
Brazilian Journal of Physics, vol. 32, no. 3, September, 2002 675

The Vortex Lattice in Conventional and

High-Tc Superconductors

Ernst Helmut Brandt

Max-Planck-Institut f�ur Metallforschung, D-70506 Stuttgart, Germany

Received on 28 February, 2002

Some properties of the 
ux-line lattice in conventional and high-Tc superconductors are reviewed,
with particular stress on phenomenological theories, nonlocal elasticity, irreversible magnetization
curves, and in
uence of the specimen shape on the electromagnetic response.

I. Introduction

After the discovery of superconductivity in 1912 by

Heike Kamerlingh-Onnes in Leiden, it took almost 50

years until this fascinating phenomenon was understood

microscopically, when in 1957 Bardeen, Cooper and

Schrie�er established the BCS theory. But long before

this, there were powerful phenomenological theories,

which were able to explain most electromagnetic and

thermodynamic observations on superconductors, and

which are very useful also today [1, 2, 3]. The London

theory of 1935 is particularly useful for the description

of the high-Tc superconductors, which were discovered

in 1987 by Bednorz and M�uller. The Ginzburg-Landau

(GL) theory of 1951 is quite universal; it contains the

London theory as particular limit and predicts that su-

perconductors can be of type-I (with positive energy of

the wall between normal conducting and superconduct-

ing domains) or of type-II (with negative wall energy,

pointing to an instability).

The penetration of vortices into type-II supercon-

ductors was predicted �rst by A. A. Abrikosov when

he discovered a two-dimensional periodic solution of

the Ginzburg-Landau (GL) equations. Abrikosov cor-

rectly interpreted this solution as a periodic arrange-

ment of 
ux lines, the 
ux-line lattice (FLL). Each


ux line (or 
uxon, vortex line) carries one quantum

of magnetic 
ux �0 = h=2e = 2:07 � 10�15 Tm2, which

is caused by the supercurrents circulating in this vor-

tex. The magnetic �eld peaks at the vortex positions.

The vortex core is a tube in which the superconduc-

tivity is weakened; the position of the vortex is de-

�ned by the line at which the superconducting order

parameter vanishes. For well separated or isolated vor-

tices, the radius of the tube of magnetic 
ux equals

the magnetic penetration depth �, and the core ra-

dius is somewhat larger than the superconducting co-

herence length � [1, 2, 3], see Fig. 1. With increasing

applied magnetic �eld, the spacing a0 of the vortices

decreases and the average 
ux density �B increases, one

has �B = 2�0=(
p
3a20) for the triangular FLL, see Fig. 2.

The 
ux tubes then overlap such that the periodic in-

duction B(x; y) is nearly constant, with only a small

relative variation about its average �B. With further in-

crease of �B also the vortex cores begin to overlap such

that the amplitude of the order parameter decreases

until it vanishes when �B reaches the upper critical �eld

Bc2 = �0Hc2 = �0=(2��
2), where the superconductiv-

ity disappears. Fig. 3 shows pro�les of the induction

B(x; y) and of the order parameter j (x; y)j2 for two

values of �B corresponding to 
ux-line spacings a0 = 4�

and a0 = 2�.
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Figure 1. Magnetic �eld B(r) and order parameter j (r)j2
of an isolated 
ux line calculated from Ginzburg-Landau
theory for Ginzburg-Landau parameters � = 2, 5, and 20.
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Figure 2. The triangular 
ux-line lattice.
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Figure 3. Two pro�les of the magnetic �eld B(x; y) and or-
der parameter j	(x; y)j2 along the x axis (a nearest neighbor
direction) for 
ux-line lattices with lattice spacings a = 4�
(solid lines) and a = 2� (thin lines). The dashed line shows
the magnetic �eld of an isolated 
ux line from Fig. 1. Cal-
culations from Ginzburg-Landau theory for � = 5.

The periodic solution which describes the FLL ex-
ists when the GL parameter � = �=� exceeds the
value 1=

p
2 (this condition de�nes type-II superconduc-

tors) and when the applied magnetic �eld Ba = �0Ha

ranges between the lower critical �eld Bc1 = �0Hc1 �
�0 ln(

p
2�)=(4��2) (where �B = 0) and Bc2 (where

�B = Ba = Bc2). For jBaj < Bc1 the superconduc-
tor is in the Meissner state, which expels all magnetic

ux, forcing B � 0 inside the superconductor. More
precisely, for Ba < Bc1 [ and in type-I superconduc-
tors with � < 1=

p
2 for Ba < Bc = �0=(

p
8���) ], the

applied magnetic �eld penetrates into a surface layer
of thickness �. For a superconducting half space at
x > 0 one has B(x) = Ba exp(�x=�). For a long
strip with rectangular cross section (jxj � a = 40�,
jyj � b = 0:4a) and with Ba along y, Fig. 4 shows that
in this surface layer both B(x; y) and the screening cur-
rent density J(x; y) = ��10 r � B(x; y) (
owing along
z) are sharply peaked in the corners, favoring the nu-
cleation and penetration of vortices in form of quarter
loops at the four corners of the strip [4, 5].
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Figure 4. A strip with aspect ratio b=a = 0:4 in the Meiss-
ner state with London penetration depth � = 0:025a0 in a
perpendicular magnetic �eld Ha. Shown is the current den-
sity in a quarter of the cross section and the magnetic �eld
lines (inset).

