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The notion of final theory results from a contrasting understanding of physical reality. Currently, different
approaches aim to unify the four forces of nature and discuss whether a final theory may be possible. A key
feature of a final theory is irreducibility, however this property has not been seriously exploited. In the paper
we present an irreducible mathematical theory that describes physical systems in terms of formation processes
of integer relations. The theory has integers and integer relations as the basic elements and is irreducible,
because the formation processes are completely controlled by arithmetic. We suggest properties of the formation
processes as irreducible guides in the search for a unified theory.

1 Introduction

The notion of final theory results from a contrasting under-
standing of physical reality [1]. It relies on beliefs that the
most fundamental laws of physics exist and their discovery
can be acknowledged. A key feature of a final theory is irre-
ducibility. It must be based on principles that cannot be ex-
plained in terms of deeper principles [1]. Currently, different
approaches aim to unify the four forces of nature and discuss
whether a final theory may be possible [2], [3]. Because the
problem is very challenging, technically the irreducibility of
a unified theory is not an immediate priority and has not been
seriously exploited.

However, a description of physical systems in irreducible
terms may reveal a new understanding and opportunities. In
particular, the existing approaches will continue to progress
from physical observations towards unified theories, but they
may be reviewed and improved by guiding through an irre-
ducible theory not necessarily dealing with the forces from
the start.

The question arises: where such an irreducible theory
may come from? In the paper we address the question
and present an irreducible mathematical theory that describes
physical systems in terms of formation processes of inte-
ger relations. In particular, the theory has the integers and
certain integer relations as the basic elements and interprets
the relationships between them as a result of their formation
processes. The formation processes start with the integers
and are completely controlled by arithmetic through a sin-
gle organizing principle [4]. Consequently, the theory is irre-
ducible as long as the integers are accepted as the most fun-
damental entities.

We present that the formation processes build up correla-
tion structures of physical systems and determine their prop-
erties [5], [6]. As a result the correlations do not take into
account the distances between the parts of a physical systems
and are nonlocal, instantaneous and inseparable in nature.
Furthermore, it turns out that it is possible to geometrize the

integer relations as two-dimensional patterns and character-
ize the formation processes in terms of their geometric trans-
formations [4]. This makes the theory of formation processes
geometrical and quantitative.

2 Correlations Conserving Quantities
of Physical Systems

We approach physical systems from a general perspective. In
particular, the dynamics of a physical system is considered in
order to understand correlations between the parts. For this
purpose we describe a physical system by its certain quan-
tities and are interested to know how many of them remain
invariant as the system evolves from one state to another [4].

Let I be an integer alphabet and IN = {x =
x1...xn, xi ∈ I, i = 1, ..., N} be the set of all sequences of
length N ≥ 2 with symbols in I . Let us consider a physical
system consisting of N elementary parts. Let the state of ele-
mentary part i be specified by a variable xi ∈ I, i = 1, ..., N
and the state of the whole physical system by a sequence
x = x1...xN . Let information about a physical system be
given as long as it is known that the system made transition
from a state x = x1...xN to another state x′ = x′1...x

′
N .

We consider a geometric representation of sequences by
using piecewise constant functions. Let δ > 0 and ε > 0 be
length scales of a two-dimensional lattice. Let ρmδε : x → g
be a mapping that realizes the geometric representation of a
sequence x = x1...xN ∈ IN by associating it with a function
g ∈ Wδε[tm, tm+N ], denoted g = ρmδε(x), such that the
function g is constant on (ti−1, ti], i = m + 1, ..., m + N ,
equals g(tm) = x1δ, g(t) = xiδ, t ∈ (tm+i−1, tm+i], i =
1, ..., N, ti = iε, i = m, ..., m + N and whose integrals sat-
isfy g[k](tm) = 0, k = 1, 2, ... , where m is an integer. The
sequence x = x1...xN is called a code of the function g and
denoted by c(g).

