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We discuss the notion of causality in Quantum Gravity in the context of sum-over-histories approaches, in
the absence therefore of any background time parameter. In the spin foam formulation of Quantum Gravity,
we identify the appropriate causal structure in the orientation of the spin foam 2-complex and the data that
characterize it; we construct a generalised version of spin foam models introducing an extra variable with the
interpretation of proper time and show that different ranges of integration for this proper time give two separate
classes of spin foam models: one corresponds to the spin foam models currently studied, that are independent
of the underlying orientation/causal structure and are therefore interpreted as a-causal transition amplitudes; the
second corresponds to a general definition of causal or orientation dependent spin foam models, interpreted as
causal transition amplitudes or as the Quantum Gravity analogue of the Feynman propagator of field theory,
implying a notion of ”timeless ordering”.

1 Introduction
This paper discusses the issue of causality in non-perturbative
quantum gravity, and more precisely in the spin foam formu-
lation of the theory. This has implications for the broader
issue of time in a background independent quantum theory
as well as rather more technical aspects related to the spe-
cific approach we deal with. We will try to highlight both
these conceptual issues and the ideas on which our results are
based and what these results actually are. These results were
presented in [1], and their presentation in section 3, 4 and 5
is in fact based on [1], and will be analysed and discussed in
more details in [2].

1.1 Time and causality in Quantum Gravity
In quantum gravity, because of background independence
and diffeomorphism invariance, neither phsyical observables
nor physical states, i.e. none of the basic elements of any
canonical formulation of the theory, can depend on an exter-
nal time parameter as is the case in ordinary quantum me-
chanics, but time itself becomes a quantum variable insofar
as the metric itself is a quantum variable; this is true also in a
covariant or sum-over-histories formulation, because, even if
the boundary may be assigned timelike data, still the space-
time geometry cannot be used to define any unique notion of
time in the interior of the manifold as it represents the quan-
tum field we are summing over to define our theory. This
led to the conclusion that time can not be a basic ingredient
in a proper formulation of Quantum Gravity, or that the very
concept of time is not fundamantal at all and should instead

emerge only in a semiclassical approximation [3]. Regarding
the issue of causality, there seem to be two basic attitude one
can take: one can hold that we cannot speak of causality in
absence of time and therefore just as time itself also a notion
causality should emerge and be applicable only in a semi-
classical limit; this is actually true without argument, actually
a truism, if we stick to the conventional notion of causality in
terms of a given spacetime geometry, and of lightcone struc-
tures in a continuous manifold; however one can argue that
the notion of causality is actually more primitive than that of
time, more fundamental, being already present in the notion
of ordering between events, of a fundamental directionality
in spacetime, and that as such can be present, as a seed of
what will then be, in a semiclassical approximation, the usual
notion of causality, even if discrete or combinatorial or al-
gebraic structures are used to encode gravitational degrees
of freedom and thus spacetime geometry in a formulation of
Quantum Gravity. We agree with this latter point of view.

1.2 Causality as ordering in Quantum Gravity
Indeed, certain approaches to Quantum Gravity even take this
notion of causality as order as the basic ingredient for their
constructions, the keystone on which to found the theory; it
is the case of the causal set approach [4] where spacetime at
the most fundamental level is taken to be a set of fundamental
events endowed with an ordering representing their causal re-
lations and the task is that of constructing a suitable quantum
amplitude for each configuration so specified, this amplitude
being the main ingredient ina sum-over-histories formulation
of quantum gravity as a sum over causal sets, i.e. a sum over
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causally ordered or oriented, discrete sets of events.
This idea of causality as ordering as a basic ingredient in

a sum-over-histories formulation of the theory has a formal
implementation also in the analytic path integral approach to
quantum gravity as developed by Teitelboim [5], so not as-
suming any discrete substratum for spacetime, and his con-
struction can be seen as a formal realization of what seems
to be a general principle in any sum-over-histories quantum
gravity theory: implement the causality principle by requir-
ing that each history summed over, i.e. each spacetime geom-
etry, is oriented, that this orientation matches that of the
boundary states/data and is registered in the quantum ampli-
tude assigned to each history, such that, when a canonical
formulation is available, the two boundary states can be dis-
tinguished as either ’in-state’ or ’out-state’; this orientation
dependence replaces the notion of ’time-ordering’ of quan-