In long slabs or cylinders, with increasing paral-
lel �eld Ha > Hc1, vortices penetrate and the inner
induction �B increases monotonically. The magnetiza-
tion in this longitudinal geometry is de�ned as M =
�B=�0 � Ha, Fig. 5. The negative magnetization �M
initially increases linearly, M = �Ha (Ha = Ba=�0)
for Ha � Hc1 (Meissner state); at Ha = Hc1, �M de-
creases sharply since 
ux lines start to penetrate; and
when Ha is increased further, �M decreases approxi-
mately linearly until it vanishes at Hc2. The area under
the magnetization curve �M(Ha) is �0H

2
c , where Bc =

�0Hc = �0=(
p
8���) = Bc2=(

p
2�) is the thermody-

namic critical �eld. In superconductors with � = 1=
p
2

(this case is almost exactly realized in pure Niobium)
the three critical �elds coincide, Hc1 = Hc = Hc2.
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Figure 5. Magnetization curves M(H) of long type-II su-
perconductors in parallel magnetic �eldH (demagnetization
factor N = 0) calculated from Ginzburg-Landau theory for
various Ginzburg-Landau parameters � = 0.75 : : : 3. For
� = 1=

p
2, �M jumps vertically from �M = H to M = 0

at H = Hc1 = Hc2.
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The GL theory originally was derived for temper-
atures T close to the superconducting transition tem-
perature Tc, where � / � / (1 � T=Tc)

�1=2 diverges.
But practically the GL picture is a good approxima-
tion at all temperatures 0 < T < Tc, in particular
in impure superconductors with short electron mean
free path. One usually assumes the temperature de-
pendences �(T ) � �(0)(1 � t4)�1=2 (with t = T=Tc)
and Hc(T ) � Hc(0)(1 � t2), yielding �(T ) � �(0)[(1 +
t2)=(1� t2)]1=2.

At low inductions �B � Bc2 and large � � 1, the
properties of the vortex lattice may be calculated from
London theory, to which the GL theory reduces when
the magnitude j j of the GL function  is nearly con-
stant. In the London limit, B(x; y) is the linear super-
position of the �elds of isolated vortices; the London
expressions for B(x; y) and for the energy apply thus
also to nonperiodic arrangements of vortices. The Lon-
don theory was further extended to curved vortices and
to anisotropic superconductors. At larger �B > 0:25Bc2

or smaller � < 2, the GL theory has to be used. An-
alytic GL solutions are available only for the periodic
FLL near Bc2, but not for a distorted FLL or at lower
�B.

Expanding the energy of the superconductor with
respect to small displacements of the vortices from their
ideal lattice positions, one obtains the elastic moduli of
the vortex lattice. As opposed to the local elasticity
of atomic lattices, the elasticity of the vortex lattice is
nonlocal [3], i.e., the energy of compressional and tilt
deformations is strongly reduced when the wave vector
k of the strain �eld is large, k > ��1, see Sct. 4.

II. Results from London Theory

The London theory may be formulated by minimiz-
ing the sum F of the potential energy of the magnetic
�eld B(r) and the kinetic energy of the supercurrent
density J(r) = ��10 r�B(r),

F =
1

2�0

Z
V

[B2 + �2(r�B)2 ] d3r ; (1)

with respect to B = r�A. This yields the homo-
geneous London equation B � �2r2B = 0 or J =
���10 ��2A where the Maxwell equations r � B = 0
and r � B = �0J were used and the vector potential
A was chosen in the \London gauge" r �A = 0.

A. Parallel vortices

In the presence of vortices one has to add singulari-
ties which describe the vortex core. For straight parallel
vortex lines along ẑ one thus gets the modi�ed London
equation

B(r)� �2r2B(r) = ẑ�0

X
�

Æ2(r� r�) : (2)

Here r� = (x� ; y�) are the two-dimensional (2D) vor-
tex positions and Æ2(r) = Æ(x)Æ(y) is the 2D delta
function. This linear equation may be solved by
Fourier transform using

R
exp(ikr)d2k = 4�2Æ2(r) andR

exp(ikr)(k2+��2)�1d2k = 2�K0(jrj=�). Here K0(x)
is a modi�ed Bessel function with the limits K0(x) �
� ln(x) for x � 1 and K0(x) � (�=2x)1=2 exp(�x) for
x � 1. The resulting magnetic �eld of any arrange-
ment of parallel vortices is the sum of individual vortex
�elds centered at the positions r� ,

B(r) = ẑ
�0

2��2

X
�

K0

� jr� r� j
�

�
; (3)

see Fig. 1. The energy F2D of this 2D arrangement
of vortex lines with length L is obtained by inserting
Eq. (2) into (1). Integrating over the delta function
one �nds that the London energy is determined by the
magnetic �eld values at the vortex positions,

F2D = L
�0

2�0

X
�

B(r�)

