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We report on recent results showing that neutrino mixing may lead to a non-zero contribution to the cosmolog-
ical constant. This contribution is of a completely different nature with respect to the usual one by a massive
spinor field. We also study the problem of field mixing in Quantum Field Theory in curved space-time, for the
case of a scalar field in the Friedmann-Robertson-Walker metric.

1 Introduction

The problem of cosmological constant is currently one of the
most challenging open issues in theoretical physics and cos-
mology. The main difficulty comes from the fact that, when
estimating its value as a gravitational effect of vacuum en-
ergy, the numerical results are in strong disagreement with
the accepted upper bound Λ < 10−56cm−2 [1].

We show here that a new contribution to the vacuum en-
ergy and therefore to the cosmological constant may arise
from neutrino mixing [2]. The contribution we find comes
from the specific nature of the field mixing and is therefore of
completely different origin with respect to the ordinary vac-
uum energy contribution of a massive spinor field.

Indeed, it has been shown [3]-[13] that the vacuum for
fields with definite masses is not invariant under the field mix-
ing transformations and in the infinite volume limit, it is uni-
tarily inequivalent to the vacuum for the fields with definite
flavor. In the case of neutrinos, this results in a condensate
of neutrino-antineutrino pairs, with a density related to the
mixing angle(s) and mass difference(s) among the different
generations. Phenomenological consequences of such a non-
trivial condensate structure of the flavor vacuum have been
studied for neutrino oscillations [8] and for beta decay [9].

In this paper we consider the case of two flavors and Dirac
neutrino fields, although the conclusions we reach can be eas-
ily extended to the case of three flavors and Majorana neutri-
nos [11, 12].

We also include a preliminary study of mixed (bosonic)
fields in a curved background, for the case of FRW metric.

In Section 2, we shortly summarize the main results for
neutrino mixing in QFT. In Section 3, we compute the neu-
trino contribution to the cosmological constant and estimate
its value by using the natural scale of neutrino mixing as a
cut–off. The result turns out to be compatible with the cur-
rently accepted upper bound on Λ. In Section 4, quantum
fields and mixing relations are analyzed in expanding uni-
verse. Section 5 is devoted to conclusions.

2 Neutrino mixing in Quantum Field
Theory

The main features of the QFT formalism for the neutrino mix-
ing are summarized below. For a detailed review see [13]. For
sake of simplicity, we consider the two flavor case and we use
Dirac neutrino fields. The Lagrangian density describing the
Dirac neutrino fields with a mixed mass term is:

L(x) = Ψ̄f (x) (i 6∂ −M)Ψf (x) , (1)

where ΨT
f = (νe, νµ) and M =

(
me meµ

meµ mµ

)
. The re-

lation between Dirac fields Ψf (x), eigenstates of flavor, and
Dirac fields Ψm(x), eigenstates of mass, is given by

Ψf (x) = U Ψm(x), (2)

with ΨT
m = (ν1, ν2). U is the mixing matrix

U =
(

cos θ sin θ
− sin θ cos θ

)
(3)

being θ the mixing angle. Using Eq.(3), we diagonalize the
quadratic form Eq.(1), which then reduces to the Lagrangian
for the Dirac fields Ψm(x), with masses mi, i = 1, 2 :

L(x) = Ψ̄m(x) (i 6∂ −Md)Ψm(x) , (4)

where Md = diag(m1,m2). The mixing transformation (2)
can be written as [3]

νσ(x) ≡ G−1
θ (t) νi(x) Gθ(t), (5)

where (σ, i) = (e, 1), (µ, 2), and the generator Gθ(t) is given
by

Gθ(t) = exp
[
θ

∫
d3x

(
ν†1(x)ν2(x)− ν†2(x)ν1(x)

) ]
. (6)
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The free fields νi (i=1,2) are given, in the usual way, in
terms of creation and annihilation operators (we use t ≡ x0):

νi(x) =
∑

r

∫
d3k

(2π)
3
2

[
ur
k,i(t)α

r
k,i + vr

−k,i(t)β
r†
−k,i

]
eik·x,

(7)
with i = 1, 2,

ur
k,i(t) = e−iωk,itur

k,i, vr
k,i(t) = eiωk,itvr

k,i (8)

and ωk,i =
√

k2 + m2
i .