tum field theory, that is of course unavailable in this back-
ground independent context. The fact that this is possible
or not, thus the exact way the Quantum Gravity transition
amplitudes are defined allows a distinction between differ-
ent kinds of transition amplitudes, causal and a-causal ones.
More precisely [5], the distinction between the different tran-
sition amplitudes in registering initial and final 3-geometry
(h1, h2) in the boundary data of the path integral is obtained
by choosing different range of integration in the proper time
formulation of the theory; using a canonical decomposition
of the metric variables, the role of proper time is played by
the lapse function; an unrestricted range of integration leads
to the (quantum gravity analogue of the) Hadamard function,
while a restriction to positive lapses leads to the (analogue of
the) Feynman propagator. The expressions for the two quan-
tities have just a formal meaning, but read:

c

GH(h2, h1) =
∫ +∞

−∞
DN

[
ei
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Md3xdt

(
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0
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d

The idea behind this construction is best understood recall-
ing basic facts from the theory of a quantum relativistic
particle (that cna be thought indeed as quantum gravity in
0 + 1 dimensions. There [6] the main difference between
the different transition amplitudes (and 2-point functions) one
can construct, in particular the Feynman propagator and the
Hadamard function, is exactly the way they encode (or fail to
encode) causality restrictions, in the fact that the amplitude
registers or not that one of the two is in the causal future of
the other; this order can be imposed in each of the histories
summed over in a clear way using a proper time formula-
tion: starting from the same proper time dependent expres-
sion g(x1, x2, T ), which can be given a sum-over-histories
form, the Hadamard function is obtained eliminating this de-
pendence by integrating over the proper time variable with an
infinite range over both positive and negative values; the re-
sulting amplitude is then a-causal, and real, and does not reg-
ister any ordering between its arguments; the Feynman propa-
gator is instead obtained restricting this integration to positive
or negative proper times only, and this ordering is precisely
what makes it causal; denoting G±W (x1, x2) the positive and
negative Wightman function, the result is:

GH(x1, x2) = G+
W (x1, x2) + G−W (x1, x2) =

=
∫ +∞

−∞
dT g(x1, x2, T )

GF (x1, x2) = θ(x0
2 − x0

1) G+
W (x1, x2) +

+θ(x0
1 − x0

2)G−W (x1, x2) =
∫ +∞

0

dT g(x1, x2, T )

g(x1, x2, T ) =
∫

d4p ei[(x2−x1)·p−T (p2+m2)].

The problem we address in this work is how to construct the
analogue quantities in a spin foam context, i.e. in a purely
combinatorial, algebraic and group theoretic way, in absence
of any smooth manifold structure and any metric field. We
will see that this can be achieved in full generality and in a
very natural way.

2 Spin Foam models of Quantum
Gravity

Spin foam models [7, 8] are currently being studied as a new
more rigorous implementation of the path integral approach
to quantum gravity. As such they are constructed by a defi-
nition of histories of the gravitational field, interpreted as 4-
dimensional geometries for a given spacetime manifold, and
an assignment of quantum amplitudes to these geometries,
i.e. suitable complex functions of the geometric data char-
acterizing each history. Different models have been proposed
and derived from many different points of view, including lat-
tice gauge theory type derivations [9] and group field theory
formulations [10], for both the Riemannian and Lorentzian
signatures, and in different dimensions, which counts as one
of the attractive features of this approach. The peculiarity
of the spin foam framework, as compared with the tradi-
tional path integral for gravity, is that the spacetime mani-
folds on which the gravitational data are given are combina-
torial and discrete ones, and specifically are given by combi-
natorial 2-complexes, i.e. collections of vertices, edges and
faces together with their relations (“what is in the bound-
ary of what”), and the histories of the gravitational field are
characterized by data taken uniquely from the representation
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theory of the local gauge group of gravity, i.e. the Lorentz
group, and no familiar notions of metric on differentiable
manifolds are used. While this maybe very attractive at the
aesthetic/philosophical level, and turns out to be very use-
ful at the technical level (it is because of this that precise
definitions of both the measure and the amplitudes for 4-
geometries can be given), it makes the resulting models more
difficult to interpret and to work with, as we lack all our con-
ventional GR tools and quantities, as well as our geometric
intuition. The main object that such a sum-over-histories for-
mulation defines is the partition function of the theory, and
from this, allowing the underlying spacetime manifold (2-
complex) to have boundaries, quantum amplitudes functions
of the boundary data, that when a canonical interpretation is
available should be interpreted as transition amplitudes be-
tween quantum gravity states. The partition function in these
models, for a given 2-complex σ, has the general structure:

Z(σ) =
∑

{ρf}

∏

f

Af (ρf )
∏
e

Ae(ρf |e)
∏
v

Av(ρf |v) (1)

where the amplitudes for faces f , edges e and vertices v of
the 2-complex are all functions of the representations ρf of
the Lorentz group associated to the faces of the complex.

