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In this brief review we explicitly calculate the radiative corrections to the Chern-Simons-like term in the cases
of zero and finite temperature, and in the gravity theory. Our results are obtained under the general guidance of
dimensional regularization.
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I. INTRODUCTION

The possibility of breaking Lorentz and CPT symmetries
has been considered in several different contexts [1–6]. Most
of them were dedicated to the extended quantum electrody-
namics (QED) sector of the extended standard model (see
e.g. Ref. [2, 3]). The initial motivation for consideration of
Lorentz violation came from string theory [7, 8]. Its basic idea
is that interactions in the underlying theory induce nonzero ex-
pectation values for one or more Lorentz tensors which can be
regarded as background quantities in the vacuum throughout
spacetime.

Some time ago, in Ref. [1] the authors formulated the first
model in which the electrodynamics is modified by adding the
Chern-Simons-like term to Maxwell term and verified that the
Lorentz and CPT symmetries are broken. This model predicts
the rotation of the plane of polarization of light from distance
galaxies, an effect which was not observed yet [1]. In recent
papers [9, 10], the modification of general relativity obtained
by adding the Chern-Simons-like gravitational term has been
studied. The authors have observed that in such modified the-
ory the Schwarzschild metric turns out to be a solution, gravi-
tational waves possess two polarizations which travel with the
velocity of light and polarized waves are suppressed or en-
hanced.

In four dimensions Colladay and Kostelecký posed the
question whether such a term is induced when Lorentz and
CPT violating term ψ̄b/γ5ψ is added to conventional La-
grangian of the QED [3]. In this case the fermions can be
integrated out, and the radiative correction up to the first loop
may lead to

SCS =
1
2

∫
d4xεµνλρkµFνλAρ (1)

where kµ = Cbµ. The issue has been carefully investigated
in several different contexts and regularization schemes, by
many authors [3, 11–24], leading to results where C vanishes
[3, 5, 17, 18, 24] and results where C does not [11–16, 19–23]
but different each other. This dependence upon the regulariza-
tion scheme [11, 12] corresponds to an “ambiguity”, i.e. finite
but undetermined values, which has been well discussed in the
literature [25, 26].

In this brief review we will summarize the induction of the
Chern-Simons-like term by radiative corrections in the con-

texts of the zero and finite temperature, and in the gravity the-
ory.

II. RADIATIVELY INDUCED CHERN-SIMONS-LIKE
TERM

In order to study this issue, one may consider the action of
the Lorentz and CPT violating fermion sector

S f =
∫

d4xψ̄(i∂/−m− γ5b/−A/)ψ, (2)

where bµ is a constant four vector which selects a fixed direc-
tion in spacetime. To account for the fermionic integration we
write

eiSe f f [b,A] =
∫

Dψ̄DψeiS f (3)

where the effective action is given by

Se f f [b,A] = −iTr ln(i∂/−m− γ5b/−A/)ψ. (4)

Note that the Eq. above can be written as Se f f [b,A] =
S(0)

e f f [b]+S(1)
e f f [b,A], where S(0)

e f f [b] =−iTrln(p/−m−γ5b/) and

S(1)
e f f [b,A] = iTr

∞

∑
n=1

1
n

[
1

p/−m− γ5b/
A/

]n

. (5)

Since the term S(0)
e f f [b] is independent of the gauge field and

cannot induce Chern-Simons-term, we shall focus only on the
second term S(1)

e f f [b,A] looking for the first order derivative
terms which are linear in � b and quadratic in �A. This is the
perturbative route, in which we do not include the contribution
involving the vector bµ into the Dirac propagator (see Ref.
[11] for details).

Using the derivative expansion [27, 28]

1
/p− i/∂−m

=
1

/p−m
+

1
/p−m

i/∂
1

/p−m
+ · · · , (6)

we can rewrite Eq.(5) in the form

S(1b)
e f f [b,A] =

i
2

∫
d4x

(
Πµν

1 +Πµν
2 +Πµν

3

)
AµAν (7)
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where

Πµν
1 = tr

∫ d4 p
(2π)4 S(p)/bγ5S(p)γµS(p)i/∂S(p)γν, (8)