The mass eigenstate vacuum is denoted by |0〉m:
αr

k,i|0〉m = βr
k,i|0〉m = 0. The anticommutation relations,

the wave function orthonormality and completeness relations
are the usual ones (cf. Ref. [3]).

The flavor fields are obtained from Eq. (5):

νσ(x) =
∑

r

∫
d3k

(2π)
3
2

[
ur
k,i(t)α

r
k,σ(t)

+ vr
−k,i(t)β

r†
−k,σ(t)

]
eik·x, (9)

with (σ, i) = (e, 1), (µ, 2), with the flavor annihilation oper-
ators defined as

αr
k,σ(t) ≡ G−1

θ (t) αr
k,i Gθ(t) (10)

βr
−k,σ(t) ≡ G−1

θ (t) βr†
−k,i Gθ(t). (11)

They annihilate the flavor vacuum |0(t)〉f given by

|0(t)〉f ≡ G−1
θ (t) |0〉m . (12)

In the infinite volume limit, the vacuum |0(t)〉f for the
flavor fields and the vacuum |0〉m for the fields with definite
masses are unitarily inequivalent vacua [3, 4].

One further remark is that the use of the vacuum state
|0〉m in the computation of the two point Green’s functions
leads to the violation of the probability conservation [8]. The
correct result is instead obtained by the use of the flavor vac-
uum |0〉f , which is therefore the relevant vacuum to be used
in the computation of the oscillation effects. We will thus use
|0〉f in our computations in the following.

The explicit expressions for the flavor annihila-
tion/creation operators in the reference frame k = (0, 0, |k|)
are [3]:

αr
k,e(t) = cos θαr

k,1 + sin θ
(
U∗

k(t)αr
k,2

+εrVk(t)βr†
−k,2

)

αr
k,µ(t) = cos θαr

k,2 − sin θ
(
Uk(t)αr

k,1

−εrVk(t)βr†
−k,1

)

βr
−k,e(t) = cos θβr

−k,1 + sin θ
(
U∗

k(t)βr
−k,2

−εrVk(t)αr†
k,2

)

βr
−k,µ(t) = cos θβr

−k,2 − sin θ
(
Uk(t)βr

−k,1

+εrVk(t)αr†
k,1

)
(13)
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Figure 1. Fermion condensation density |Vk|2 as a function
of |k| and for sample values of the parameters m1 and m2.
Solid line: m1 = 1, m2 = 100; Long dashed line: m1 = 10,
m2 = 100; Short dashed line: m1 = 10, m2 = 1000.

where Uk and Vk are Bogoliubov coefficients given by:

Vk(t) = |Vk| ei(ωk,2+ωk,1)t, (14)

Uk(t) = |Uk| ei(ωk,2−ωk,1)t, (15)

|Uk| =
(

ωk,1 + m1

2ωk,1

) 1
2

(
ωk,2 + m2

2ωk,2

) 1
2

×
(

1 +
|k|2

(ωk,1 + m1)(ωk,2 + m2)

)
,

|Vk| =
(

ωk,1 + m1

2ωk,1

) 1
2

(
ωk,2 + m2

2ωk,2

) 1
2

×
( |k|

(ωk,2 + m2)
− |k|

(ωk,1 + m1)

)
, (16)

with

|Uk|2 + |Vk|2 = 1. (17)

The function |Vk| is related to the condensate content of
the flavor vacuum [3] as:

e,µ〈0|αr†
k,iα

r
k,i|0〉e,µ = sin2 θ |Vk|2 , i = 1, 2 (18)

with the same result for antiparticles.
In Fig.1, we plot the fermion condensation density |Vk|2

in function of |k| and for sample values of the parameters
m1 and m2. |Vk|2 is zero for m1 = m2, it has a maxi-
mum at |k| = √

m1m2 and, for |k| À √
m1m2 , it goes

like |Vk|2 ' (m2 −m1)
2/(4|k|2).