We use the geometric representation to characterize a
state x = x1...xN ∈ IN of a physical system in terms of
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the definite integrals [4]

Vδε(x, k) = g[k](tm+N ) =
∫ tm+N

tm

g[k−1](t)dt (1)

of a function g = ρmδε(x) ∈ Wδε[tm, tm+N ], where g[0] = g
and k ≥ 1. The definite integrals use information about the
states xi, i = 1, ..., N of the elementary parts and thus can
be viewed as quantities of the physical system in the state
x = x1...xN .

Figure 1. The figure shows that for states x = −1 − 1 + 1 + 1 +
1 + 1 + 1 − 1 and x′ = +1 − 1 + 1 − 1 − 1 + 1 + 1 + 1 we
have Vδε(x, 1) = Vδε(x

′, 1), because g[1](t8) = f [1](t8), where
g = ρmδε(x), f = ρmδε(x

′) and m = 0, δ = 1, ε = 1.

We describe a physical system by the quantities (1) and
are concerned with how many of them remain invariant as the
system evolves from one state to another. In particular, as a
physical system makes transition from a state x = x1...xN to
a state x′ = x′1...x

′
N we are interested to know how many of

the quantities are conserved [4]

Vδε(x, k) = Vδε(x′, k), k = 1, ..., C(x, x′), (2)

Vδε(x,C(x, x′) + 1) 6= Vδε(x′, C(x, x′) + 1), (3)

where Vδε(x, k) = g[k](tm+N ), Vδε(x′, k) =
f [k](tm+N ), k = 1, ..., C(x, x′) + 1 and g = ρmδε(x), f =
ρmδε(x′).

The conditions (2) and (3) say that states x and x′ are
the same in terms of the first C(x, x′) ≥ 1 quantities. But
the states x and x′ are distinct, as they have different values
of the (C(x, x′) + 1)th quantity. We consider the conser-
vation of the quantities (2) as a consequence of correlations
between the parts of the physical system. To illustrate the
notion of the correlations we consider two states of a phys-
ical system x = −1 − 1 + 1 + 1 + 1 + 1 + 1 − 1 and
x′ = +1−1+1−1−1+1+1+1. In this case Vδε(x, 1) =
Vδε(x′, 1), Vδε(x, 2) = Vδε(x′, 2), Vδε(x, 3) 6= Vδε(x′, 3)
and C(x, x′) = 2 (see Figures 1 and 2).

Figure 2. The figure shows that for the states x and x′ we also have
Vδε(x, 2) = Vδε(x

′, 2), because g[2](t8) = f [2](t8).

The sequences x and x′ do not have obvious regulari-
ties and may be even seen as initial segments of random se-
quences. However, it is interesting to find out how the el-
ementary parts change in order to conserve the two quan-
tities of the physical system as it moves from the state x
to the state x′. The changes can be written as a sequence
x′′ = x′′1 ...x′′8 , where x′′i = ∆xi = x′i − xi, i = 1, ..., 8. We
have x′′ = +2 0 0−2−2 0 0+2. Figure 3 shows the graph
of a function h = ρ011(x′′). The symmetry of the graph visu-
alizes that the changes of the elementary parts are collectively
correlated. It is worth noting that the conservation of the two
quantities is connected with the symmetry.

3 Conserving Correlations as a Sys-
tem of Linear Equations

In section 2 we considered a notion of correlations conserv-
ing quantities (1) of a physical system. We are interested to
understand the correlations and identify what may connect
the parts of a physical system so that a set of the quantities
remain invariant.

FIgure 3. The symmetry of the graph shows that the changes
∆xi, i = 1, ..., 8 of the elementary parts are collectively correlated
in order to conserve the two quantities of the physical system.

In this section we present that the conditions (2) and (3)
can be reduced to a system of linear equations and an in-
equality [4]. An integer code series [7] plays the key role in
the reduction, because it represents an integral of a piecewise
constant function g ∈ Wδε([tm, tm+N ]) by using the code
c(g) of the function, powers of integers and combinatorial
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coefficients. This expresses the quantities of a physical sys-
tem in terms of the state explicitly and shows that in order to
conserve a set of the quantities the changes of the elementary
parts must be correlated as a solution to a system of linear
equations [4].

