions respectively. We
can also add some arguments coming from Ward identities.
The SV amplitude carries a vector Lorentz index in such a
way the contraction with the external momentum of the re-

spective vertex should vanish, in order to maintain the vector
current conserved. Given the expression (76), the contraction
with (k1− k2)µ gives us

(k1− k2)µTV S
µ =−4m(k1− k2)µ(k1 + k2)ξ[4ξµ], (85)

which is not automatically zero. On the other hand, the AV
amplitude should also exhibit a conserved vector current. The
contraction of the expression (77) with (k1− k2)µ, due to the
symmetry properties of the εµναβ tensor, gives us

(k1− k2)µT AV
µν = 0. (86)

This is therefore a good property. However, by the same rea-
sons put above, we get

(k1− k2)νT AV
µν = 0, (87)

which means that the axial current is also conserved, if a
nonzero value for the AV structure is assumed. This is bad
because the correct result is a proportionality between the ax-
ial and pseudo-scalar current, as it is well-known. Only the
zero value for both mathematical structures allows the cor-
rect symmetry content of both considered two-point functions.



576 E. Gambin et al.

Given this conclusion the question immediately raised is: how
can we use the arbitrariness remaining in the expressions (76)
and (77) in order to obtain the desirable results? Looking at
the structure of the results (76) and (77) we see that there are
two basic possibilities. First, due to the fact that the value for
k1 + k2 is not fixed by the energy-momentum conservation,
we can choose k1 = q/2 and k2 =−q/2 where q is the exter-
nal momentum. Within this procedure the value for the object
∆µν is not constrained and all regularizations can be used to
evaluate it. Secondly, since we need to calculate the value for
∆µν, i.e., to adopt a regularization, we can select it in such a
way that ∆reg

µν =0. Both choices should impose a price to be
paid in other calculations if we want to construct a procedure,
i.e., if we assume that all the amplitudes in all theories and
models must be treated in the same way. The first possibility
pointed above implies in the assumption that the amplitudes
may emerge ambiguous from the calculations, i.e., dependent
on the choices for the internal lines labels. This is bad because
the predictive power of QFT in the perturbative approach is
destroyed and, as a consequence, we can use the theory only
to produce adjustments to well-known phenomenologies. The
predictions cannot be stated in general because the amplitudes
may have undefined pieces. In addition, in adopting this way,
we are assuming that the space-time homogeneity is broken in
the calculations. If, on the other hand, we take the second op-
tion there are also some implications. Specific properties for
the divergent integrals are assumed and they need to be used
in all other calculations with the same value and exhibiting the
same consistency, which, in fact, should be verified.

After these important remarks we return to the Ward identi-
ties (78)-(83). Looking at the Ward identities for the complex
scalar field we note that there are two types of arbitrariness
involved; the presence of the undefined piece ∆ and the am-
biguous combination of the external lines momenta k1 + k2.
We have both options described above in order to get a sym-
metry preserving result. A different situation occurs in the
SVV symmetry relation. Even that the condition for the sym-
metry preservation was put in terms of four potentially am-
biguous terms they appear in non-ambiguous combinations.
So all the choices for the internal arbitrary momenta lead us
to the same result. Only the choice ∆reg

µν = 0 will give us the
desirable result. We note that these two problems, the scalar
field and SVV process, can be treated within the DR. In fact,
the strategy we have used to perform the calculations, with the

choice ∆reg
µν = 0, becomes identical to the DR in theories with

only bosonic fields and mappable one-by-one in theories with
fermions. The SV amplitude is trivially obtained identically
zero in the DR. Then, it seems obvious that all the physical
requirements are fulfilled by the choice ∆reg

µν = 0, which maps
the DR results. What are the reasons for hesitation in assum-
ing this option? The answer can be extracted from the conse-
quences of this choice for the Ward identities (78)-(83): they
become

iqµΓ1loop
µ (p,q) = 0, (88)

p′νT S→VV
µν = 0, (89)

pµT S→VV
µν = 0, (90)

and

p′νT A→VV
λµν = 0, (91)

pµT A→VV
λµν = 0, (92)

qλT A→VV
λµν = −2miT P→VV

µν , (93)

i.e., all the Ward identities become preserved and all the ambi-
guities are automatically eliminated. At first sight this fact can
be understood as a trouble because, apparently, we are forbid-
ding any violation of symmetry relations in the AVV triangle
amplitude which is well known should present an anomaly to
be consistent with the electromagnetic pion decay. At least
this is the line of reasoning which we can find in the tradi-
tional literature about this issue. In order to justify the anom-
aly it is assumed that the undefined terms on the right hand
side of the eqs.(79)-(81), which are in the last instance AV
physical amplitudes, are non-vanishing and ambiguous. In or-
der to make clear the last sentence let us consider the recover-
ing of the results corresponding to what we call the traditional
treatment from the ones of the adopted calculational strategy.
The referred results can be easily found in the literature about
the subject or in many textbooks of QFT. It is a very simple
job to pass from our results to the ones corresponding to the
surface’s terms evaluation due to the fact that no shifts have
been made in the intermediary steps. All we need is: first
to state the identities (55)-(57), and then to evaluate the two-
point function structures thus obtained, with the help of the
results (71) and (74), which lead us to the expression