The analysis we are going to describe in the following
concerning the role of orientation data in the spin foam con-
text and the implementation of causality is restricted to mod-
els based on ordinary Lie groups and homogeneous spaces,
like the Ponzano-Regge models [11] in 3 dimensions and the
Barrett-Crane type models in 4 and higher, and not using ex-
plicitely any quantum group structure. Physically these can
be interpreted as models of quantum gravity without cosmo-
logical constant. We make use of expressions for the am-
plitudes of the models in terms of both group variables (or
variables with values in an homogeneous space) and repre-
sentation variables, i.e. we use a ’first order’ formulation of
spin foam models [12]. We do not consider less understood
spin foam models, e.g. the Reisenberger model, although it
is quite likely, in our opinion, that a similar analysis can be
performed also in that case. For the rest our analysis is com-
pletely general and holds in any spacetime dimension and any
signature [1, 2]. For the sake of brevity, however, we will
show how the construction works more explicitely only for
the Barrett-Crane type models in n-dimensions based on the
homogeneous space Hn−1 ' SO(n − 1, 1)/SO(n − 1) or
Sn−1 ' SO(n)/SO(n−1). In these models, the amplitudes
in the 1st order formalism factorize for the different vertices
of the 2-complex [7] and take the form:

Z =


∏

f

∫
dρf




(∏
v

∏
e∈v

∫

He

dxe

)∏

f

Af (ρf )

∏
e

Ae(ρf∈e)
∏
v

Av(xe∈v, ρf∈v) (2)

where the 2-complex is taken to be topologically dual to a n-
dimensional simplicial complex (with a 1−1 correspondence
between k-cells of the 2-complex and n− k-simplices of the

simplicial complex) and therefore the precise combinatorics
varies according to the dimension, but in any case: ρf are the
unitary irreps of the local gauge group of gravity (SO(n −
1, 1) in the n-dimensional Lorentzian case and SO(n) in the
n-dimensional Riemannian case), and these unitary represen-
tations are labelled by either a half-integer in the Riemannian
case and in the case of discrete simple representations (n, 0)
of SO(n− 1, 1), or by a real parameter in the case of contin-
uous simple representations (0, ρ) of SO(n− 1, 1), He is the
homogeneous space to which the vectors xe belong and is Sn

in the Riemannian models and the n− 1-dimensional hyper-
boloid Hn−1 ' SO(n− 1, 1)/SO(n− 1) in the Lorentzian
models we consider here. The algebraic data {ρf} and {xe}
have a geometric interpretation in that the ρf are to be thought
of as volumes of the (n − 2)-simplices dual to the faces of
the 2-complex and the xe are to be thought of as unit nor-
mal vectors to the (n − 1)-simplices dual to the edges of the
2-complex. While the expression for the edge amplitudes,
interpreted as part of the gravitational measure together with
the face amplitudes, varies in the various models, the vertex
amplitude is the same in all these type of models and taken to
be:

Av(xe∈v, ρf∈v) =
∏

f∈v

Af∈v(xe1∈f , xe2∈f , ρf ) =

=
∏

f∈v

Af∈v(θf , ρf ) =
∏

f∈v

D
ρf

00 (θf ) (3)

i.e. they are given in terms of zonal spherical functions
D

ρf

00 (θf ) of the Lorentz group in the representation ρf [13],
where we have indicated that the amplitudes depend on the
variables on the homogeneous spaces only through the invari-
ant distances θf = cos(h)−1(xe1∈f · xe2∈f ), between the
vector associated to the two edges in the boundary of each
face that are inside each vertex.

The structure is therefore that of a discrete path integral
for gravity with a combinatorial structure playing the role of
the base spacetime manifold, algebraic data living on it and
playng the role of the gravitational degrees of freedom, and a
(precisely defined) quantum amplitude and measure assigned
to each configuration. In the group field theory approach to
spin foam models (see [7, 8]), a sum over 2-complexes is also
beautifully implemented. The issue now is to show that, on
the one hand, it is possible even in this purely combinator-
ial/algebraic context to identify a notion of causal structure
and appropriate data representing it, and then, on the other
hand, that the spin foam formalism is flexible enough to pro-
vide us with a definition of both causal and a-causal transition
amplitudes for quantum gravity, as the usual path integral for-
malism does for quantum particle dynamics or quantum field
theory.

