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Nucleon and Delta Sigma-Terms
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We evaluate nucleon and delta sigma-terms and obtain the results 43 MeV ≤ σN ≤ 49 MeV and 28 MeV ≤
σ∆ ≤ 32 MeV, depending on the coupling constants used, which are compatible with values extracted from
experiment and produced by other groups. We show that the decay ∆→ πN explains the relation σ∆ < σN .
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I. INTRODUCTION

QCD is nowadays the main theoretical framework to de-
scribe hadronic interactions, but its non-Abelian character
makes calculations in the low-energy regime unfeasible. In
order to overcome this problem, one may work with either
lattice QCD or effective field theories.

Effective theories are constructed by writing the most gen-
eral Lagrangian containing all the terms allowed by the sym-
metries of the main theory. In the case of chiral symme-
try, the various terms are organized considering the number
of pion masses or derivatives of the pion field. This proce-
dure gives meaning to the idea of chiral perturbation theory
(ChPT). Considering only u and d quarks, we assume that the
effective theory possesses approximate SU(2)× SU(2) chi-
ral symmetry, broken by the small pion mass in the effective
theory. An important aspect of chiral dynamics concerns the
effects of this breaking of the symmetry over the nucleon and
delta resonance masses. The answer to this question is related
to sigma-terms.

The delta (∆) plays a very important role in low-energy
pion-nucleon (πN) scattering and correlated processes, such
as the nucleon-nucleon interaction. When the delta is present,
the scale of some amplitude denominators is given by the
quantity ω∆ ∼ M−m. Delta contributions are given by ra-
tios of small quantities and may turn out to be large. In such
cases, numerical values adopted for M−m do influence pre-
dictions produced by effective theories, especially those that
rely on the small scale expansion [1] or the heavy baryon ap-
proximation [2].

In ChPT, there is a clear conceptual distinction between the
bare baryon masses, present in the Lagrangian, and their re-
spective observed values, which include loop corrections. The
former should, in principle, be preferred as inputs in the eval-
uation of theoretical amplitudes. Nevertheless, as there is lit-
tle information available concerning the bare delta mass, one
tends to use physical values in calculations. In most cases, it
is reasonable to expect that this would have little numerical
importance. On the other hand, in the case of the parameter
ω∆, which is a small quantity, the influence of loop corrections
may become relatively large.

According to the Feynman-Hellmann theorem [3] the mass

mB of a baryon B is related to its sigma-term σB by σB =
µ2 d mB/dµ2. Therefore the sigma-term provides a measure of
the shift in the baryon mass due to chiral symmetry breaking.
Whenever it is possible to evaluate σB as a function of µ, the
bare mass mB0 can be extracted from the relation

mB = mB0 +
∫ µ2

0
dλ σB(λ)/λ . (1)

As the leading term in σB is proportional to µ2, the dif-
ference mB−σB provides a crude estimate for mB0 . In the
case of the nucleon, one has σN=45 MeV [4]. In ChPT, the
leading contribution to σN cannot be predicted theoretically.
Formally, it is associated with the constant c1 of the second
order Lagrangian [5, 6], which can be extracted from empir-
ical subthreshold information. The situation of the delta is
much worse, for π∆ scattering data are not available. One is
then forced to resort to models in order to calculate the delta
sigma-term, which is associated with the parameter a1 defined
in ref. [1].

This paper is organized as follows. In section II we re-
view our evaluation of the nucleon and delta sigma-terms, pre-
sented in [7] (the reader is referred to this paper for a detailed
description of the work). In section III we show that the re-
lation σ∆ < σN is associated with the fact that the delta can
decay. A brief summary is provided in section IV.

II. NUCLEON AND DELTA SIGMA-TERMS

Th nucleon sigma-term obtained by applying ChPT at
O(q4) depends on the low-energy constants (LEC’s) c1, c2
and c3. In this work we review a model presented in [7, 8].

Data on πN subthreshold coefficients indicate that c2 and
c3 are larger than c1 and that their values are approximately
saturated by ∆ intermediate states [6]. Thus, up to O(q4),
the function σN(t) can be well represented by the leading tree
contribution associated with c1, supplemented by the two tri-
angle diagrams shown in Fig.1, involving N and ∆ intermedi-
ate states.