From the study of the current algebra, we obtain the flavor
charge operators that, in terms of flavor operators, are:

Qσ(t) =
∑

k,r

(
αr†

k,σ(t)αr
k,σ(t)− βr†

−k,σ(t)βr
−k,σ(t)

)
, (19)
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with σ = e, µ.
At time t = 0, the vacuum state is |0〉e,µ and the one

electron neutrino state is defined as:

|νe〉 ≡ αr†
k,e|0〉e,µ

Considering the flavor charge operators, defined as in
Eq.(19). We then have (in the Heisenberg representation)

e,µ〈0|Qe(t)|0〉e,µ =e,µ 〈0|Qµ(t)|0〉e,µ = 0, (20)

Qe
k,e(t) = 〈νe|Qe(t)|νe〉 (21)

=
∣∣∣
{

αr
k,e(t), α

r†
k,e(0)

}∣∣∣
2

+
∣∣∣
{

βr†
−k,e(t), α

r†
k,e(0)

}∣∣∣
2

,

Qe
k,µ(t) = 〈νe|Qµ(t)|νe〉 (22)

=
∣∣∣
{

αr
k,µ(t), αr†

k,e(0)
}∣∣∣

2

+
∣∣∣
{

βr†
−k,µ(t), αr†

k,e(0)
}∣∣∣

2

.

Charge conservation is obviously ensured at any time:

Qe
k,e(t) +Qe

k,µ(t) = 1. (23)

The oscillation formula for the flavor charges are then [8]:

Qe
k,e(t) = 1− sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

) ]
, (24)

Qe
k,µ(t) = sin2(2θ)

[
|Uk|2 sin2

(
ωk,2 − ωk,1

2
t

)

+ |Vk|2 sin2

(
ωk,2 + ωk,1

2
t

) ]
. (25)

This result is exact. There are two differences with re-
spect to the usual formula for neutrino oscillations: the am-
plitudes are energy dependent, and there is an additional os-
cillating term.

For |k| À √
m1m2 we have |Uk|2 −→ 1 and |Vk|2 −→

0 and the traditional formula is recovered.
Similar results are obtained in the case of boson fields

[10]. For the η− η′ system, the correction may be as large as
20%.

3 Neutrino mixing contribution to the
cosmological constant

The connection between the vacuum energy density 〈ρvac〉
and the cosmological constant Λ is provided by the well
known relation

〈ρvac〉 =
Λ

4πG
, (26)

where G is the gravitational constant.

The energy–momentum tensor density Tµν is obtained by
varying the action with respect to the metric gµν :

Tµν =
2√−g

δS

δgµν(x)
, (27)

where the action is

S =
∫ √−gL(x)d4x. (28)

In the present case, the energy momentum tensor density
is given by

Tµν(x) =
i

2

(
Ψ̄m(x)γµ(x)

←→
D νΨm(x)

)
, (29)

where
←→
D ν is the covariant derivative:

Dν = ∂ν+Γν , Γν =
1
8
ωab

ν [γa, γb], γµ(x) = γcecµ(x),
(30)

being γc the standard Dirac matrices, and Ψ̄
←→
D νΨ = Ψ̄DΨ−

(DΨ̄)Ψ. Let us consider the Minkowski metric, we have

T00(x) =
i

2
:
(
Ψ̄m(x)γ0

←→
∂ 0Ψm(x)

)
: (31)

where : ... : denotes the customary normal ordering with re-
spect to the mass vacuum in the flat space-time.

In terms of the annihilation and creation operators of
fields ν1 and ν2, the energy-momentum tensor

T00 =
∫

d3xT00(x) (32)

is given by

T
(i)
00 =

∑
r

∫
d3kωk,i

(
αr†

k,iα
r
k,i + βr†

−k,iβ
r
−k,i

)
, (33)

with i = 1, 2.
Note that T

(i)
00 is time independent.

The expectation value of T
(i)
00 in the flavor vacuum |0〉f

gives the contribution 〈ρmix
vac 〉 of the neutrino mixing to the

vacuum energy density is:

f 〈0|
∑

i

T
(i)
00 (0)|0〉f = 〈ρmix

vac 〉η00 . (34)

Within the QFT formalism for neutrino mixing, we have

f 〈0|T (i)
00 |0〉f = f 〈0(t)|T (i)

00 |0(t)〉f (35)

for any t. We then obtain

f 〈0|
∑

i

T
(i)
00 (0)|0〉f =

∑

i,r

∫
d3kωk,i

(
f 〈0|αr†

k,iα
r
k,i|0〉f

+ f 〈0|βr†
k,iβ

r
k,i|0〉f

)
. (36)

By using Eq.(18), we get

f 〈0|
∑

i

T
(i)
00 (0)|0〉f = 8 sin2 θ

∫
d3k (ωk,1 + ωk,2) |Vk|2

= 〈ρmix
vac 〉η00, (37)
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i.e.