3 Causality as orientation in spin foam
models

As we said, in spin foam models spacetime is replaced by a
combinatorial 2-complex. Extra data would then assign geo-
metric information to this spacetime structure. What can be



484 D. Oriti

the analogue of causal relations in such a context? Where is
causality to be looked for? In the end the problem is solved
more easily than could a priori be expected. Consider just
the first layer of the spin foam 2-complex, i.e. only vertices
and links connecting them. This is basically just a graph. If
we add to it orientation data, i.e. arrows on the links, we ob-
tain an oriented (or directed) graph, a set of oriented links
connecting a set of vertices. Now the vertices can be inter-
preted as a set of fundamental spacetime events and the ori-
ented links are then the causal relations between them (this is
also consistent with an ’operational interpretation’ of the dual
simplicial structure, with n-simplices representing inperfect,
thus realistic, definition of spacetime points/events). We can
assign an orientation variable αe|v to each link, with respect
to each vertex v it connects, that takes the values ±1 accord-
ing to which orientation is chosen. This auotmatically defines
’oriented normals’ ne = αe|vxe|v from the un-oriented ones
xe. At the same time we can assign another orientation vari-
able to each vertex, call it µ again taking the values ±1. The
spacetime interpretation of these variables is that of indicat-
ing whether the vertex is a future pointing or past pointing
contribution to the overall spacetime diagram, and clearly a
positively oriented link with respect to a future pointing ver-
tex is equivalent to a negatively oriented one with respect to a
past oriented vertex; this means that what gives the spacetime
orientation of each link in each vertex is actually the combi-
nation αe|vµv . A consistency condition for the assignment of
orientation data to the graph is that when a link e connects
two vertices it has the opposite orientation in the two, which
has a clear spacetime interpretation: αe|v1µv1 = −αe|v2µv2 .
Taking now into account the full combinatorial structure of
the 2-complex, we also assign an extra orientation variable to
each face εf = ±1. It is crucial to notice that the structure
we have been describing is basically that of the Hesse dia-
gram representing a causal set, but fails to be that of a proper
poset or causal set [4] because the set of vertices-events en-
dowed with the ordering relation represented by the arrow
fails to satisfy in general any antisymmetry condition, i.e. it
is generally not the case that following the links according to
their orientation we never end up at the starting point; in other
words, our causal relations allow for closed timelike loops.
Also, notice that this causal interpretation of our oriented (or
directed) graph makes sense only in a Lorentzian context,
when the signature allows for a spacetime translation in terms
of lightcones; however, the structure we have been describing
remains the same even if thought of in a Riemannian signa-

ture, and in fact the issue we will be confronting in the follow-
ing is the general one of constructing spin foam models that
reflect and take into account appropriately the orientation of
the underlying 2-complex, i.e. of orientation-dependent tran-
sition amplitudes for quantum gravity. Only in a Lorentzian
context these will have the interpretation of causal amplitudes
or of quantum gravity analogues of the Feynman propagator.
The 2-complexes used in spin foam models are not generic:
they are topologically dual to simplicial n-dimensional man-
ifolds: to each vertex corresponds a n-simplex, to each link a
(n-1)-dimensional simplex, to each face an (n-2)-dimensional
simplex; note that this gives another restriction with respect
to a generic causal set. The orientation data we assigned have
then a clear geometric interpretation in this simplicial picture:
the µv variable for a vertex takes the values ±1 according to
whether the n-simplex dual to it is isomorphic to a n-simplex
in Minkowski (Euclidean) space or the isomorphism holds
for the opposite orientation; the variable αe|v = ±1 indicate
whether the normal to the (n-1)-simplex dual to the link e is
ingoing or outgoing with respect to the n-simplex dual to v,
and the variables εf also characterize the orientation of the
n− 2-simplex dual to the face f . Knowing this dual geomet-
ric interpretation of the elements of the 2-complex, it is easy
to derive a consistency condition on the values that these ori-
entation variable must take to correspond to a well-posed ori-
entation of the 2-complex (simplicial manifold); the relation,
that basically follows from Stokes’s theorem [12] is:

∀v εf |v = αe1|vαe2|vµv, (4)

where e1 and e2 label the two links that belong to the bound-
ary of the face f and touch the vertex v.