Integer Code Series. Let g ∈ Wδε([tm, tm+N ]) be a
piecewise constant function with the code such that c(g) =
x1...xN . Then the value of the kth k ≥ 1 integral g[k] of the
function g at a point tm+l, l = 1, ..., N can be written as

g[k](tm+l) =
k−1∑

i=0

αkmi((m + l)ix1 + ... + (m + 1)ixl)εkδ,

(4)
where αkmi, i = 1, ..., k − 1 are combinatorial coefficients
and m is an integer [7].

The integer code series (4) expresses the quantities (2) of
a physical system in states x = x1...xN , x′ = x′1...x

′
N as

Vδε(x, k) = g[k](tm+N ) =

k−1∑

i=0

αkmi((m + N)ix1 + ... + (m + 1)ixN )εkδ,

Vδε(x′, k) = f [k](tm+N ) =
k−1∑

i=0

αkmi((m + N)ix′1 + ... + (m + 1)ix′N )εkδ, (5)

where g = ρmδε(x), f = ρmδε(x′) and k ≥ 1. By using (5)
it is proved in [4] that for states x = x1...xN , x′ = x′1...x

′
N ∈

IN we have
0 ≤ C(x, x′) ≤ N

and the condition (2) can be written as a system of
C(x, x′) ≥ 1 linear equations

(m + N)0∆x1 + ... + (m + 1)0∆xN = 0

. . . . . .

(m+N)C(x,x′)−1∆x1+...+(m+1)C(x,x′)−1∆xN = 0 (6)

and the condition (3) - as an inequality

(m + N)C(x,x′)∆x1 + ... + (m + 1)C(x,x′)∆xN 6= 0 (7)

in integers ∆xi = x′i − xi, i = 1, ..., N . Moreover, it is
demonstrated that C(x, x′) ≥ 1 of the quantities of a physical
system remain invariant iff the changes ∆xi = x′i − xi, i =
1, ..., N of the elementary parts are correlated as a solution
to the system of linear equations (6) and the inequality (7)
[4]. The system of linear equations (6) for m = 0 and
s = 0,−1, ...,−C(x, x′) + 1 can be written as

N∑
n=1

∆xN−n+1

ns
= 0

to show a resemblance with the Dirichlet zeta function

ζ(s) =
∞∑

n=1

χn

ns
,

where χn are some coefficients and s > 1.

4 The Correlations as Formation
Processes of Integer Relations

In section 3 we presented that correlations defined by condi-
tions (2) and (3) can be characterized by a system of linear
equations (6) and an inequality (7). In this section we dis-
cuss that the system of linear equations (6) and the inequality
(7) can be associated with hierarchical structures of specific
integer relations [4]. Furthermore, we interpret the hierarchi-
cal structures in terms of formation processes of the integer
relations. In such a hierarchical structure the integer relations
of one level “form” the integer relations of the higher level
[4].

Integer relations that cannot be simply divided into com-
ponents as integer relations are called the prime integer re-
lations. Their formation processes are especially important.
However, it is not known whether the formation processes of
prime integer relations may in fact be the formation processes
of integer relations.

The system of linear equations (6) links space-time with
“reality” of the integer relations. In particular, according to
(6) if a physical system changes in space-time, then corre-
sponding formation processes take place in “reality” of the
integer relations and as a result produce the correlations be-
tween the parts of the physical system.

We illustrate by an example how a hierarchical structure
of prime integer relations can be identified from the system
of linear equations (6) and the inequality (7), and interpreted
in terms of their formation process. Let focus on the coef-
ficients of the system (6) and consider the space-time vari-
ables ∆xi = x′i − xi, i = 1, ..., N as their multipliers.
This shows that the coefficients are the consecutive powers
k = 0, ..., C(x, x′)−1 of integers m+N,m+N−1, ...,m+1.
From this point of view the system of linear equation (6) is a
specific system of integer relations [4]

∆x1(m + N)0 + ... + ∆xN (m + 1)0 = 0

. . . . . .