The nucleon scalar form factor in momentum space is de-
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FIG. 1: Contact term and triangle diagrams contributing to the sigma-
term.

fined by

〈N(p′)|−Lsb |N(p)〉= σN(t) ū(p′) u(p) , (2)

where Lsb is the symmetry breaking term and t = (p′−p)2.
In terms of the quark degrees of freedom, one has Lsb =
−m̂(ūu+d̄d), with m̂ = (mu +md)/2. The configuration space
scalar form factor is denoted by σ̃N and given by

σ̃N(r) =
∫ d3q

(2π)3 e−iq·r σN(t) , (3)

with q = (p′−p), in the Breit frame. The nucleon sigma-term,
σN , is given by

σN = 4π
∫ ∞

0
dr r2 σ̃N(r) . (4)

The contributions from the diagrams of Fig.1 to σ̃N(r) read

σ̃N(r) =−4c1 µ2 δ3(r)+ σ̃NN (r)+ σ̃N∆(r) , (5)

where σ̃NN (r) and σ̃N∆(r) denote contributions from diagrams
with nucleon and delta as intermediate states, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

σ/
(f

π2 µ2 )

r(fm)

σΝΝ
σΝ∆
σΝ

FIG. 2: Spatial dependence of the nucleon scalar form factor (solid
curve) and partial contributions due to N and ∆ intermediate states
(dashed curve and dotted curve, respectively).

In Fig.2, the condensed (QCD vacuum) and empty-space
phases are represented by the horizontal lines at values 0 and
1, respectively, whereas the curve σN represents the influ-
ence of the nucleon over the condensate. At a critical point
R around 0.6 fm, this curve intersects the horizontal line at
1, indicating the possibility of a phase transition. We assume
that this phase transition does take place at this point and that
the condensate no longer exists in the region r < R.

For this reason, in our previous evaluation of σN [7, 8], we
used the expression

σN =
4
3

πR3 f 2
π µ2 +4π

∫ ∞

R
dr r2 σ̃N(r) (6)

instead of eq. (4). This procedure is the basis of our model
and is more extensively discussed in ref. [7].

In the numerical determination of σN , we consider three
possibilities for the πN∆ coupling constant. The correspond-
ing results, given in table 1, are quite close to the value ex-
tracted from experiment by Gasser, Leutwyler and Sainio [4],
namely, σN = 45 MeV.

TABLE I: Nucleon sigma-term as a function of the πN∆ coupling
constant.

gπN∆ R (fm) σN (MeV)
1.19 0.55 42.6
1.33 0.57 45.8
1.47 0.59 49.4

The delta scalar form factor is defined as

〈∆(p′,s′)|−Lsb|∆(p,s)〉 ≡− ūs′
µ (p′) [gµνσ∆(t)

+p′ν pµFT (t)
]

us
ν(p) , (7)

where us
ν is the ∆ spinor [9] and σ∆ and FT are, respectively,

the scalar and tensor form factors. The minus sign on the
r.h.s. is associated with the conventions used in the free ∆
Lagrangian as in ref. [1]. We assume that the scalar form fac-
tor is determined by a short range contact interaction and two
long range two-pion processes as in the case of the nucleon.

The values of the distance R for which σ̃∆(R)/ f 2
π µ2 = 1

and the values of the delta sigma-term are given in table II,
for different choices of the coupling constants gπN∆ and gπ∆∆.
Results for the real component of σ∆ are sensitive to the cou-
pling constant gπ∆∆ and consistent with that given in ref. [10],
namely σ∆ = (32±3) MeV. On the other hand, our prediction
is larger than that quoted in ref. [11].

TABLE II: Partial contributions to σ∆.
gπN∆ gπ∆∆ R core cloud N cloud ∆ sum
1.19 0.75 0.53 13.4 -0.9 19.8 32.3
1.19 0.67 0.51 12.0 -0.4 16.6 28.2
1.33 0.75 0.54 14.3 -1.5 19.3 32.1
1.33 0.67 0.52 12.9 -0.9 16.1 28.1
1.47 0.75 0.55 15.4 -2.3 18.6 31.7
1.47 0.67 0.53 14.0 -1.7 15.5 27.8

The structure of partial contributions for SU(4) coupling
constants, namely, gπN∆ = 1.33 and gπ∆∆ = 0.75. is given
in table III, where core and cloud refer to regions inside and
outside the cutting radius R, respectively.
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TABLE III: Partial contributions to σN and σ∆.
core cloud N cloud ∆ sum

σN (MeV) 16.7 13.0 16.1 45.8
σ∆ (MeV) 14.3 -1.5 19.3 32.1

III. LOOP INTEGRALS

The results given in table III show that the difference be-
tween σN and σ∆ is related to the cloud N contribution to σ∆,
which is rather small, compared to σN . The reason for this
behaviour is associated with the fact that the decay ∆→ πN is
possible.

The decay ∆→ πN changes the behaviour of the loop inte-
grals. In order to illustrate these changes and show the origin
of the small size of the cloud N contribution to σ∆, we present
some details of how we deal with the loop integrals.