Πµν
2 = tr

∫ d4 p
(2π)4 S(p)γµS(p)/bγ5S(p)i/∂S(p)γν, (9)

and

Πµν
3 = tr

∫ d4 p
(2π)4 S(p)γµS(p)i/∂S(p)/bγ5S(p)γν. (10)

with S(p) = (� p−m)−1.
We evaluate the integrals under the general guidance of

dimensional regularization [29–31]. Thus, we change di-
mensions from 4 to 2w, and we change d4 p/(2π)4 to
(µ2)2−w[d2w p/(2π)2w], where µ is an arbitrary parameter that
identifies the mass scale. We use two distinct routes to do the
calculations involving the Dirac matrices. In the first route we
use the cyclic property of the trace, to move γ5 to the very end
of every expression involving the trace of Dirac matrices and
γαγα = 2w, so that we get

S(1b)
e f f [b,A] =

3
2

iΠ(w) tr(γµγνγλγργ5)

×bµ

∫
d4x∂νAλAρ. (11)

Here the factor 3 accounts for identical contributions that
comes from Πµν

1 , Πµν
2 and Πµν

3 , and Π(w) is given by

Π(w) = −2w−1
96π2 +

w+1
96π2

(
4πµ2

m2

)2−w

×Γ(2−w)(2−w). (12)

In the above calculations we have set Πµν
i = Πµν

i,div + Πµν
i,fin

to split the Πµν
i contribution into two parts, one divergent and

the other finite. The contribution Πµν
i,div is divergent in the

limit w → 2, and it contribute with the term proportional to
Γ(2−w). However, the factor involving the Dirac matrices
contributes with the term (2−w), in a way such that the full
contribution is finite in the limit w → 2. Furthermore, this
finite term exactly compensates the finite contribution that ap-
pears from Πµν

i,fin in the limit w → 2. In the limit w → 2 we

can use tr(γµγνγλγργ5) = 4iεµνλρ, but Π(w → 2) → 0 and this
leaves no room for Lorentz and CPT violation. The perfect
balance between the two contributions that we have just found
has been identified before in Ref. [34] as being peculiar to di-
mensional regularization.

We stress that if one uses the relation {γµ,γ5} = 0 to move
γ5 to the end of every expression involving the trace of Dirac
matrices, the perfect balance between the two contributions is
broken, giving rise to a non zero value for the constant C. In
the same way, if one uses the cyclic property of the trace and
γαγα = 4 [13], we have

kµ =
3

16π2 bµ. (13)

This is the unambiguous Chern-Simons coefficient [11] ob-
tained when we use the nonperturbative route, in which we
include the contribution involving �b into the Dirac propagator.

We make this point stronger by considering another route
to implement the calculation involving properties of the Dirac
matrices when the spacetime has dimension 2w. We follow
[31, 32], and now the Dirac matrices contracted with � b and
�A are physical matrices; they are written in the form γ̄µ, etc.
The other Dirac matrices are changed according to the rule
γα → γ̄α + γ̂α, where {γ̄α, γ̄β} = 2ḡαβ, {γ̂α, γ̂β} = 2ĝαβ, and
{γ̄α, γ̂β}= 0, and also γ̄αγ̄α = 4, γ̄αγ̂α = 0 and γ̂αγ̂α = 2(w−2).
In this case we can use either the cyclic property of the trace,
or the relations {γ5, γ̄µ} = [γ5, γ̂µ] = 0 with tr(γ̄µγ̄νγ̄λγ̄ργ5) =
4iεµνλρ and tr(γµγνγλγ̂ργ5) = 0, that we arrive at the same re-
sult where the Eq. (12) does vanish.

Therefore, we can emphasize that concerning dimensional
regularization scheme a variety of results can be obtained
when a variety of prescriptions is made.

III. RADIATIVELY INDUCED CHERN-SIMONS-LIKE
TERM AT FINITE TEMPERATURE

In this section we will analyze the behavior of the para-
meter C when we take temperature into account. By com-
paring with results in the literature [33–35], we also will find
that at finite temperature, the Chern-Simons-like term remains
undetermined. It is more convenient rewrite the Eq. (4) as
Se f f [b,A] = S(0)

e f f [b]+S(1)
e f f [b,A], where now

S(1)
e f f [b,A] = i

∫ 1

0
dzTr

[
1

i∂/−m− γ5b/− zA/(x)
A/(x)

]
. (14)

To perform the momentum space integration in Eq. (14), we consider the prescription [37]:

i∂/ → p/, A/(x) → A/
(

x− i
∂

∂p

)
. (15)
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Then, the Eq. (14) now reads

