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Information-theoretic arguments are used to obtain a link between the accurate linearity of Schrodinger’s equa-
tion and Lorentz invariance: A possible violation of the latter at short distances would imply the appearance of
nonlinear corrections to quantum theory. Nonlinear corrections can also appear in a Lorentz invariant theory
in the form of higher derivative terms that are determined by a length scale, possibly the Planck length. It is
suggested that the best place to look for evidence of such quantum nonlinear effects is in neutrino physics and

cosmology.

1 Quantum and Information Theo-
ries: A Review

Many authors have pondered over the linearity of
Schrodinger’s equation, see for example [1, 2], and although
various nonlinear modifications have been suggested, there
has been no direct experimental evidence but only tiny upper
bounds on the size of corrections. Thus the puzzle really is
the small magnitude of the potential nonlinearities: What sets
the scale?

If one subscribes to the philosophy that the laws of
physics should be constructed so as to provide the most eco-
nomical and unbiased representation of empirical facts, then
the principle of maximum uncertainty [3] is the natural av-
enue by which to investigate Schrodinger’s equation [4, 5]
and its possible generalisations [6].

Let me first briefly review the procedure discussed more
fully in Refs.[4, 5]. To fix the notation, consider the
Schrodinger equation for N particles in d 4+ 1 dimensions,
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where i,j = 1,2, ...... ,dN and the configuration space met-
ric is defined as g;; = d;;/m(;) with the symbol (i) defined
as the smallest integer > i/d. That is, i = 1,...d, refer to
the Cartesian coordinates of the first particle of mass m;,
i =d+1,... 2d, to those of the second particle of mass
mo and so on. The summation convention is used unless oth-
erwise stated.

It is useful to write the Schrodinger equation in a form
which allows comparison with classical physics. The trans-
formation ¢ = /p ¢"9/" decomposes the Schrodinger equa-
tion into two real equations,

S+%asa»s+v—hj@a-a\/ﬁ =0, @
2 T 2 \/p v ’
]5 + Gij & (pajS) = 0. (3)

The first equation is a generalisation of the usual Hamilton-
Jacobi equation, the term with explicit 7 dependence sum-
marising the peculiar aspects of quantum theory. The second
equation is the continuity equation expressing the conserva-
tion of probability. These equations may be obtained from a
variational principle [4]: one minimises the action
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with respect to the variables p and .S. The positive quantity
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is essentially the “Fisher information” [7, 8]. Since a broader

probability distribution p(z) represents a greater uncertainty

in z, so I is actually an inverse uncertainty measure.

The equations (4, 5) were first used in Ref.[4] to derive
Schrodinger’s equation as follows. It is noted that without the
term I, variation of Eq.(4) gives rise to equations describ-
ing a classical ensemble. Then one adopts the principle of
maximum uncertainty [3] to constrain the probability distrib-
ution p(z) characterising the ensemble: since it is supposed
to represent some fluctuations of unknown origin, we would
like to be as unbiased as possible in its choice. The constraint
is implemented in (4) by minimising /r when varying the
classical action: h?/8 is the Lagrange multiplier.

The work of [4] was extended in [5] in two ways: First,
constraints that a suitable (for inferring quantum theory) in-
formation measure should satisfy were made explicit. Then,
the relevant measure was constructed from the physical con-
straints rather than postulated, thus motivating the structure
of the linear Schrodinger equation: In brief, consider the
same classical ensemble as in (4), but now constrained by
a general (unknown) information measure I and a lagrange
multiplier A\. The six constraints used in [S] were: positivity
of I, locality, homogeniety, separability, Gallilean invariance,
and the absence of higher number of derivatives (beyond sec-
ond) in any product of terms in the action. The last condition
will be abbreviated as “AHD”.
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Except for positivity (required for a sensible interpreta-
tion of [ as an inverse uncertainty measure), the other condi-
tions are already satisfied by the classical part of the action
so one is not imposing anything new. The locaility, separabil-
ity and homogeneity constraints also have a natural physical
interpretation within the context of the resulting quantum the-
ory [5].

The unique solution of the above conditions was shown
[5] to be precisely the measure Ir. The Lagrange multiplier
A must then have the dimension of (action)? thereby intro-
ducing the Planck constant into the picture; the equation of
motion is then the linear Schrédinger equation. The AHD
condition can also be given a physical interpretation [5]: It
means that other than a single Lagrange multiplier related to
Planck’s constant £, no other parameter is introduced in the
approach. Thus within the information theoretic approach,
the linear Schrodinger equation is the unique one-parameter
extension of the classical dynamics. For more details, please
refer to [5].