= L
�2
0

4��0�2

X
�

X
�

K0

� jr� � r� j
�

�
: (4)

This expression shows that the energy is composed of
the self-energy of the vortices (terms � = �) and a
pairwise interaction energy (terms � 6= �). To avoid
the divergence of the self-energy one has to cut o� the
logarithmic in�nity of B at the vortex centers r� by
introducing a �nite radius of the vortex core of order
�, the coherence length of the GL theory. This cuto�
may be achieved by replacing in Eq. (4) the distance
r�� = jr� � r� j by ~r�� = ( r2�� + 2�2 )1=2 and multiply-
ing by a normalization factor � 1 to conserve the 
ux
�0 of the vortex. This analytical expression suggested
by Clem [6] for a single vortex and later generalized to
the vortex lattice [7], is an excellent approximation, as
was shown numerically [8] by solving the GL equation
for the periodic FLL in the entire range of �B and �, for
0 � �B � Bc2 and � � 1=

p
2.

B. Curved vortices

Arbitrary 3D arrangements of curved vortices at po-
sitions r�(z) = [x�(z); y�(z); z] satisfy the 3D London
equation [3]

B(r)� �2r2B(r) = �0

X
�

Z
dr� Æ3(r� r�) : (5)

Here the integral is along the vortex lines and Æ3(r) =
Æ(x)Æ(y)Æ(z). The resulting magnetic �eld and energy
are, with ~r�� = [ jr�(z)� r�(z)j2 + 2�2 ]1=2,

B(r) =
�0

4��2

X
�

Z
dr�

exp[�~r��(r�= r)=�]

~r�� (r�= r)
; (6)
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F3D =
�0

2�0

X
�

Z
dr�B(r�)

=
�2
0

8��0�2

X
�

X
�

Z
dr�

Z
dr�

exp(�~r��=�)
~r��

:

This means all the vortex segments interact with each
other similar as magnetic dipoles or tiny current loops,
but the magnetic long-range interaction / 1=r is
screened by a factor exp(�~r��=�). The 3D interaction
between curved vortices is visualized in Fig. 6.

Interaction between curved flux lines 
Figure 6. Visualization of the pairwise interaction between
all line elements (arrows) of curved 
ux lines within London
theory, Eqs. (6) and (7).

C. Vortices near a surface

The solutions (6) apply to vortices in the bulk.
Near the surface of the superconductor these expres-
sions have to be modi�ed. In simple geometries, e.g.
for superconductors with one or two planar surfaces
surrounded by vacuum, the magnetic �eld and energy
of a given vortex arrangement is obtained by adding
the �eld of appropriate images (in order to satisfy the
boundary condition that no current crosses the surface)
and a magnetic stray �eld which is caused by a �ctitious
surface layer of magnetic monopoles and which makes
the total magnetic �eld continuous across the surface
[9]. The magnetic �eld and interaction of straight vor-
tices oriented perpendicular to a superconducting �lm
of arbitrary thickness is calculated in Ref. [10, 11].

D. Thin Films and Layered Superconductors

Near the surface of a superconductor the self and
interaction energies are modi�ed. In �lms of thick-
ness d � � the short 2D vortices interact mainly
via their magnetic stray �eld outside the superconduc-
tor over an e�ective penetration depth � = 2�2=d.
At short distances r � � this interaction is loga-
rithmic as in the bulk case, and at large r � � it
decreases as exp(�r=�). With decreasing thickness
d, the Fourier transform of the 2D vortex interaction

V (r) =
R
(d2k=4�2) ~V (k) exp(ikr) changes from ~V (k) =

E0(k
2 + ��2)�1 (d � �) to ~V (k) = E0(k

2 + k��1)�1

(d � �) where E0 = d�2
0=(�0�

2). A similar (but 3D)
magnetic interaction exists between the 2D pancake
vortices [12] in the superconducting CuO layers of high-
Tc superconductors, ~V (k) = E0 d k

2
3 k

�2
2 (��2 + k23)

�1,
where now d is the distance between the layers, k22 =
k2x + k2y, k

2
3 = k22 + k2z , and � = �ab is the penetration

depth for currents 
owing in these layers [12, 3].

E. Anisotropic Superconductors

For many purposes high-Tc superconductors may be
considered as uniaxially anisotropic materials, which
within London theory are characterized by two pen-
etration depths �a � �b � �ab (for currents in the
ab plane) and �c (for currents along the c axis). The
anisotropy ratio � = �c=�ab = �ab=�c � 1 describes
also the anisotropy of the GL coherence lengths, �ab
and �c, which are needed as inner cuto� lengths in the
anisotropic London theory. The general solution for ar-
bitrarily arranged straight or curved vortex lines is [3]

B�(r) = �0

X
�

Z
dr�� f��(r�r�) (7)

F3D =
�2
0

2�0

X
�

X
�

Z
dr��

Z
dr��f��(r��r�)

with the tensorial interaction (�; � = x; y; z)

f��(r) =

Z
d3k

8�3
exp(ikr) f��(k) (8)

f��(k) =
exp[�2g(k; q) ]

1 + �1k2

�
Æ��� q� q� �2

1 + �1k2 +�2q2

�
:

Here g(k; q) = �2abq
2+�2c (k

2�q2) = (�1k
2+�2q

2)�2c=�
2
ab

enters the cuto� factor exp(�2g); q = k� ĉ, ĉ is the
unit vector along the c-axis, �1 = �2ab, �2 = �2c ��2ab �
0, and the sums and integrals are over the �th and �th
vortex line. Due to the tensorial character of f��(r) the
contribution of the segment dr� to B(r) now in general
is not parallel to dr�.