∆x1(m+N)C(s,s′)−1+...+∆xN (m+1)C(x,x′)−1 = 0 (8)

and the linear inequality (7) is an inequality between powers
of integers

∆x1(m + N)C(x,x′) + ... + ∆xn(m + 1)C(x,x′) 6= 0. (9)

For instance, consider two states of a physical system

x = −1+1+1−1+1−1−1+1+1−1−1+1−1+1+1−1,

x′ = +1−1−1+1−1+1+1−1−1+1+1−1+1−1−1+1

described by the Prouhet-Thue-Morse (PTM) sequences of
length 16 starting with −1 and +1 respectively and m =
0, N = 16. In this case the system of integer relations (8)
becomes

+160 − 150 − 140 + 130 − 120 + 110 + 100 − 90
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−80 + 70 + 60 − 50 + 40 − 30 − 20 + 10 = 0,

+161 − 151 − 141 + 131 − 121 + 111 + 101 − 91

−81 + 71 + 61 − 51 + 41 − 31 − 21 + 11 = 0,

+162 − 152 − 142 + 132 − 122 + 112 + 102 − 92

−82 + 72 + 62 − 52 + 42 − 32 − 22 + 12 = 0,

+163 − 153 − 143 + 133 − 123 + 113 + 103 − 93

−83 + 73 + 63 − 53 + 43 − 33 − 23 + 13 = 0 (10)

and the inequality (9) takes the form

+164 − 154 − 144 + 134 − 124 + 114 + 104 − 94

−84 + 74 + 64 − 54 + 44 − 34 − 24 + 14 6= 0, (11)

where a common factor 2 originated from the space-time
variables ∆xi = x′i − xi, i = 1, ..., 16 is taken of site. We
can observe that the correlations are expressed by the signs,
which collectively turn the sums in (10) to be 0. It is worth
remarking that the process of calculations in (10) and (11)
and its result are completely determined by arithmetic.

An integer relation of (10) may in fact consist of a num-
ber of prime integer relations. Prime integers relations may
be not directly seen in (10), but can be identified when the
powers are selected and tested in a proper way. For example,
when the powers are treated from the left to the right, we can
find that the first integer relation includes eight prime integer
relations

+160 − 150 = 0, −140 + 130 = 0,

−120 + 110 = 0, +100 − 90 = 0, −80 + 70 = 0,

+60 − 50 = 0, +40 − 30 = 0, −20 + 10 = 0. (12)

The second integer relation - four prime integer relations

+161 − 151 − 141 + 131 = 0, −121 + 111 + 101 − 91 = 0,

−81 + 71 + 61 − 51 = 0, +41 − 31 − 21 + 11 = 0. (13)

The third integer relation - two prime integer relations

+162 − 152 − 142 + 132 − 122 + 112 + 102 − 92 = 0,

−82 + 72 + 62 − 52 + 42 − 32 − 22 + 12 = 0. (14)

The fourth integer relation is a prime integer relation by
itself

+163 − 153 − 143 + 133 − 123 + 113 + 103 − 93

−83 + 73 + 63 − 53 + 43 − 33 − 23 + 13 = 0. (15)

The prime integer relations can be defined as the elements
of a hierarchical structure. The prime integer relations (12)
can be defined as the elements of the first level, the prime
integer relations (13) - as the elements of the second level,
the prime integer relations (14) - as the elements of the third
level and the prime integer relation (15) - as the element of
the fourth level.

The reason for this hierarchical organization of the prime
integer relations is the existence of certain relationships be-
tween them. In the hierarchical structure these relationships
become the relationships between the elements of neighbor-
ing levels. Furthermore, the hierarchical structure may be in-
terpreted in terms of a formation process of the prime integer

relations. Namely, it is considered that the relationships be-
tween a prime integer relation of one level and prime integer
relations of the lower level exist as a result of the “formation”
of the prime integer relation from the prime integer relations.