This orientation structure is what we can identify at the
quantum level as the seed for the emergence of causality in
the classical limit, in a Lorentzian context, as we said; now
the question is: do current spin foam model take this into
account in their amplitudes? The answer [1, 2] is that all cur-
rent spin foam models do not depend, in their amplitudes, on
the orientation of the underlying 2-complex, i.e. they do not
depend on the orientation data we identified above.

The way this is achieved is quite simple in all mod-
els: in the expression for the amplitudes for spin foams the
terms that can be understood as contributions from oppo-
site orientations are summed simmetrically thus erasing the
dependence on the orientation itself. In the Barrett-Crane
type of models, for example, the orientation independence
is achieved at the level of each face in each vertex:

c

Av(xe∈v, ρf∈v) =
∏

f∈v

Af∈v(θf , ρf ) =

=
∏

f∈v

(
Wεf=+1

f (θf , ρf ) +Wεf=−1
f (θf , ρf )

)
=

=
∏

f∈v

(
Wµv=+1

f (αe1αe2θf , ρf ) +Wµv=−1
f (αe1αe2θf , ρf )

)
(5)
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where we have indicated that the amplitudes depend on the
variables on the homogeneous spaces only through the invari-
ant distances θf = cos(h)−1(xe1∈f · xe2∈f ), between the
vector associated to the two edges in the boundary of each
face that are inside each vertex, and in the last step we have
traded the orientation data on the faces for those on the ver-
tices by using relation 4. The mathematics behind this struc-
ture and the nature of the orientation-dependent functions W
is very general, i.e. independent of signature and dimension,
and it is explained in [1, 2].

This orientation independence leads to interpreting the
current spin foam models as a-causal transition amplitudes,
as we said, i.e. as the quantum gravity analogue of the
Hadamard function of field theory and particle dynamics;
when a canonical formulation is available, this sort of tran-
sition amplitudes can be equivalently thought of as defining
the physical inner product between quantum gravity states,
invariant under spacetime diffeomorphisms, or as a covari-
ant definition of the matrix elements of the projector operator
onto physical states [14].

Given the universal structure outlined above, we are
lead to look for a universal way of modifying current spin
foam models and to a new, again universal, definition of
orientation-dependent or causal spin foam models [2]; these
would correspond to causal transition amplitudes and to a
quantum gravity analogue of the Feynman propagator of field
theory. The “brute force”way is obvious and was performed
in the 4-dimensional Lorentzian case in [12]: 1) Impose con-
sistency conditions on orientation parameters εf , αe and µv;
2) choose the orientation of simplices, in particular the value
of µv (future or past-pointing), 3) restrict the spin foam am-
plitudes to include only the chosen orientation, i.e. switch
from D functions to W functions dropping the sum over
µv or εf . Hovewer, we will shortly see that a much more
natural and elegant construction exists, that makes use of a
generalised formulation of spin foam models in terms of a
new proper time variable, from which all the different types
of transition amplitudes can be defined, just as in the parti-
cle/QFT case. Also, the expression 5 is reminescent of the de-
composition of Hadamard functions for relativistic particles
or fields into Wightman functions, in turn the basic elements
in the definition of the Feynman propagator. The construction
we are going to describe now takes this analogy seriously and
shows that it is indeed exact, and uses it as the staring point
for a spin foam definition of the quantum gravity Feynman
propagator that implements a notion of ’timeless ordering’.

4 Particles on Lie groups/homogeneous
spaces

The amplitudes assigned to spin foam faces, edges and ver-
tices in the Barrett-Crane-type models is given by the eval-
uation of simple spin networks and was described in [15] in
analogy to the evaluation of Feynman diagrams: 1) assign a
variable valued in the relevant homogeneous space to each
vertex of the given spin network, 2) assign a zonal spherical

function D
ρf

00 (θf ) to each line and 3) sum over all the pos-
sible values of the variables on the vertices to get the final
amplitude. In this prescription the zonal spherical function is
treated as a kind of propagator, and indeed on the one hand
it turns out that this feynmanology has its roots in a (group)
field theory of these models [7], and, on the other hand, it
can be shown [1, 2] that the zonal spherical function used is
indeed the Hadamard function for a scalar particle on the ho-
mogeneous space on which the models are based. This fact
prompts a completely general definition of generalised, first,
and then causal spin foam models.