III. Ginzburg-Landau, Pippard, and BCS The-

ories

The London theory was extended in two ways,
which both introduce a second length �: The Ginzburg-
Landau (GL) theory is nonlinear in  and the Pippard
theory is nonlocal in A. All three theories later were
shown to follow from the microscopic BCS theory in
limiting cases.

A. Ginzburg-Landau Theory

The GL theory of 1950 introduces a complex or-
der parameter  (r) in addition to the magnetic �eld
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B(r) = r � A(r). The GL function  (r) is propor-
tional to the BCS energy-gap function �(r), and its
square j (r)j2 to the density of Cooper pairs. The su-
perconducting coherence length � gives the scale over
which  (r) can vary, while � governs the variation of
the magnetic �eld as in London theory. Both � and �
diverge at the superconducting transition temperature
Tc according to � / � / (Tc � T )�1=2, but their ra-
tio, the GL parameter � = �=�, is nearly independent
of the temperature T . The GL theory reduces to the
London theory (which is valid down to T = 0) in the
limit � � �, which means constant magnitude j (r)j =
const, except in the vortex cores, where  vanishes. The
GL equations are obtained by minimizing a free energy
functional Ff ;Ag with respect to the GL function
 (r) and the vector potential A(r). With the length
unit � and magnetic �eld unit

p
2Bc the GL functional

reads

Ff ;Ag = B2
c

�0

Z h
� j j2 + 1

2
j j4

+j(� ir
�
�A) j2 + (r�A)2

i
d3r : (9)

This functional and the resulting GL equations may
be expressed in terms of the real function j j and the
gauge-invariant supervelocity r'=��A where '(r) is
the phase of  = j j exp(i'). The supercurrent density
is J = ��10 �2(r'=� �A)j j2. In an external �eld Ha

one has to minimize not the free energy F but the Gibbs
free energyG = F��BHa. The condition @G=@ �B yields
the equilibrium �eld Ha = @F=@ �B. The reversible
magnetization curves �B(Ha) of pin-free superconduc-
tors, Fig. 5, were calculated in this way from GL theory
[8], together with the pro�les of Fig. 3.

The GL theory modi�es the London interaction be-
tween vortices in two ways: (a) The range of the mag-
netic repulsion at large inductions �B becomes larger,
�0 = �=(1� �B=Bc2)

1=2. (b) A weak attraction of range
�0 = �=(2 � 2 �B=Bc2)

1=2 is added, caused by the con-
densation energy that is gained by the overlap of the
vortex cores. Parallel vortex lines then interact by an
e�ective potential V (r) / K0(r=�

0) � K0(r=�
0) which

no longer diverges at zero distance r [13].

B. Pippard Theory

Inspired by Chamber's nonlocal generalization of
Ohm's law, Pippard 1953 introduced a superconductor
coherence length � by generalizing the London equation
�0J = ���2L A to a nonlocal relationship [2]

�0J(r) = ���2P
3

4��2

Z
r0(r0A(r�r0))

r03
e�r0=� d3r0: (10)

In the presence of electron scattering with mean
free path l, the Pippard penetration depth �P =
(�2L�0=�)

1=2 exceeds the London penetration depth �L
of a pure material with coherence length �0, since

the e�ective coherence length � is reduced by scat-
tering, ��1 � ��10 + l�1 [2]. In the limit of small
� � �P , Eq. (10) reduces to the local relation �0J(r) =
���2P A(r). In Fourier space Pippard's Eq. (10) reads
�0J(k) = �QP (k)A(k) with

QP (k) = ��2P h(k�);

h(x) =
3

2x3

h
(1 + x2)atanx� x

i
; h(0) = 1 : (11)

This Pippard theory is useful mainly for superconduc-
tors with small GL parameter �.

BCS Theory

The microscopic BCS theory (in the Green func-
tion formulation of Gor'kov) for weak magnetic �elds
yields a similar nonlocal relation �0J(k) = �Q(k)A(k)
as suggested by Pippard, replacing the Pippard kernel
QP (k) by the BCS kernel [14, 3]

QBCS(k) = ��2(T )

1X
n=1

h[ k�K=(2n+ 1) ]

1:0518 (2n+ 1)3
: (12)

Here h(x) is de�ned in Eq. (11), �(T ) = QBCS(0)
�1=2 �

�(0)(1�T 4=T 4
c )
�1=2 is the temperature dependent mag-

netic penetration depth, and �K = ~vF =(2�kBT ) �
0:844�(T )Tc=(�T ) (vF = Fermi velocity, � = GL pa-
rameter). The range of the BCS Gorkov kernel is of
the order of the BCS coherence length �0 = ~vF =(��0)
where �0 is the BCS energy gap at T = 0.