〈ρmix
vac 〉 = 32π2 sin2 θ

∫ K

0

dk k2(ωk,1 + ωk,2)|Vk|2, (38)

where the cut-off K has been introduced. Eq.(38) is our re-
sult: it shows that the cosmological constant gets a non-zero
contribution induced from the neutrino mixing [2]. Notice
that such a contribution is indeed zero in the no-mixing limit
when the mixing angle θ = 0 and/or m1 = m2. Moreover,
the contribution is absent in the traditional phenomenological
(Pontecorvo) mixing treatment.

We may try to estimate the neutrino mixing contribu-
tion by making our choice for the cut-off. If we choose
the cut-off proportional to the natural scale appearing in the
mixing phenomenon k0 ' √

m1m2 [3]: using K ∼ k0,
m1 = 7 × 10−3eV , m2 = 5 × 10−2eV , and sin2 θ ' 0.3
[14] in Eq.(38), we obtain

〈ρmix
vac 〉 = 0.43× 10−47GeV 4 (39)

Using Eq.(26), we are in agreement with the upper bound
for Λ:

Λ ∼ 10−56cm−2, (40)

Another possible choice is to use the electro-weak scale cut-
off: K ≈ 100GeV . We then have

〈ρmix
vac 〉 = 1.5× 10−15GeV 4 (41)

and

Λ ∼ 10−24cm−2, (42)

which is, however, beyond the accepted upper bound.
In a recent paper [15], it was suggested the cut-off scale

given by the sum of the two neutrino masses, K = m1 +m2.
For hierarchical neutrino models, for which m2 À m1,

we have, in this case, K À √
m1m2, and thus, if we assume

that the modes near the cut–off contribute mainly to the vac-
uum energy, and take into account the asymptotic properties
of Vk:

|Vk|2 ' (m2 −m1)2

4k2
k À √

m1m2 (43)

we obtain:

〈ρmix
vac 〉 ∼ 8π sin2 θ(m2 −m1)2(m2 + m1)

2 ×

×
(√

2 + 1 + O

(
m2

1

m2
2

))
(44)

and then

〈ρmix
vac 〉 ∝ sin2 θ(∆m2)2 (45)

in the limit m2 À m1.
In Ref.[15], the corresponding ∆m2 is given by the solar

neutrino data: ∆m2 ' 10−5eV 2, resulting in a contribution
of the right order.

4 Quantum fields and mixing in ex-
panding universe

In this Section we present a preliminary study of mixed fields
on a time–dependent gravitational background. For simplic-
ity, we consider the case of neutral scalar fields, the case of
fermionic fields and neutrino oscillations will be considered
elsewhere.

4.1 Free fields in expanding universe
We start by quantizing a free neutral scalar field φ in the
Friedmann–Robertson–Walker (FRW) space-time with flat
spatial sections, characterized by metrics of the form

ds2 = gµνdxµdxν = dt2 − a2(t)dx2, (46)

where a(t) is the scale factor.
A flat FRW space-time is a conformally flat space-time.

Indeed, by replacing the coordinate t by the conformal time
η,

η(t) =
∫ t

t0

dt

a(t)
, (47)

where t0 is an arbitrary constant, the line element takes the
form

ds2 = a2(η)[dη2 − dx2], (48)

where a(η) is the scale factor expressed through the new vari-
able η. Introducing the auxiliary field χ = a(η)φ, it is pos-
sible to show that the evolution of a scalar field φ in a flat
FRW metric is mathematically equivalent to the dynamics of
the auxiliary field χ in the Minkowski metric [16]. The in-
formation about the influence of gravitational field on φ is
contained in the time-dependent mass meff (η) defined by

m2
eff (η) = m2a2 − a′′

a
, (49)

where the prime ′ denotes the derivative with respect to η.
The field χ can be quantized in the standard fashion by

introducing the equal time commutation relations

[χ(x, η), π(y, η)] = iδ3(x− y), (50)

where π = χ′ is the canonical momentum.
The Hamiltonian of the quantum field χ is

H(η) =
1
2

∫
d3x

[
π2 + (∇χ)2 + m2

eff (η)χ2
]
. (51)

Note that the energy of the field χ is not conserved; this leads
to the possibility of particle creation in the vacuum. The en-
ergy for new particles is supplied by gravitational field.