Consider a scalar field φ(g) with mass m living on the Lie
group G or on the homogeneous space H , with each point on
it labelled by g; consider its free evolution parametrised by
a proper time coordinate s; the equation of motion in proper
time is: (i∂s + ∆)φ(g, s) = 0 with ∆ being the Laplace-
Beltrami operator G (H). The dynamics is completely cap-
tured by the evolution kernel K(g, g′, s) = K(gg−1, s) [16],
in the sense that given the initial condition ψ(g0, 0), we have:
ψ(g, s) =

∫
dg0K(g, g0, s)ψ(g0, 0). The dependence on the

proper time variable should of course be eliminated and the
various physical propagators are obtained from the evolution
kernel according to how this is accomplished; the Hadamard
function is obtained via the expression: H(g, g′,m2) =
−i

∫ +∞
−∞ dsK(g, g′, s)e−im2s, while restricting the range of

integration to positive proper times only gives the feynman
propagator GF (g, g′,m2) = −i

∫ +∞
0

dsK(g, g′, s)e−im2s,
where the usual Feynman prescription for the contour of in-
tegration (m2 → m2 − iε) is assumed for reasons of conver-
gence (one may look at the two expressions as resulting from
either a Fourier or a Laplace transform of the same function
of proper time [2]).

It turns out [2] that the functions entering the expres-
sions for the quantum amplitudes of all current spin foam
models correspond to the Hadamard 2-point functions for
a scalar field on the relevant Lie group/homogeneous space
with m2 = −C(ρf ) where C(ρf ) is the Casimir eigenvalue
of the simple irreducible representation labelling the face of
the 2-complex (therefore the link of the spin network whose
evaluation gives the amplitude for the vertex):

H(θf ,m2) = −i
∫ +∞
−∞ dsKM(θf , µvs)e+iC(ρf )µvs =

= i
2π

√
∆ρf∈v

D
ρf∈v

00 (θf ) ,(6)

where the relevant orientation data µv enter in the definition
of the proper time variable being integrated over, ∆ρ is the
dimension of the representation ρ in the Riemannian case,
or in the Lorentzian case (where the unitary representations
are infinite dimensional) the contribution of the representa-
tion to the Plancherel measure, and the Casimir eigenvalues
are C(ρ) = 2j(2j + n − 2) with j half-integer in the Rie-
mannian case, and C(ρ) = +ρ2 +(n− 2/2)2 with ρ positive
real in the Lorentzian case based on the timelike hyperboloid.
It is clear that the result is independent of the value of the var-
ious orientation data.
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On the other hand simply imposing the above restriction
in the proper time integration (that amount indeed to a causal-
ity restriction for the particle evolution [5]), one obtains the
expression for the Feynman propagator that one needs to de-
fine orientation dependent or causal spin foam models, that
turns out [2] to have the expected expression in terms of W
functions confirming the interpretation of these as Wightman
functions:

G(θf ,m2, µv) = −i

∫ +∞

0

dsKM(ϑf , T )e+iC(ρf )T =

= i
2π

√
∆ρf

[θ(µv)W+(ϑf , ρf ) + θ(−µv)W−(ϑf , ρf )] ,(7)

where we have denoted with ϑ the “oriented angle”ϑf =
αe1∈fαe2∈fθf , and with the “oriented proper time”being
T = µvs. Similarly for the other spin foam models [2].

This is a non-trivial function of the orientation data, with
the usual “time ordering”being replaced by a “timeless order-
ing”!

5 A proper time formalism for spin
foam models and the spin foam de-
finition of the Feynman propagator
for quantum gravity

Taking seriously this particle analogy and the associated spin
network feynmanology, having also in mind their group field
theory formulation [7], we can generalise the current formu-
lation of spin foam models to include a proper time variable,
and obtaining a general expression from which different tran-
sition amplitudes and consequently both orientation indepen-
dent and causal models can be derived, simply changing the
integration contour in proper time. The formulae have of
course to include an explicit dependence on the orientation
data. The expression for the n-dimensional spin foam mod-
els (n > 3) based on the homogeneous space M looks as
follows:

Z =


∏

v

∏

f |v

∫

C

dsf





∏

f

∑
ρf





∏

v

∏

e|v

∫
dxe


A(ρ, x, T )

A(ρ, x, T ) =
∏

f Af (ρf )
∏

eAe(ρf |e)∏
v

∏
f |v

(−2πi(
√

∆ρf
)−1 K(ϑf |v, Tf |v)eiC(ρf )T

)
. (8)

A similar formula holds for the 3-dimensional models.
This generalised expression encompasses both the usual un-
oriented models and the new causal ones; indeed the first
are obtained by choosing the extended range of integration
C = (−∞,+∞) for the s variable (and this erases the de-
pendence on µv and αe), while the quantum gravity Feynman
propagator is obtained with C = (0,+∞). In this last case,
a regularization prescription for convergence is implicit for
each variable (so that the expression has to be understood in
the complex domain): ρf → ρf + iε, ϑf → ϑf + iδ. The

explicit form of the evolution kernel K differs of course in
the different models and affects the exact form of the ampli-
tudes [2], that however all share the general structure here
presented.