With the nonlocal relation �0J(k) = �Q(k)A(k)
the Eq. (2) for a vortex line at r� = 0 now becomes
[ 1 + Q(k)�1k2 ] ~B(k) = �0 with the solution

~B(k) =
�0Q(k)

Q(k) + k2
;

B(r) =
�0

2�

Z
1

0

Q(k)

Q(k) + k2
J0(kr) k dk ; (13)

where J0(x) is a Bessel function. The Pippard or
BCS �eld B(r) (13) of an isolated vortex line is no
longer monotonic as compared with the London �eld,
cf. Eq. (3), but it exhibits a �eld reversal with a neg-
ative minimum at large distances r � �P from the
vortex core. This e�ect should be observable if � � �,
i.e., for clean superconductors with small GL parame-
ter � at low temperatures. See also recent work on this
nonlocal electrodynamics [15].

The �eld reversal of the vortex �eld is partly respon-
sible for the attractive interaction between 
ux lines at
large distances, which was observed in clean Niobium
at temperatures not too close to Tc and which follows
from BCS theory at T < Tc for pure superconductors
with GL parameter � close to 1=

p
2. This attraction

leads to abrupt jumps in the magnetization curve and
to an agglomeration of 
ux lines that can be observed
in superconductors with demagnetization factor N 6= 0
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as FLL islands surrounded by Meissner state, or Meiss-
ner islands surrounded by FLL [16]. For the de�nition
of N see Sec. 5.

Another BCS e�ect which di�ers from the GL re-
sult is that in clean superconductors at low tempera-
tures the periodic magnetic �eld B(x; y) of the FLL
near Bc2 is not a smooth spatial function as in GL the-
ory, but has sharp conical maxima and minima such
that the pro�le B(x; 0) along a nearest neighbor di-
rection has zig-zag shape [3]. The reason for this is
that the electron mean free path in pure superconduc-
tors at T ! 0 becomes larger than the vortex spac-
ing a0. This leads to a slow decrease of the Fourier
coeÆcients BK / (�1)m+mn+nK�3

mn of B(x; y), while
at T � Tc the GL theory near Bc2 yields a rapid de-
crease, BK / (�1)m+mn+n exp(�K2

mnx1y2=8�). Here
K = Kmn = (2�=x1y2)(my2;�mx2 + nx1) (m;n =
1; 2; 3; : : :) are the reciprocal lattice vectors of the ideal
vortex lattice with positions Rmn = (mx1 + nx2;ny2),
and x1y2 = �0= �B is the area of the unit cell, see Fig. 2.

IV. Elasticity of the Vortex Lattice

The 
ux-line displacements caused by pinning forces
and by thermal 
uctuations may be calculated us-
ing the elasticity theory of the FLL. Fig. 7 visual-
izes the three basic distortions of the triangular FLL:
shear, uniaxial compression, and tilt. The linear elas-
tic energy Felast of the FLL is obtained by expanding
its free energy F with respect to small displacements
u�(z) = r�(z)�R� = (u�x; u�y) of the 
ux lines from
their ideal parallel lattice positionsR� and keeping only
the quadratic terms. This yields [3]

Felast =
1

2

Z
BZ

d3k

8�3
u�(k) ���(k)u

�

�(k) (14)

where u(k) is the Fourier transform of the displacement
�eld u�(z), now (�; �) = (x; y), and k = (kx; ky; kz).
The k-integral in Eq. (14) is over the �rst Brillouin zone
(BZ) of the FLL since the \elastic matrix" ���(k) is
periodic in the kx; ky plane; the �nite vortex core radius
restricts the kz integration to jkzj � ��1. For an elas-
tic medium with uniaxial symmetry the elastic matrix
reads

���(k) = (c11 � c66)k�k�

+Æ�� [ (k
2
x + k2y)c66 + k2zc44 ] : (15)

The coeÆcients c11, c66, and c44 are the elastic mod-
uli of uniaxial compression, shear, and tilt, respectively.
For the FLL, ���(k) was calculated from GL and Lon-
don theories [3]. The result, a sum over reciprocal
lattice vectors, should coincide with expression (15) in
the continuum limit, i.e., for small jkj � kBZ , where
kBZ = (4� �B=�0)

1=2 is the radius of the circularized
(actually hexagonal) Brillouin zone of the triangular

FLL with area �k2BZ . In the London limit one �nds for
isotropic superconductors the elastic moduli

c11(k) �
�B2=�0

1 + k2�2
; c66 �

�B�0=�0
16��2

;

c44(k) � c11(k) + 2c66 ln
�2

1 + k2z�
2
: (16)

The GL theory yields an additional factor (1� �B=Bc2)
2

in c66, i.e., c66 / �B( �B � Bc2)
2, and replaces � in

c11(k) by �0 [17, 8]. The k dependence (dispersion)
of the compression and tilt moduli c11(k) and c44(k)
means that the elasticity of the vortex lattice is non-

local, i.e., strains with short wavelengths 2�=k � 2��
have a much lower elastic energy than a homogeneous
compression or tilt (corresponding to k ! 0). This
elastic nonlocality comes from the fact that the mag-
netic interaction between the 
ux lines typically has
a range � much longer than the 
ux-line spacing a0,
therefore, each 
ux line interacts with many other 
ux
lines. Note that large � causes a small shear sti�ness
since c66 / ��2, Eq. (16), and a smaller c11(k > ��1),
but the uniform compressibility c11(k = 0) is indepen-
dent of �.