The formations of the prime integer relations are based
on the same organizing principle. For example, the prime
integer relation

+162− 152− 142 + 132− 122 + 112 + 102− 92 = 0 (16)

as an element of the second level can be formed from the
prime integer relations

+161−151−141+131 = 0, −121+111+101−91 = 0 (17)

as elements of the first level by using the organizing principle:
- in the left sides of the prime integer relations (17) in-

crease the power of each integer by one

+162 − 152 − 142 + 132, −122 + 112 + 102 − 92, (18)

- combine the results (18) together

+162 − 152 − 142 + 132 − 122 + 112 + 102 − 92. (19)

The sum of (19) equals zero. Thus, we obtain the prime
integer relation (16) from the prime integer relations (17) as
the result of the above “formation”. It is worth noting that the
formation of the prime integer relations (17), i.e., the prime
integer relation (16), is more than their simple sum.

We have a coherent description of the hierarchical struc-
ture and the formation process with integers

16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 (20)

as elementary building blocks. This requires two additional
levels below the four levels of the hierarchical structure (see
Figure 4). However, the elements of these two additional lev-
els can be defined in a consistent way with the elements on
the other levels. The first additional level may be thought as a
“resource” of integers (20) that can “generate” them in “pos-
itive” and “negative” states on the second additional level. In
the example integers are generated on the level, called the
zero level of the structure, in the following states

+16,−15,−14, +13,−12,+11, +10,−9,

−8,+7, +6,−5,+4,−3,−2, +1.

The elements of the zero level combine in pairs and form
the elements of the first level. Then the formation process
proceeds level by level as shown by edges in Figure 4. No-
tice, that the formation of prime integer relations is more than
their simple sum. From Figure 4 we can see that the system
of integer relations (10) does not give us much information
about the hierarchical structure.

It seems like the formation process has the purpose to
progress as higher as possible. As we consider in Figure 4
the process is capable to develop to level 4, but cannot reach
level 5 because arithmetic determines that the left side of (11)
cannot be made zero.



Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 513

Figure 4. A hierarchical structure of prime integer relations corre-
sponding to the system of integer relations (10) and the inequal-
ity (11). The structure may be interpreted in terms of a formation
process of the prime integer relations. The formation process starts
as integers 16, 13, 11, 10, 7, 6, 4, 1 are “generated” in the “positive”
state and integers 15, 14, 12, 9, 8, 5, 3, 2 are “generated” in the “neg-
ative” state on the zero level. Then the process goes as arithmetic,
through a single organizing principle, manipulates the prime integer
relations of one level to form the prime integer relations of the higher
level. The formation process cannot progress to level 5, because of
(11).

5 The Formation Processes in the
Build up of the Correlation Struc-
tures

In section 4 the system of linear equations (6) and the in-
equality (7) helped to consider formation processes of inte-
ger relations. However, the role of the formation processes
for the correlations has not been properly discussed. In this
section we present that the formation processes of integer re-
lations build up the correlation structures of physical systems
and determine their properties [5], [6]. For example, a for-
mation process of prime integer relations results in a correla-
tion structure, where parts of a physical system are embedded
within larger parts.

Formation processes associated with the system of lin-
ear equations (6) and the inequality (7) are responsible for
the whole structure of the correlations (2) [4]. A part of a
physical system may be involved in a number of formation
processes and as a result could be included in different ele-
ments of the correlation structure. The integer relations play
an important role for the correlation structures as they give a
representation of the structures and define the correlations.

Figure 5. The figure shows how the formation process of prime inte-
ger relations described in Figure 4 builds up a correlation structure.
The relationship between parts, denoted by an edge, means that the
parts are correlated through a prime integer relation. The embed-
ded order of the correlation structure is clearly seen. It is instructive
to compare the figure with Figure 4 to see that the form of integer
relation is not well suited to give information about the correlation
structures.