S(1)
e f f [b,A] = i

∫ 1

0
dz

∫
d4x

∫ d4 p
(2π)4 tr

[
1

p/−m− γ5b/− zeA/(x− i ∂
∂p )

A/(x)

]
. (16)

We can manipulate the Eq.(16) to keep only first order derivative terms which are linear in b/ and quadratic in A/. Carrying out
the integral in z gives

S(1b)
e f f [b,A] = − i

2

∫
d4x

∫ d4 p
(2π)4 tr

[
1

p/−m
i∂µA/

∂
∂pµ

1
p/−m

γ5b/
1

p/−m
A/+

1
p/−m

γ5b/
1

p/−m
i∂µA/

∂
∂pµ

1
p/−m

A/
]
. (17)

Now, using the relation

∂
∂pµ

1
p/−m

= − 1
p/−m

γµ 1
p/−m

.

and taking the traces of the products of γ matrices on relevant
terms, i.e., the terms that contain tr(γµγνγαγβγ5), the Eq.(17)
takes the form

S(1b)
e f f [b,A] = −1

2

∫
d4 x

∫ d4 p
(2π)4

N
(p2 −m2)4 , (18)

where N is given by

N = −4i(p2 −m2)
[
εαβµσ (

3m2 + p2)−4εαβµν pν pσ
]

× bσ∂µAαAβ. (19)

Note that by power counting the momentum integral in
Eq. (18) contains terms with logarithmic divergence. Let us
use the relation

∫ dDq
(2π)D qµqν f (q2) =

gµν

D

∫ dDq
(2π)D q2 f (q2), (20)

that naturally removes the logarithmic divergence. Now, con-
sidering D = 4, the terms containing p2 and pν pσ in (19) can-
cel out and we find

N = −12m2i(p2 −m2)εαβµσbσ∂µAαAβ. (21)

In this way, the logarithmic divergence in (18) disappears, so
that the effective action now reads

S(1b)
e f f [b,A] =

[
6im2

∫ d4 p
(2π)4

1
(p2 −m2)3

]
(22)

× εαβµσbσ

∫
d4 x∂µAαAβ,

which is finite by power counting. Evaluating the momentum
integral in the (22) we also obtain unambiguously the Chern-
Simons coefficient [11]

kµ =
3

16π2 bµ. (23)

However, if we use another regularization scheme kµ may van-
ish, for instance, in Pauli-Villars regularization scheme [3].

Next we study such undetermined coefficient when we take
into account the temperature.

Let us now assume that the system is at thermal equilib-
rium with a temperature T = 1/β. In this case we can use
Matsubara formalism for fermions, which consists in tak-
ing p0 = (n+1/2)2π/β and changing (1/2π)

∫
d p0 = 1/β∑n

[38]. We also change the Minkowski space to Euclidean
space, by making x0 = −ix4, p0 = ip4 and b0 = ib4, such that
p2 = −p2

E , p2
E = p2 + p2

4, d4 p = id4 pE and d4x = −id4xE .
Now the Eq. (22) can be written as

S(1b)
e f f [b,A] = 6 f (m2,β)εαβµσbσ

∫
(−i)d4 xE∂µAαAβ, (24)

where f (m2,β), is the Chern-Simons coefficient dependent on
the temperature which is given by

f (m2,β) =
m2

β

∫ d3p
(2π)3

∞

∑
n=−∞

1
(p2 + p2

4 +m2)3
(25)

=
m2

2β
d2

d(m2)2

∫ d3p
(2π)3

∞

∑
n=−∞

1
(p2 + p2

4 +m2)2
.

We calculate the momentum integral by adopting dimensional
regularization scheme to obtain

f (m2,β) =
m2

2β
Γ(3−D/2)

(4π)D/2

∞

∑
n=−∞

1
(p2

4 +m2)3−D/2 . (26)

To perform summation we shall use an explicit representation
for the sum over the Matsubara frequencies [39]:

∑
n

[(n+b)2 +a2]−λ =
√

πΓ(λ−1/2)
Γ(λ)(a2)λ−1/2 (27)

+ 4sin(πλ)
∫ ∞

|a|
dz

(z2 −a2)λ Re
(

1
exp2π(z+ ib)−1

)
,

which is valid for 1/2 < λ < 1. This implies that for λ =
3−D/2 as given in Eq.(26) we cannot apply this relation for
D = 3, because the integral in (27) does not converge. Thus,
let us perform the analytic continuation of this relation, so we
obtain
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∫ ∞

|a|
dz

(z2 −a2)λ Re
(

1
exp2π(z+ ib)−1

)
=

1
2a2

3−2λ
1−λ

∫ ∞

|a|
dz

(z2 −a2)λ−1 Re
(

1
exp2π(z+ ib)−1

)
(28)

− 1
4a2

1
(2−λ)(1−λ)

∫ ∞

|a|
dz

(z2 −a2)λ−2

d2

dz2 Re
(

1
exp2π(z+ ib)−1

)
.