The field χ is expanded as

χ(x, η) =
∫

d3k

(2π)
3
2

eikx

√
2

(
v∗k(η)ak + vk(η)a†−k

)
, (52)
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where the mode functions vk(η) obey the equations

v′′k + ω2
k(η)vk = 0, ωk(η) =

√
k2 + m2

eff (η) (53)

and satisfy the following normalization condition

v′kv∗k − vkv′∗k = 2i. (54)

We have vk(η) = v−k(η) as follows from the relation
(χk)∗ = χ−k and (ak)∗ = a†k, where

χk(η) =
1√
2

(
v∗k(η)ak + vk(η)a†−k

)
. (55)

The annihilation operators are given in terms of χk(η)
and vk(η) by:

ak =
√

2
v′kχk − vkχ′k
v′kv∗k − vkv′∗k

. (56)

Note that ak is time–independent; the commutation relations
are:

[ak, a†k′ ] = δ3(k− k′), [ak, ak′ ] = [a†k, a†k′ ] = 0. (57)

The vacuum state annihilated by ak is denoted by |0(η)〉:
ak|0(η)〉 = 0.

4.2 The instantaneous vacuum
The Hamiltonian Eq.(51) is time dependent, then we can
define an “instantaneous” vacuum by selecting an arbitrary
time η0 and defining the vacuum |0(η0)〉 as the lowest energy
eigenstate of the Hamiltonian H(η0) computed at the time
η0.

The mode functions vk(η0), corresponding to the vacuum
|0(η0)〉, are obtained by computing the expectation value
〈0(η)|H(η0)|0(η)〉 in the vacuum state |0(η)〉 determined by
arbitrary chosen mode functions vk(η) and then minimizing
that expectation value with respect to all possible choice of
vk(η) [16].

The Hamiltonian Eq.(51) expressed through the annihi-
lations operators ak defined by the arbitrary mode functions
vk(η) is

H(η) =
1
4

∫
d3k

[(
v′2k (η) + ω2

k(η)v2
k(η)

)∗
aka−k

+
(
v′2k (η) + ω2

k(η)v2
k(η)

)
a†ka†−k

+
(
|v′k(η)|2 + ω2

k(η)|vk(η)|2
)(

2a†kak + δ3(0)
)]

.

(58)

Since ak|0(η)〉 = 0, we have

〈0(η)|H(η0)|0(η)〉 =
1
4
δ3(0)

∫
d3k

(
|v′k(η)|2

+ ω2
k(η)|vk(η)|2

)
η=η0

and the density energy is

ρ =
1
4

∫
d3k

(
|v′k(η)|2 + ω2

k(η)|vk(η)|2
)

η=η0

. (59)

At fixed value of the momentum k, if ω2
k(η0) > 0, it is

possible to show that the mode functions vk(η) that minimize
ρ satisfy the following initial conditions at η = η0 [16]:

vk(η0) =
1√

ωk(η0)
, v′k(η0) = i

√
ωk(η0). (60)

The mode functions satisfying the Eq.(60) define the an-
nihilation operators a0

k of the vacuum |0(η0)〉: a0
k|0(η0)〉 = 0

through which the Hamiltonian H(η0) at time η0 is expressed
as

H(η0) =
∫

d3kωk(η0)
(
a0†
k a0

k +
1
2
δ3(0)

)
. (61)

The zero point energy density of quantum field in the vac-
uum state |0(η0)〉 is

ρ0 =
1
2

∫
d3k ωk(η0). (62)

This quantity is time dependent, but, considering the prob-
lem of particle oscillations in the present time, since the time
scale of mixing phenomena are much smaller than the cos-
mological time scale, we can neglect the particle creation in
the vacuum due to the gravitational field and we may consider
ρ ' constant at the present time and then we renormalize in
usual way.