2 Nonlinearities

The only conditions, among those metioned above, that can
be relaxed without causing a drastic change in the usual phys-
ical interpretation of the wavefunction are Gallilean invari-
ance and AHD. Also, since only the rotational invariance part
of Gallilean symmetry was used explicitly [S], one deduces
that within the information theory context and with the other
conditions fixed, it is rotational invariance and AHD which
are responsible for the linearity of the Schrodinger equation.

Write I = Ir + (I — Ir). Now since Iy is rotation-
ally symmetric, satisfies AHD and is also the unique measure
responsible for the linear theory, one concludes that within
the above-mentioned context, the violation of rotational in-
variance or AHD is a necessary and sufficient condition for
a nonlinear Schrodinger equation. Of course once rotational
invariance is broken there is no reason to continue using the
classical metric g;; in the information measure.

Let us consider first the breaking of the AHD condition.
Then higher derivatives appear and this implies, on dimen-
sional grounds, the appearance of a new length scale. It is
tempting to associate such a scale with Planck length and thus
the effect of gravity though other possibilities exist [6]. Thus
in this scenario one would have a Lorentz invariant but non-
linear correction to quantum mechanics, with a new length
scale determining the size of the nonlinear corrections.

Consider next the scenario whereby rotational invari-
ance is broken in the non-relativistic quantum theory. Then
Lorentz invariance should be broken in a relativistic ver-
sion. The explicit form of the symmetry breaking nonlinear
Schrodinger equation of course will depend on the relevant
measure that is used. The simplest possibilty is to use in-
formation measures that are commonly adopted in statistical
mechanics as this would provide a link with the maximum
entropy method used in that field [3, 8]. Such measures were
studied in [6] and they lead unavoidably to the appearance of
higher derivatives and a length scale that quantifies the sym-
metry breaking.

It is interesting to note that both scenarios of nonlinear
quantum dynamics typically involve higher derivatives and a
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new length scale.

There have been several proposals of nonlinear
Schrodinger equations in the literature, see for example
[1, 2, 9, 10] and references therein. However those studies
were not conducted within an information theoretic frame-
work and so those equations often do not satisfy the equiva-
lent of one or more of the conditions used in [5]. Or, when the
nonlinear equations so constructed are local, homogeneous,
separable and Gallilean invariant, yet they do not follow from
a local variational action with a positive definite I. Thus there
is no contradiction between the result of this paper or [5], and
other studies of nonlinear quantum theory.

3 Conclusion

Within the information theoretic context, it has been
established here that “minimal” nonlinear extensions of
Schrodinger’s equation are associated either with the break-
ing of Lorentz symmetry or the presence of higher order
derivatives. By minimal I mean that the locality, separabil-
ity and homogeneity required for the usual interpretation of
the wavefunction are preserved.

More specifically, the breaking of Lorentz invariance im-
plies the appearance of nonlinear corrections to quantum the-
ory and this has now been established without the use of spe-
cific examples of symmetry breaking information measures
that were originally used in [6].

Since empirical evidence suggests that Lorentz symme-
try violation (if any) is expected to be very small, this then
would explain the tiny size of potential nonlinearities. One
may rephrase this using the concept of [11]: the smallness of
the nonlinearities would be “natural” because in the limit of
vanishing nonlinearity one would obtain a realisation of the
full Lorentz symmetry.

In the alternate scenario, if Lorentz symmetry remains ex-
act down to small distances, then any potential nonlinearity
scale is set by a length parameter, possibly the Planck length,
and thus the smallness of the potential nonlinear corrections
to Schrodingers may be attributed to the weakness of gravity.

Phenomenological consequences of a nonlinear symme-
try breaking quantum dynamics have been discussed in [6].
However almost all the effects discussed there had more to
do with the quantum nonlinearity than the symmetry break-
ing. Thus here I would like to re-highlight the suggestion
that three puzzles: neutrino oscillations, dark energy and dark
matter, might be common manifestations of a nonlinear quan-
tum theory. For example, the effect of quantum nonlinearities
would be to give particles a contribution to their mass which
varies with energy [6]. Since the varying component is tiny, it
would be more apparent for neutrinos and may be responsible
for their oscillations. Furthermore, while the effect of quan-
tum nonlinearities on a single particle is small, the cumulative
effect in very large systems, say of cosmological size, might
be apprecaible.

Possible Lorentz violation has been a subject of study by
many authors. The exciting possibility discussed in [6] is its
link with quantum nonlinearities. However it is technically
much easier to study one of the corrections (e.g. nonlin-
ear quantum theory) while keeping the other unchanged.
One may view this approximation as an effective approach
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whereby the role of quantum nonlinearity in the abovemen-
tioned puzzles is studied within a Lorentz invariant interpre-
tative framework [12]. On the otherhand, as discussed above,
even in a Lorentz invariant theory one could have nonlinear
corrections to quantum theory, so the effective approach cov-
ers both possibilities.
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