Now for D = 3 the Eq.(26) takes the form [36]

f (m2,β) =
1

32π2 +
1
16

F(ξ), (29)

where ξ = βm
2π and the function

F(ξ) =
∫ ∞

|ξ|
dz(z2 −ξ2)1/2 tanh(πz)

cosh2(πz)
, (30)

approaches the limits: F(ξ → ∞) → 0 (T → 0) and F(ξ →
0) → 1/2π2 (T → ∞) — see Fig.1. Thus, we see that at high
temperature the Chern-Simons coefficient is twice its value at
zero temperature, i.e., f (m2,β → 0) = 1/16π2. On the other
hand, at zero temperature, one recovers the result (23).
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FIG. 1: The function f (m2,β) is different from zero everywhere.
At zero temperature (β → ∞), the function tends to a nonzero value
1/32π2.

IV. RADIATIVELY INDUCED CHERN-SIMONS-LIKE
TERM IN GENERAL RELATIVITY

The action that we are interested is given by

S =
∫

d4x( 1
2 ieeµ

aψ̄γa ↔
Dµ ψ− eeµ

aψ̄bµγaγ5ψ), (31)

where we have included the parity-violating term. Here, eµ
a is

the tetrad (vierbein), e ≡ deteµ
a and bµ is a constant 4-vector.

The covariant derivative is given by

Dµψ = ∂µψ+ 1
2 wµcdσcdψ, (32)

where w cd
µ is the spin connection and σcd = 1

4 [γc,γd ], whereas
the covariant derivative on a Dirac-conjugate field ψ̄ is

Dµψ̄ = ∂µψ̄− 1
2 wµcdψ̄σcd . (33)

Using the expressions above we can rewrite the Eq. (31) as
follow

S =
∫

d4x( 1
2 ieeµ

aψ̄γa ↔
∂ µ ψ+ 1

4 ieeµ
aψ̄wµcdΓacdψ

−eeµ
aψ̄bµγaγ5ψ), (34)

where Γacd = 1
6 (γaγcγd ± permutations), i.e. the antisym-

metrized product of three γ-matrices.
In the weak field approximation we consider gµν = ηµν +

hµν (gµν = ηµν−hµν), which induces an expansion for the vier-
bein eµa = ηµa + 1

2 hµa (eµ
a = ηµ

a− 1
2 hµ

a). Then, the linearized
Chern-Simons-like action takes the form [9]

Slinear =
1
4

∫
d4xhµνvλεαµλρ∂ρ(∂γ∂γhα

ν −∂ν∂γhγα). (35)

The main goal here is to induce this action by radiative correc-
tion of fermionic matter field obtaining the relation between
vλ and bµ [40]. In order to perform this calculation we con-
sider the fermionic model represented by the action

eiΓ[h] =
∫

Dψ̄DψeiS[h,ψ̄,ψ], (36)

where the linearized effective action is given by

S[h, ψ̄,ψ] =
∫

d4x( 1
2 iψ̄Γµ ↔

∂ µ ψ+ ψ̄hµνΓµνψ− ψ̄bµγµγ5ψ),

(37)
with Γµ = γµ − 1

2 hµνγν and Γµν = 1
2 bµγνγ5 −

i
16 (∂ρhαβ)ηβνΓρµα. In this expression, we neglect the
terms proportional to h = ηµνhµν because they do not
contribute to generating of the Chern-Simons-like action.