Notice that we have not modified the face and edge ampli-
tudes with respect to the usual models. We could have done
it: these amplitudes admit a Feynman graph-like evaluation
as well and the technology related to quantum particles on
homogeneous spaces could have been used to generalise and
then modify them as we have done for the vertex amplitudes.
The reason why we have not done so is twofold: on the one
hand the usual interpretation of these contributions to the spin
foam models is that of a conribution to the overall measure,
therefore the implementation of causality is needed only at
the vertex level, that is instead supposed to encode the dy-
namics of the theory; on the other hand, the form of the edge
amplitudes in some version of the 4-d Barrett-Crane model
is understood as arising directly from the form of boundary
spin network states [17], and we prefer, at this stage of devel-
opment of the theory, to keep that structure without modifi-
cation. We believe, however, that alternative formulations of
the models and possible definitions of modified spin network
states, maybe in order to induce an orientatation-dependence
in their structure, deserve further analysis.

Let us discuss the various properties of the new kind of
transition amplitudes for quantum gravity we are defining
here, the causal or orientation dependent spin foam models.

The first property we would like to stress is the fact that
all these models can be recast in the form of quantum causal
histories models [18] as it was done for the 4-dimensional
Lorentzian case in [12]; therefore they define highly non-
trivial amplitudes for causal sets, if the combinatorial struc-
ture of the underlying 2-complex is such that it does not con-
tain closed timelike loops, although they are ceratainly a re-
striction of the possible causal sets one can consider since the
vertices are here restricted to be (n + 1)-valent in n dimen-
sions.

Second, the quantum amplitudes defined by these models
can be related very easily to classical simplicial gravity, of
which they clearly represent a covariant quantization: while
the un-oriented models can be related to the classical Regge
action only in a asymptotic limit, when their vertex ampli-
tudes result in being proportional to the cosine of it, here the
connection with the Regge action is manifest; for example, in
the 4-dimensional case the relevant evolution kernel has the
form [16]:

K(ϑ, T ) =
1

(4πiT )3/2

(
ϑ

sinhϑ

)
ei ϑ2

4T −iT (9)

the causal vertex amplitude, after the (restricted) proper time
integration is perfomed, takes the form:

AC
v =

∏

f∈v

(
−2πi(ρf )(−1)

∫ +∞

0

dsfK(ϑf , T )eiC(ρf )T

)
=

= −

∏

f

1
ρf sinhϑf


 ei

P
f∈v µvρf ϑf ; (10)
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and therefore the product over vertex amplitudes in the spin
foam model gives

∏
v

AC
v =


∏

v

∏

f∈v

1
ρf sinh ϑf


 ei

P
f∈v ρf

P
v µvϑf∈v =

=


∏

v

∏

f∈v

1
ρf sinh ϑf


 eiSR(ρf ,ϑf ) , (11)

i.e. the exponential of the Regge action (in first order formal-
ism [12]) for simplicial gravity, apart from an additional con-
tribution to the overall measure, as one would expect from
a sum-over-histories formulation of quantum gravity based
on a simplicial discretization. The same can be shown to
be true explicitely in the 4d Riemannian case and in the 3-
dimensional case, while the proof for the higher dimensional
models is made more complicated by the lack of a simple
enough expression for the evolution kernel [2].