γ = shear angle α = tilt angle

ε = compression
1 1−ε

x x x

Figure 7. The three basic homogeneous elastic distortions
of the triangular 
ux-line lattice. The full dots and solid
lines mark the ideal lattice and the hollow dots and dashed
lines the distorted lattice.

The compressional modulus c11 and the typically
much smaller shear modulus c66 � c11 � c44 originate
from the 
ux-line interaction, but the last term in the
tilt modulus c44 (16) originates from the line tension of
isolated 
ux lines, de�ned by P = lim �B!0(c44�0= �B).
In isotropic (or cubic) superconductors like Nb and
its alloys, the line tension P coincides with the self
energy Fs of a 
ux line, P = Fs, Fs = �0Hc1 �
(�2

0=4��0�
2)(ln � + 0:5) for � � 1. In anisotropic

materials the line tension and line energy of 
ux lines
in general are di�erent and depend on the angle � of
the vortex line with respect to the c-axis. One has
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P (�) = Fs(�)+@
2Fs=@�

2. Using Fs(�) = Fs(0)(cos
2 �+

��2 sin2 �)1=2 with � = �c=�ab � 1, one obtains P (0) =
Fs(0)=�

2 and P (�=2) = Fs(�=2)�
2 = P (0)=�3 (for tilt

out of the ab-plane) [3]. In isotropic superconductors
the uniaxial symmetry of the ideal vortex lattice, i.e.,
the appearance of a preferred axis, is induced by the
applied magnetic �eld. This induced anisotropy leads
to a small di�erence between the compressional and tilt
moduli c11 and c44, but not to a di�erence between line
energy and line tension.

As a consequence of nonlocal elasticity, the 
ux-
line displacements u�(z) caused by local pinning forces,
and also the space and time averaged thermal 
uctu-
ations hu�(z)2i, are much larger than they would be
if c44(k) had no dispersion, i.e., if it were replaced
by c44(0) = �BHa � �B2=�0. The maximum vortex
displacement u(0) / f caused at r = 0 by a point
force of density fÆ3(r), and the thermal 
uctuations
hu2i / kBT , are given by similar expressions [3],

2u(0)

f
� hu2i
kBT

�
Z
BZ

d3k

8�3
1

(k2x + k2y)c66 + k2zc44(k)

� k2BZ�

8�[c66c44(0)]1=2
: (17)

In this result a large factor [c44(0)=c44(kBZ)]
1=2 �

kBZ� � ��=a � 1 originates from the elastic non-
locality. In anisotropic superconductors with Bkc, the
thermal 
uctuations (17) are enhanced by an additional
factor � = �c=�ab [3]. For an exact analytic evaluation
of the integral (17) for hu2i see [18].

V. High-Tc Superconductors

The nonlocal elastic response of the vortex lattice
is particularly important for understanding the ther-
modynamic and electrodynamic properties of the high-
Tc superconductors, which were discovered in 1987 and
the following years. These oxides with high supercon-
ducting transition temperature Tc (e.g. YBa2Cu3O7�Æ

with Tc = 92:5 K, Bi2Sr2Ca2Cu3O10+Æ with Tc = 120
K, and some Hg and Tl compounds with even higher
Tc) are layered structures with more or less decoupled
superconducting Cu-O layers. They thus exhibit high
anisotropy of their superconducting properties. For ex-
ample, YBCO has an anisotropy � = 5 and BSCCO
has � � 100. This means in BSCCO the layers are
almost decoupled and the penetration depth �c for cur-
rents 
owing along the c axis is macroscopically large,
�c = ��ac with �ab � 140 nm at T = 0. Therefore, the
magnetic �eld component parallel to the layers pene-
trates easily.

This large �c also causes very pronounced elastic
nonlocality, which means a very soft vortex lattice. The
vortices are thus strongly pinned collectively, since the
vortex lattice adjusts to the pins, but at higher temper-
atures they are easily depinned by thermal activation,

since the elementary pinning energy of very 
exible vor-
tices is small. By the same token, thermal 
uctuations
of the vortices are large and may even cause melting of
the vortex lattice into a vortex liquid.