The Feynman rules that we obtain from Eq.(37) are:

= S(p) =
i

p/−m

= −ib/γ5

= − i
4 γµ(2p+q)ν

= iγµbνγ5

= − i
16 ηβνΓµρα(q1 −q2)ρ. (38)

The relevant one-loop graphs to the Chern-Simons-like ef-
fective action are shown in the Fig. (2), whose Feynman inte-
grals are given by
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(a) (b)

FIG. 2: One-loop relevant contributions

Πµναβ
a (q) = − i

16
tr

∫ d4 p
(2π)4

[
γµ(2p+q)νS(p)γα(2p+q)βS(p+q)�bγ5S(p+q)

]
(39)

and

Πµναβ
b (q) = − i

16
tr

∫ d4 p
(2π)4

[
γµ(2p+q)νS(p)�bγ5S(p)γα(2p+q)βS(p+q)

]
. (40)

It is straightforward to see that

Πµναβ(q) = Πµναβ
a (q) = Πανµβ

b (−q), (41)

which appears of substituting the loop momenta, p → p− qx, and we use the cyclic properties of the trace of a product of
γ-matrices. So, from now on we work only with Eq. (39) which takes the form

Πµναβ(q) = −1
8

∫ 1

0
dxx

∫ d4 p
(2π)4

(2p+q(1−2x))ν(2p+q(1−2x))β

[p2 −m2 + x(1− x)q2]3

×tr [γµ(� p−�qx+m)γα(� p+�q(1− x)+m)�bγ5(� p+�q(1− x)+m)] , (42)

where we have used Feynman parameter to combine the denominator in Eq. (42). Taking into account the trace of Dirac matrices
and dropping all odd terms in p, we get

Πµναβ(q) = −1
8

∫ 1

0
dxx

∫ d4 p
(2π)4

Nµναβ(p0, p2, p4)
[p2 −m2 + x(1− x)q2]3

, (43)

where the numerator Nµναβ(p0, p2, p4) has the form,

Nµναβ(p0, p2, p4) = 4pν pβ(T αµ
0 +T αµ

pp )+2(1−2x)(pνqβ + pβqν)(T αµ
p +T αµ

ppp)+(1−2x)2qνqβ(T αµ
0 +T αµ

pp ) (44)

with

T αµ
0 = −4ibλεαµλθqθ[x(1− x)2q2 +(2− x)m2], (45)

T αµ
p = −4ibλεαµλρ[m2 +(1− x2)q2]pρ −8i(1− x)bλ[εµλρθqα − εαλρθqµ − (1− x)εαµλθqρ]qθ pρ, (46)

T αµ
pp = −4ibλ[2(εµλρθ pρ pα − εαλρθ pρ pµ + xεαµλρ pρ pθ)− (2− x)εαµλθ p2]qθ, (47)

T αµ
ppp = 4ibλεαµλρ p2 pρ. (48)

The integral (43) is badly divergent. Finally, using the di-
mensional regularization, the Eq. (42) takes the form

Πµναβ(q) = bλεαµλρqρ

[
Aq2ηβν +Bqβqν

]
, (49)

where the expressions A and B are given by

A =
1

32π2

∫ 1

0
dx

[
3x3(1− x)+(5x−3)x2(1− x)

(
2
ε

+ ln
(

4πµ2

−M2

)
− γ

)

− 3x2
(

2
ε

+ ln
(

4πµ2

−M2

)
− γ+1

)
m2

q2

]
(50)
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and

B =
1

64π2

∫ 1

0
dx

{
(1−2x)2(3−2x)

x2(1− x)q2

M2

+ [(2−3x)(1−2x)−4x(1− x)]x(1−2x)
(

2
ε

+ ln
(

4πµ2

−M2

)
− γ

)}
, (51)

after they have been expanded around ε → 0, with ε = 4−D
and M2 = m2 − x(1− x)q2.

As one can see
∫ 1

0 dx[(5x−3)x2(1−x)]( 2
ε −γ) = 0 in A and∫ 1

0 dx[(2−3x)(1−2x)−4x(1− x)]x(1−2x)( 2
ε − γ) = 0 in B,

then A and B take the form

A =
1

32π2

∫ 1

0
dx

[
3x3(1− x)+

(1−2x)x3(1− x)2q2

m2 − x(1− x)q2

− 3x2
(

2
ε

+ ln
(

4πµ2

−M2

)
− γ+1

)
m2

q2

]
(52)

and

B =
1

32π2

∫ 1

0
dx

(1−2x)2x2(1− x)q2

m2 − x(1− x)q2 . (53)

Here we have performed an integration by parts on x for log
term in A and B. Note that in A the divergent part is present
which will disappear when we consider the limit m2 → 0.
Now performing the x-integration, we have

A|m2→0 = −B|m2→0 =
1

192π2 . (54)

We substitute these results into Eq. (49), to obtain the Chern-
Simons-like term

Πµναβ(q) =
1

192π2 bλεαµλρqρ

[
q2ηβν − qβqν

]
. (55)

Finally, the Chern-Simons-like gravitational action induced
by radiatively corrections is given by

Γcs[h] =
1

192π2

∫
d4xbλhµνεαµλρ∂ρ [

∂γ∂γhα
ν −∂ν∂γhγα]

.