(k3− k2)
λ T AVV

λµν = −2mi[T PVV
µν ]+2εµναβ

[
(k1− k3)β(k1 + k3)ξ +(k2− k1)β(k1 + k2)ξ

](
4α

ξ

)
, (94)

(k3− k1)
µ T AVV

λµν = 2ελναβ

[
(k2− k1)β(k1 + k2)ξ +(k3− k2)β(k2 + k3)ξ

](
4α

ξ

)
, (95)

(k1− k2)
ν T AVV

λµν = 2ελµαβ

[
(k3− k1)β(k1 + k3)ξ +(k2− k3)β(k2 + k3)ξ

](
4α

ξ

)
. (96)

Now we observe that, in order to give a definite value for the
right hand side of the equations, two types of arbitrariness

need to be removed by taking choices. Such arbitrariness are
the ambiguous combinations of internal momenta and the un-
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defined mathematical object. The difference between two log-
arithmically divergent integrals, however, can be immediately
identified with a typical surface’s term and easily evaluated as
follows

∆Sµν =
Z

Λ

d4k

(2π)4
∂

∂kν

(
kµ

(k2−m2)2

)

=
Z

Λ

d4k

(2π)4
−4kµkν

(k2−m2)3 +
Z

Λ

d4k

(2π)4
gµν

(k2−m2)2

=

(
i

(4π)2

)(
1
2

)
gµν.

Note that the same result could be obtained by shifting the
integrating momentum in one of the two-point function struc-
tures in order to produce a cancellation with the other one.
The price to be paid, which is well known, is the addition of
the corresponding surface’s term which assumes exactly the
value obtained above. The next step is the removal of the un-
defined combination of internal momenta. We adopt then a
parametrization for the internal momenta in terms of the ex-
ternal ones





k1 = ap′+bp
k2 = bp+(a−1)p′
k3 = ap′+(b+1)p.

(97)

where a and b are constants. Notice that : k1− k2 = p′,k3−
k1 = p and k3 − k2 = p′ + p = q, where q is obviously the
momentum of the axial vector. After these substitutions we
get

(k3− k2)
λ T AVV

λµν = −2miT PVV
µν − (a−b)

8π2 iεµνξη p′η pξ,(98)

(k3− k1)µT AVV
λµν = − (1−a)

8π2 iελνξη p′η pξ, (99)

(k1− k2)νT AVV
λµν =

(1+b)
8π2 iελµξη p′η pξ. (100)

In the expressions above it remains the arbitrariness related to
the routing of internal lines now present in the parameters a
and b. In addition we note that there are no values for a and
b in such a way that all the expected relations among the in-
volved Green’s functions are simultaneously satisfied. If we
follow this line of reasoning and include the contribution of
the crossed diagram whose parametrization for the internal
lines momenta can be assumed as





l1 = cp+d p′
l2 = d p′+(c−1)p
l3 = cp+(d +1)p′,

(101)

we will obtain

(l3− l2)λT AVV
λνµ = −2miT PVV

νµ − (c−d)
8π2 iεµνξη p′η pξ,(102)

(l1− l2)µT AVV
λνµ = − (d +1)

8π2 iελνξη p′η pξ, (103)

(l3− l1)νT AVV
λνµ = − (c−1)

8π2 iελµξη p′η pξ. (104)

The addition of the two contributions gives us

qλT A→VV
λµν = −2miT P→VV

µν − (a−b+ c−d)
8π2 iεµνξη p′η pξ,(105)

pµT A→VV
λµν = − (d−a+2)

8π2 iελνξη p′η pξ, (106)

p′νT A→VV
λµν = − (c−b−2)

8π2 iελµξη p′η pξ. (107)

A closer contact with the usual results can be obtained if it is
assumed the same significance for the arbitrary internal mo-
menta, i.e., a = c and b = d in the eqs.(56)-(58). We get then

qλT A→VV
λµν = −2miT P→VV

µν − (a−b)
4π2 iεµνξη p′η pξ,(108)

pµT A→VV
λµν = − (b−a+2)

8π2 iελνξη p′η pξ, (109)

p′νT A→VV
λµν =

(b−a+2)
8π2 iελµξη p′η pξ. (110)