6 Conclusions
Let us summarise what we have presented. We have dis-
cussed in which sense causality may be thought of pre-
existing (!) time at the most fundamental level, and what
notion of causality, interpreted as a ’seed’ from which the
usual continuum notion of causality in terms of lightcone
structure will emerge in a semiclassical approximation, can
instead replace it in deep quantum gravity regime; we have
argued that such a fundamental notion of causality can be
implemented most naturally in a sum-over-histories context;
with the aim of implementing this idea in the spin foam con-
text, we have linked the notion of causality with the orienta-
tion of the 2-complex on which spin foam models are based,
and have identified the relevant data characterizing this ori-
entation, and found out that all current spin foam models are
orientation-independent, i.e. defining amplitudes that trivial
functions of the orientation data; using the technology of evo-
lution kernels for quantum fields/particles on Lie groups and
homogeneous spaces, we have constructed a generalised ver-
sion of spin foam models, introducing an extra variable with
the interpretation of proper time; we have shown that differ-
ent ranges of integration for this proper time variable lead to
different classes of spin foam models: one corresponds to the
usual ones, to be interpreted as the quantum gravity analogue
of the Hadamard function of QFT or equivalenty in a canon-
ical interpretation as a covariant definition of the inner prod-
uct between quantum gravity states; the other is a new class
of models (one example of which having been constructed
earlier in [12], and corresponds to the quantum gravity ana-
logue of the Feynman propagator in QFT, i.e. a causal transi-
tion amplitude, a non-trivial function of the orientation data,
that implies a notion of “timeless ordering”, based on purely
group-theoretic methods, as needed in Quantum Gravity; we
have shown how the causal model is manifestly related to
simplicial gravity in the 4-dimensional Lorentzian case. All
these results hold true in full generality, for the type of spin

foam models considered, i.e. regardless of the spacetime di-
mension and signature.

In our opinion these results open quite a few lines of pos-
sible further research. The causal/oriented models seem to
solve the issue of multiplicity of sectors present in all BF-
type formulations of quantum gravity [7], with different sec-
tors isomorphic to one another and related by a change of
orientation, all summed over in the path integral quantiza-
tion and thus interphering, leading to a discrepancy of these
models with the straightforward quantization of GR; in the
causal models it seems instead that a restriction to the GR
sector is achieved, as testified also by the final expression for
the vertex amplitudes in the 4-dimensional case shown above.
This is likely to have important consequencies for the recon-
struction of geometric quantities from the algebraic data, in
particular for the computation of expectation values of 3- and
4-volume operators, that are expected to give different results
in these new models as compared to those obtained in the
literature [8].

The group field theory formulation of generalised and
oriented models should then be studied and work on this is
indeed in progress, as a natural step that would substanti-
ate the particle picture extensively used in their construction,
and also to furnish a more complete definition of the models,
eliminating any dependence on a fixed spacetime triangula-
tion or 2-complex. This may turn out to be useful also for
defining a notion of “positive and negative energy”sectors,
also at the level of spin network states, based on orienta-
tion/causal properties, in a timeless framework. Such a re-
sult would also enforce the opinion, that we share, that the
group field theory is not an “auxiliary”formulation of spin
foam models and of quantum gravity, but the most fundamen-
tal formulation of the theory, and as such should be the frame-
work in which most problems that this approach still faces are
best tackled, including the issue of semiclassical/continuum
approximation.

The proper time formalism we have developed could find
interesting applications in itself, with a first step being the
study of the relationship between our group theoretic proper
time parameter and the lapse function of canonical quantum
gravity or the conformal factor of the covariant formulation,
and therefore with the physical proper time for quantum grav-
ity (both the lapse and the conformal factor or spacetime vol-
ume element have used in the literature as a proper time vari-
able). Notice that, if such a relationship is found, not only we
would have strenghtened the argument for the validity of our
constuction and paved the way for further developments, but
we would have also obtained, as a side result (!), the first de-
finition to be found in the literature, to the best of our knowl-
edge, of a proper time expression for the action of simplicial
gravity, that reduces to the Regge action when the additional
variable is integrated out.

Another application of the proper time formalism could
be the issue of Wick rotation in spin foam models, and more
gnerally in quantum gravity, since it seems to be the right pa-
rameter in which to analytically continue the amplitudes to
define an “euclideanized”model.
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Also, the generalised (proper time dependent) formula-
tion of spin foam models could represent a new starting point
for bridging the gap between spin foam models and other
approaches to quantum gravity in which proper time plays
a significant role, as for example the Lorentzian dynamical
triangulations, that have achieved recently important results
concerning the issue of continuum limit. The causal models
seem indeed to be the at the point of convergence of sim-
plicial quantum gravity, dynamical triangulations and causal
sets, in addition to canonical loop quantum gravity, and there-
fore represent the easiest context in which to analyse the re-
lationships between all these approaches.

Finally, if the orientation-independent models can be un-
derstood as defining the matrix elements of the projector op-
erator onto physical quantum gravity states, then an intrigu-
ing possibility is to interpret the new models as defining the
matrix elements of an “evolution operator”, whose property
could be studied to understand for example whether a notion
of unitary evolution is feasible in Quantum Gravity and the
“scattering”between quantum gravity perturbations, in ab-
sence of an external time coordinate, but with a clearly iden-
tified notion of causality.
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