The e�ects of the elastic nonlocality and anisotropy
on the thermal 
uctuation, melting, and pinning of
the FLL are treated in detail in the review [19],
where also phase diagrams in the Ha-T plane are pre-
sented for 3D and layered superconductors. Phase dia-
grams obtained by applying simple Lindemann crite-
ria (hu2i = c2La

2
0, cL � 0:25) to both thermal and

pinning-caused 
uctuations in 3D superconductors at
not too low �elds ( �B > Bc1) are calculated in [20],
namely, the line Hm(T ) where the FLL melts, the line
Hsv(T ) which separates the regimes of single-vortex-
pinning and of vortex-bundle-pinning, and the order{
disorder line Hdis(T ) above which pinning causes plas-
tic deformation of the FLL, see Fig. 8. In this case
(B = �0H , no decoupling of layers) the phase dia-
gram in reduced units Ha=Hc2(0) and t = T=Tc, de-
pends only on the Ginzburg number Gi and on the pin-
ning strength D = [Jc(0)=J0(0)]

1=2 (critical current for
B ! 0 over the depairing current, both at T = 0), see
[20].
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Figure 8. The order{disorder lines Hdis(t) (solid lines) and
single-vortex pinning boundaries Hsv(t) (dashed lines) for
three pinning strengths D=cL = 1:3, 1.1, 0.9 and Ginzburg
number Gi = 0:01. Assumed was ÆTc pinning. The dash-
dotted line is the melting line Hm(t) and the dotted line
shows Hc2(t) = Hc2(0)(1� t2).

VI. Continuum Description of the Vortex State

If one is interested only in length scales larger than
the vortex spacing a0, one may use a continuum descrip-
tion of the vortex state to calculate the distributions of
magnetic �eld and current in superconductors of arbi-
trary shape. Two di�erent algorithms where presented
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[21, 22] which in principle allow to compute the elec-
tromagnetic behavior of superconductors of arbitrary
shape with and without vortex pinning. The extension
to �nite London depth � is given in [5].

Apart from the Maxwell equations, a continuum de-
scription requires the constitutive laws of the supercon-
ductor. These may be obtained, e.g., from the London
theory, Sct. II, by taking the limits a0 ! 0 and � ! 0
(or keeping �nite � [5]), and from appropriate mod-
els of vortex dynamics. One constitutive law is the
reversible magnetization curve of a pin-free supercon-
ductor, M(H) or �B(H) = �0H + �0M(H), where H
is an e�ective applied �eld which would be in equilib-
rium with the local induction �B. In the simplest case
this law may read M = 0 or �B = �0H , valid if every-
where �B is larger than several times the lower critical
�eld Bc1. But in general the reversible M(H) com-
puted from London or GL theories should be used, as
discussed in [21, 22, 23, 24].

When the �nite lower critical �eld Hc1 is accounted
for, the magnetization curve M(Ha) in general is irre-
versible (i.e. a loop) even in complete absence of vor-
tex pinning. This pin-free irreversibility is caused by a
geometric barrier for the penetration of magnetic 
ux,
which is absent only if the superconductor has the shape
of an ellipsoid or if it has a sharp edge or cusp, at which
the applied �eld Ha is strongly enhanced such that 
ux
lines can penetrate easily. For example, in supercon-
ducting cylinders or strips with rectangular cross sec-
tion 2a � 2b (2a = diameter or width, 2b = height)
in increasing Ha, the magnetic 
ux penetrates �rst re-
versibly at the four corners in form of nearly straight

ux lines, see Figs. 4, 9. When the �eld of �rst 
ux en-
try Ben is reached, these 
ux lines join at the equator,
contract, and jump to the specimen center, from where
they gradually �ll the entire superconductor. When Ha

is decreased again, some 
ux exits �rst reversibly, but
below a reversibility �eld Hrev > Hen the magnetiza-
tion loop opens, see Fig. 10, since the barrier for 
ux
exit is absent or weaker than the barrier for 
ux entry.
For arbitrary aspect ratio b=a the entry �eld is [22, 24]

Hen � Hc1 tanh
p
cb=a ; (18)

where c = 0:36 for strips and c = 0:67 for disks or cylin-
ders. This geometric barrier should not be confused
with the Bean-Livingstone barrier for the penetration
of a straight vortex line into the planar surface of a su-
perconductor, which would lead to a similar asymmet-
ric magnetization loop. The geometric barrier is caused
by the line tension of the vortices penetrating at sharp
[21, 22, 24] or rounded [25] corners. This line tension P
(see Sct. IV) is balanced by the Lorentz force exerted on
the vortex ends by the surface screening currents and
directed towards the specimen center. The irreversible
magnetic behavior of thin strips with an edge barrier
(and without or with bulk pinning) in perpendicular
Ha was calculated analytically by Zeldov et al. [26].

Pin−free strip at  H
a
/H

c1
 = 0.38,  0.44, 0.20 

Figure 9. The magnetic �eld lines in and near a pin-free
strip of aspect ratio b=a = 0:5 in an increasing applied
perpendicular �eld Ha at two �eld values Ha=Hc1 = 0:38
(top) and 0.44 (middle) just below and above the entry �eld
Hen = 0:40Hc1, and in decreasing �eld at Ha=Hc1 = 0:20
(bottom).
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Figure 10. Irreversible magnetization of pin-free cylinders
with various aspect ratios b=a = 0.08 (thin disk) to1 (long
cylinder) in a cycled axial magnetic �eld Ha (solid lines).
The dashed lines show the reversible magnetization curves
of ellipsoids chosen such that they have the same initial
slope 1=(1�N) as the corresponding cylinder.