For further analysis of the vacuum structure in a curved
background see refs.[17].

4.3 Mixed fields in expanding universe

The boson mixing relations in FRW space-time are general-
ized as

χA(x, η) = χ1(x, η) cos θ + χ2(x, η) sin θ

χB(x, η) = −χ1(x, η) sin θ + χ2(x, η) cos θ (63)

We now proceed in a similar way to what has been done
in Ref.[10] for bosons in flat space-time and recast Eqs.(63)
into the form:

χA(x, η) = G−1
θ (η) χ1(x, η) Gθ(η)

χB(x, η) = G−1
θ (η) χ2(x, η) Gθ(η) (64)

and similar ones for πA(x, η), πB(x, η). Gθ(η) denotes the
operator which implements the mixing transformations (63):

Gθ(η) = exp[θS(η)], (65)

with

S(η) = −i

∫
d3x

(
π1(x, η)χ2(x, η)

− π2(x, η)χ1(x, η)
)
. (66)
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We have, explicitly

S(η) =
∫

d3k
(
U∗

k(η) a†k,1ak,2 − V ∗
k (η) a−k,1ak,2

+ Vk(η) a†−k,1a
†
k,2 − Uk(η) ak,1a

†
k,2

)
(67)

where Uk(η) and Vk(η) are Bogoliubov coefficients given by

Uk(η) ≡ i
[
v′∗k,1(η)vk,2(η)− v′k,2(η)v∗k,1(η)

]
, (68)

Vk(η) ≡ −i
[
v′k,1(η)vk,2(η)− v′k,2(η)vk,1(η)

]
. (69)

and satisfy the relation

|Uk|2 − |Vk|2 = 1 . (70)

Similar results can be obtained in the case of fermion mixing.

4.4 The de Sitter space-time
The de Sitter space-time is characterized by a scale factor of
the form

a(t) ∼ eHt, (71)

where H = ȧ/a > 0 is the Hubble constant. The conformal
time η, the scale factor a(η) and the effective frequency are
given by

η = − 1
H

e−Ht, a(η) = − 1
Hη

, (72)

ω2
k(η) = k2 +

(m2

H2
− 2

) 1
η2

. (73)

The conformal time η ranges from −∞ to 0 when the proper
time t goes from −∞ to ∞. The origin of η is chosen so that
the infinite future corresponds to η = 0.

For this space-time, the general solution of Eq.(53) is

vk(η) =
√

k|η|
[
AJn(k|η|) + BYn(k|η|)

]
, (74)

with n =
√

9
4 − m2

H2 , A and B constants, and Jn(k|η|) and
Yn(k|η|) Bessel functions.

In the de Sitter space-time, a suitable vacuum state is the
Bunch-Davies vacuum, defined as the Minkowski vacuum in
the early time limit (η → −∞):

vk(η) =
1√
ωk

eiωkη, η → −∞. (75)

In this case, the mode functions are

vk(η) =

√
π|η|
2

[
Jn(k|η|)− iYn(k|η|)

]
, (76)

with n =
√

9
4 − m2

H2 .
Assuming for the present time, i.e. the actual time relative

to the observer,

t = 0 ⇒ η = − 1
H

⇒ a(η) = 1, (77)

the mixing transformations in the flat space-time are good
approximation of those in FRW space-time Eqs.(63), since
the time scale of mixing phenomena are much smaller than
the cosmological time scale. The results obtained in Section
III describe the contribution to the value of the cosmological
constant given by the neutrino mixing at present time.

5 Conclusions
The neutrino mixing is a possible source for the cosmologi-
cal constant. Indeed, the non–perturbative vacuum structure
associated with neutrino mixing leads to a non–zero contribu-
tion to the value of the cosmological constant [2]. The value
of Λ consistent with its accepted upper bound is found by
using the natural scale of the neutrino mixing cut–off. The
origin of the contribution here discussed is completely differ-
ent from that of the ordinary contribution to the vacuum zero
energy of a massive spinor field: it is the mixing phenomenon
which provides the vacuum energy contribution discussed in
this paper.
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