In the evaluation of the cloud N component of σ∆, the fol-
lowing loop integral appears, among others:

Iµν
xππ =

∫ d4Q
(2π)4

(QµQν/µ2)
[(Q+q/2)2−µ2] [(Q−q/2)2−µ2]

× 2µme

[(Q+P)2−m2
x ]

=
i

(4π)2

[
gµν Π̄(000)

xππ + · · ·
]

, (8)

where me and mx are the external and the internal baryon
masses, respectively. We employ the variables

q = (p− p′) , P = (p+ p′)/2 , Q = (k + k′)/2 , (9)

where p and p′ are the initial and final baryon momenta, re-
spectively, whereas k and k′ are the momenta of the exchanged
pions.

The Feynman techniques for loop integration allow one to
write the regular part of (8) as

Π̄(k00)
xππ =− me

µ

1∫

0

da a
1∫

0

db [−me(1−a)/µ]k

× ln
(

Dxππ

2µme

)
, (10)

with

Dxππ =a µ2 +(1−a) m2
x −a(1−a) m2

e

−a2 b(1−b)q2 . (11)

In our calculational procedure we use configuration space
expressions to obtain sigma-terms. Therefore, we need to per-
form Fourier transforms in the loop integrals,

S =
∫ d3k

(2π)3 e−ik·x Π , (12)

with x = µr e k = q/µ.

Thus the configuration space equivalent for Π̄(k00)
xππ can be

written as

S̄(k00)
xππ =

1
2πx3

me

µ

1∫

0

da a[−me(1−a)/µ]k

×
1∫

0

db (1+θx)e−θx , (13)

where

θ2 = φ2/[b(1−b)] (14)

and

φ2 = [aµ2 +(1−a)m2
x −a(1−a)m2

e ]/(µ2 a2) . (15)

The above integral can acquire an imaginary part. This fact
becomes evident when we perform the integral in the variable
b,

S̄(k00)
xππ =

1
πx2

me

µ

∫ 1

0
da a[−me(1−a)/µ]k |φ|

×{
θ(φ2)K1(2φx)

− θ(−φ2)
π
2

[Y1(2|φ|x)− iJ1(2|φ|x)]
}

. (16)

In general, when (µ + mx) ≥ me, the function φ2 is always
positive. On the other hand, when (µ + mx) < me, there is an
interval in the integration variable a for which the function
φ2 becomes negative. In case this happens, the functions K`

must be replaced by Y`. The former are monotonic functions,
whereas the latter oscillate and produce contributions with al-
ternating signs inside the integrals. This kind of behaviour is
illustrated in Fig. 3, for the arbitrary choices me = 1150 MeV,
µ = 150 MeV. In this case the decay threshold corresponds to
mx = 1000 MeV.

This is the reason why the contributions in the case (µ +
mx) < me, which represents the fact that the external particle
can decay, tend to be small. As this is a general feature of the
Feynman diagrams, it happens whenever an unstable particle
is present. One must bear in mind, however, that the size of
this effect depends on both the coupling constants of the spe-
cific problem and on the gap me−mx− µ. It is interesting to
note that the importance of understanding the smallness of the
delta sigma-term has been recently stressed in a conference
talk by Meissner [12] and, to our knowledge, our paper is the
only one proposing that the solution to this problem may be
associated with the instability of the delta.
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FIG. 3: Dependence in a of the integrand of expression (16), with
me = 1150 MeV at r = 2.5 f m, for a choice of values of mx. The
dashed and dotted curves represent the intervals in which φ2 < 0.

IV. SUMMARY

We have reviewed a model aimed at determining sigma-
terms, which consists in cutting off configuration space ex-
pressions at the point where, as we assume, a phase transition
occurs. Our main results are 43 MeV ≤ σN ≤ 49 MeV and
28 MeV≤σ∆≤ 32 MeV, depending on the coupling constants
employed. We have shown that the decay ∆→ πN changes the
behaviour of loop integrals and gives rise to an oscillation in
the cloud N contribution to σ∆ which is responsible for the
relation σ∆ < σN .
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(1988).

[6] T. Becher and H. Leutwyler, Eur. Phys. Journal C 9, 643 (1999);
JHEP 6, 17 (2001).

[7] I. P. Cavalcante, M. R. Robilotta, J. Sa Borges, D. de O. Santos,
and G. R. S. Zarnauskas, Phys. Rev. C 72, 065207 (2005).

[8] M. R. Robilotta, Phys. Rev. C 63, 044004 (2001).
[9] C. Fronsdal, N. Cim. Suppl. 9, 416 (1958).

[10] V. E. Lyubovitskij, Th. Gutsche, A. Faessler, and E. G.
Drukarev, Phys. Rev. D 63, 054026 (2001).

[11] V. Bernard, T. R. Hemmert, and Ulf-G. Meissner, Phys. Lett. B
622, 141 (2005).

[12] Ulf-G. Meissner, Proc. Sci. LATT2005, 009 (2005).