(56)
Comparing to Eq.(35) we obtain the relation between the pa-
rameters vλ and bµ which is written as

vλ =
1

48π2 bλ. (57)

V. CONCLUSION

We have studied the induction of Chern-Simons-like term
at zero and finite temperature, and in gravity theory. Here the
dimensional regularization was applied to evaluate momen-
tum integrals. We found that depending on the prescription,
one can obtain either zero Chern-Simons coefficient or the un-
ambiguous result [11], at zero temperature.

At finite temperature, our result is finite [36] but does not
agree with other results presented in the literature [33–35].
We argue that this is also caused by different regularization
schemes. In the limit T → 0 our result leads to a nonzero
Chern-Simons-like term, a behavior also predicted in [33],
obtained with the use of dimensional regularization, and the
result in [35], obtained with the use of cutoff regularization
scheme. However, it is in conflict with the result found in [34]
which suggests the vanishing of the Chern-Simons-like term
at zero temperature. On the other hand, at high temperature
our result behaves as the result of [34]. But now, however,
it conflicts with the results in [33, 35] which predict that the
Chern-Simons-like term vanishes at high temperature. These
results are all finite, and they show that the Chern-Simons co-
efficient is indeed undetermined just as it happens at zero tem-
perature [25, 26].

Finally, we recall that we also have calculated the radiative
corrections induced by Dirac fermions coupled to a gravita-
tional background field, including the nonstandard contribu-
tion that violates parity. In this calculation we have used the
weak field approximation. As we are using the perturbative
route, i.e., to lowest order in bµ, probably these radiative cor-
rections are also undetermined.
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B 503, 215 (2001).
[22] J. M. Chung and B.K. Chung, Phys. Rev. D 63, 105015 (2001).
[23] A. A. Andrianov, P. Giacconi, and R. Soldati, J. High Energy

Phys. 02, 030 (2002).
[24] D. Bazeia, T. Mariz, J. R. Nascimento, E. Passos, and R. F.

Ribeiro, J. Phys. A 36 4937 (2003)
[25] R. Jackiw, Int. J. Mod. Phys. B14, 2011 (2000).
[26] M. Perez-Victoria, JHEP 0104, 032 (2001).

[27] I. J. R. Aitchison and C. M. Fraser, Phys. Lett. B 146, 63 (1984);
Phys. Rev. D 31, 2605 (1985); C. M. Fraser, Z. Phys. C 28, 101
(1985).

[28] A. Das and A. Karev, Phys. Rev. D 36, 623 (1987); K. S. Babu,
A. Das, and P. Panagrahi, Phys. Rev. D 36, 3725 (1987).

[29] J. Ashmore, Lett. Nuovo Cim. 4, 289 (1972).
[30] C. G. Bolini and J. J. Giambiagi, Phys. Lett. B 40, 566 (1972).
[31] G. t’Hooft and M. J. G. Veltman, Nucl. Phys. B 44, 189 (1972).
[32] P. Breitenlohner and D. Maison, Comm. Math. Phys. 52, 11

(1977).
[33] J. R. Nascimento, R. F. Ribeiro, and N. F. Svaiter, Radiatively

induced Lorentz and CPT violation in QED at finite tempera-
ture, hep-th/0012039.

[34] L. Cervi, L. Griguolo, and D. Seminara, Phys. Rev. D 64,
105003 (2001).

[35] D. Ebert, V. C. Zhukovsky, and A. S. Razumovsky, Phys. Rev.
D 70, 025003 (2004).

[36] T. Mariz, J. R. Nascimento, E. Passos, R. F. Ribeiro, and F. A.
Brito, J. High Energy Phys. 10, 019 (2005).

[37] L. H. Chan, Phys. Rev. Lett, 54, 1222 (1985).
[38] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[39] L. H. Ford, Phys. Rev. D 21, 933 (1980).
[40] T. Mariz, J. R. Nascimento, E. Passos, and R. F. Ribeiro, Phys.

Rev. D 70, 024014 (2004).