Finally, we choose the value a = 1 in the above expression to
get

qλT A→VV
λµν = −2miT P→VV

µν − (1−b)
4π2 iεµνξη p′η pξ,(111)

pµT A→VV
λµν = − (1+b)

8π2 iελνξη p′η pξ, (112)

p′νT A→VV
λµν =

(1+b)
8π2 iελµξη p′η pξ. (113)

The result this way obtained, can be immediately recognized
as the traditional one [2],[10], [11], [12]. It is now clear that
there is no value for the b parameter in order to preserve all
Ward identities. Following the usual arguments and choosing
the value b = −1 the U(1) gauge symmetry is maintained,
but the axial one is violated. Which have become clear in
the discussion above is that the sources of the violating terms
as well as of the anomalous term are AV two-point function
structures.

VII. FINAL REMARKS AND CONCLUSIONS

Considering the facts stated in the last two sections we,
apparently, have created a problematic situation if we want
to look at all the problems on the same way, maintaining all
the physical constraints simultaneously. The results produced
by our treatment preserve all the arbitrariness intrinsic to the
problem. All the considered Ward identities are put in terms
of the same condition. So, the question is to choose what
we need to choose in order to get the desirable consistency.
The arbitrariness, however, can be related to the SV two-
point function which is related to the AV amplitude in a non-
ambiguous way. Due to physical reasons, and also in the DR,
the SV amplitude must be identically vanishing as well as the
AV one. The complex scalar field Ward identity must be pre-
served, as well as the two vector currents must be conserved in
the SVV process. Undoubtedly, only the choice ∆reg

µν = 0 can
fulfill all these requirements. However, this choice eliminates
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all the ambiguities in the AVV amplitude which are the ingre-
dients usually used to justify the anomaly involved, and, ap-
parently, forbids any violation of symmetry relations for this
amplitude. How can we reconciliate this situation? In order
to answer this question it is necessary to assume a conceptual
and philosophical point of view for the problem: the tradi-
tional way used to justify the AVV triangle anomaly cannot
be maintained if we want to look at all the problems in the
same way and the ambiguities cannot play a relevant role in
a consistent interpretation of the perturbative amplitudes. In
this line of reasoning we first need to break fundamental sym-
metries and general principles of QFT, by assuming the SV
and AV structures as non-vanishing ones, for only after this
get a justification for the perturbative origin of the anomalies.
A powerful philosophical argument can be added to these ob-
jective ones. The AVV anomaly phenomenon is predicted for
the exact amplitudes, i.e., it is a fundamental phenomenon.
However, in the eventual exact solutions for the correspond-
ing QFT‘s equations of motion certainly the infinities and the
associated ambiguities must be absent. So, we cannot expect
that the justification of the origin of the anomaly phenomenon,
even in perturbative solutions, resides in exclusive ingredients
of the perturbative calculations as the infinities and ambigui-
ties are. Given this argument, the answer for the question put
above is intrinsically contained in the problem. Being a fun-
damental and unavoidable phenomenon, the anomaly should
be present in any explicit expression for the AVV amplitude.
This means that no choices for the arbitrariness can eliminate
the anomaly as well as no regularization prescription or equiv-
alent philosophy. Then we can expect that a point of view
for the anomalies can be constructed in accordance with all
the others in perturbative calculations. For this purposes it
is necessary to evaluate explicitly the AVV and PVV ampli-

tudes imposing the consistency condition, and expecting that
the violations emerge in a natural way. Which have become
clear in the discussions presented here is that in the context
of traditional regularization procedures different prescriptions
are used for the treatment of identical mathematical structures
depending on the context they appear.

The present status of the problem can be summarized as
follows. In the situations where the DR can be used, elimi-
nating the ambiguities, we certainly adopt it. In the situations
where the involving mathematical structures are not naturally
extendable to any dimension, which is the case of triangle
anomalies, we adopt the surface’s terms evaluation, attributing
a meaning to the ambiguous character of the perturbative am-
plitudes. In a certain way, in situations where these problems
do not simultaneously occur this option represents a possible
choice for the involved arbitrariness. However, admitting the
intention of looking at all the fundamental interactions as parts
of a more general and unified theory, it seems a patently ab-
surd idea because this means that in a certain amplitude of the
same theory a value is attributed for the objects4µν, having in
mind consistency reasons, while in other amplitudes the value
can be taken as different without any crisis of conscience. Cer-
tainly it would be very frustrating for any physicist who got
interested in studying an exact science to accept this situa-
tion as a final one. This situation is clearly unacceptable and
additional efforts in order to achieve consistent and universal
interpretations for the mathematical indefinitions intrinsic of
the perturbative calculations are required. The strategy de-
scribed in the section V seems to put the analysis in the right
direction.
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