The computed irreversible magnetization loops of
pin-free superconductor cylinders with various aspect
ratios b=a = 0:08 (thin disk) to b=a =1 (long cylinder)
in an axial �eld Ha are depicted in Fig. 10, together
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with the corresponding reversible magnetization curves
of ellipsoids which have the same initial slope (Meiss-
ner state) as the cylinders. These magnetization loops
of cylinders (like those of other non-ellipsoids) have a
maximum at Ha � Hen, and at Ha > Hrev they are re-
versible and coincide with the magnetization of the cor-
responding ellipsoid. All pin-free magnetization loops
are symmetric, M(�Ha) = �M(Ha) with M(0) = 0,
i.e., no remanent 
ux can remain at Ha = 0 since bulk
pinning is absent and there is no barrier for 
ux exit
when Ha = 0. Fig. 11 shows magnetization curves of
a short cylinder with �nite Hc1 for various strengths of
bulk pinning.

0 0.5 1 1.5 2
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−0.5
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1

1.5

 H
a
 / H
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 M

 / 
H

c1

Pinning:  Jca/Hc1 = 0, 0.25, 0.5, 1, 1.5, 2, 3, 4

Disk with  b/a = 0.25

Hc1 = const

Figure 11. Magnetization loops of a thick disk with as-
pect ratio b=a = 0:25 and constant Hc1 but various pinning
strengths Jc = 0.25, 0.5, 1, 1.5, 2, 3, 4 in units Hc1=a and
for various sweep amplitudes of the applied �eld Ha. Bean
model, i.e., the critical current density Jc is independent
of the induction B. The inner loop belongs to the pin-free
disk and the outer loop to strongest pinning (Jc = 4). The
bold dashed line shows the reversible magnetization of the
corresponding ellipsoid.

The reversible magnetization curves of pin-free el-
lipsoidsM(Ha; N) follow from the magnetization curve
M(Ha; N = 0) = �B=�0�Ha of long cylinders in paral-
lel �eld Ha by the concept of a demagnetization factor
N . One has 0 � N � 1, N = 0 for parallel geometry,
N = 1=2 for in�nite cylinders in perpendicular �eld,
N = 1=3 for spheres, and N = 1 for thin �lms in per-
pendicular �eld. For ellipsoids with N 6= 0 one has to
solve the implicit equation for an e�ective internal �eld
Hi [24],

Hi = Ha �NM(Hi; N = 0) ; (19)

to obtain the reversible magnetization M(Ha; N) =
M(Hi; N = 0) (dashed lines in Fig. 10) from the
M(Ha; N = 0) of longitudinal geometry. In particular,
in the Meissner state ( �B � 0) one hasM(Ha; 0) = �Ha

and M(Ha; N) = �Hi = �Ha=(1 � N) for jHaj �
(1�N)Hc1.

As a second constitutive law one may use the lo-
cal electric �eld E = Ev(J;B) which is generated by

moving vortices and which in a compact way can de-
scribe free 
ux 
ow and Hall e�ect, but also vortex
pinning and thermally activated depinning or creep.
A simple but still quite general isotropic model is
Ev = �(J;B)J with � = const � B � (J=Jc)n�1, where
Jc is the critical current density and n the creep expo-
nent [5, 27]. This realistic model means an activation
energy U(J) = U0 ln(Jc=J) for depinning that enters in
E = Ec exp[�U(J)=kT ] = Ec(J=Jc)

n with n = U0=kT .
Within this model, 
ux 
ow is described by n = 1,

ux creep (relaxation with approximately logarithmic
time law) by n� 1, and Bean's critical state model of
vortex pinning by the limit n ! 1. In general, both
Jc and n may depend on the local induction �B and
on the temperature T . Fig. 12 shows some magneti-
zation loops of a short cylinder calculated in [27] for
two di�erent Jc(B) models and two creep exponents.
For the electrodynamics of thin strips, disks, and rings
in a perpendicular �eld see [28, 29, 30], and for thin
rectangles and �lms of other shapes see [31, 32]. Thin
strips in perpendicular dc and ac magnetic �elds and
with transport current are considered in [33]. Analytic
and numerical solutions were also obtained for 
ux ex-
pulsion and penetration into thin strips with a bend
along the middle line [34] and for thin shells (or hats)
of conical shape [35].

Figure 12. Magnetization loops of cylinders with aspect
ratio b=a = 1, creep exponents n = 51 (bold lines) and
n = 5 (dashed lines), with Bc1 = 0, in sinusoidally cycled
applied �eld Ha for two induction dependent critical cur-
rent densities Jc(B) = Jc0=(1 + 3�) (top, Kim model) and
Jc(B) = Jc0(1 � 3� + 3�2) (bottom, a \�sh-tail" model),
where � = jBj=Bp, Bp = 0:88�0Jc0a. The magnetization
M is in units Jc0a=(2�) and Ha in units Jc0a, where a, b
are the radius and half height of the cylinder.
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In all these calculations the London depth � was
assumed to be negligibly small. Finite � may be ac-
counted for by modifying the current{voltage law, us-
ing E = Ev(J;B) + �0�

2@j=@t [5]. Here the �rst term
is generated by moving vortices and the second term
describes the Meissner surface currents [4, 5].
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