We illustrate the results by using the formation process
described in the previous section. Consider the prime integer
relation +40 − 30 = 0. It stands in (8) as

+2× 40 − 2× 30 = ∆x440 + ∆x330 = 0 (21)

and shows that the elementary parts 4 and 3 have a relation-
ship, because their space-time changes ∆x4, ∆x3 are corre-
lated

∆x440 = −∆x330. (22)

Therefore, the elementary parts 4 and 3 can be seen as the
components of a composite part, denoted by (4 ↔ 3). The
integer relation (21) describes the composite part by telling
that it is made of the elementary parts 4 and 3 and they are
connected by the correlation (22). Figuratively, the integer
relation (21) may seem like a carrier of the “force” of arith-
metic that combines the elementary parts 4 and 3 together in
the part (4 ↔ 3).

The integers 4 and 3 play a number of roles in the integer
relation (21). They label the dynamics ∆x4 and ∆x3 of the
elementary parts 4 and 3 and provide the correlation between
them. The correlation through the integer relation (21) does
not involve any physical signals. But if the dynamics ∆x4 of
the elementary part 4 is specified, then the dynamics ∆x3 of
the elementary part 3 is immediately determined as well and
vice versa. The composite part (4 ↔ 3) is schematically rep-
resented in Figure 5 by an oval rectangular. It contains two
vertices to depict the elementary parts 4 and 3 and an edge
between the vertices to indicate the correlation (22). Simi-
larly, the prime integer relation −20 + 10 = 0 describes a
composite part (2 ↔ 1) made of the elementary parts 2 and
1 and the correlation between them

∆x220 = −∆x110.

Let consider the fact that the prime integer relation

+41 − 31 − 21 + 11 = 0 (23)
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is formed from the prime integer relations +40 − 30 = 0 and
−20 + 10 = 0. Using the integer relation (23) as it stands in
(8)

(∆x441 + ∆x331) + (∆x221 + ∆x111) = 0 (24)

we can see that the two composite parts (4 ↔ 3) and (2 ↔ 1)
have a relationship because of the correlation

(∆x441 + ∆x331) = −(∆x221 + ∆x111). (25)

From the integer relation (25) it follows that the dynamics
of the composite part (4 ↔ 3) is correlated with the dynam-
ics of the composite part (2 ↔ 1). We may say that the
composite parts (4 ↔ 3) and (2 ↔ 1) are held together by
the “force” of arithmetic exercised through the integer rela-
tion (24). Thus, the composite parts (4 ↔ 3) and (2 ↔ 1)
can be viewed as the components of an even more complex
composite part of the physical system, denoted by

((4 ↔ 3) ↔ (2 ↔ 1)). (26)

The composite part (26) is schematically depicted in
Fig. 5 by the right oval rectangular on the second level. The
elementary parts 4, 3, 2 and 1 are connected by the correla-
tions according to an order of parts within parts. Due to the
connections the specification of the dynamics of any elemen-
tary part immediately determines the dynamics of the other
parts.

In general, the formation process starts with the elemen-
tary parts 16, 15, ..., 1 and combine them in pairs to make
composite parts, which in their turn also combine in pairs
to make even more complex composite parts and so on until
the correlation structure is built (see Fig. 5). The relationship
between parts, denoted by an edge, means that the changes of
the parts are correlated through a prime integer relation.

To characterize the correlation structure in Figure 5 we
may compare it with a “particle”, which is made of two cor-
related “particles”, which in their turn are also made of two
correlated “particles” and so on, until the elementary parts are
eventually found. As we view in Figure 4 all the “particles”
are connected by the “force” of arithmetic.

6 The Formation Processes as an Irre-
ducible Theory

In sections 4 and 5 we described the formation processes of
integer relations. An important distinction of these processes
is that they are irreducible. This property comes because the
formation processes are based on the integers and completely
controlled by arithmetic. In particular, integer relations can
form another integer relations only if arithmetic equates cor-
responding expressions to zero and they cannot do that if it
does not.

The formation processes organize the integer relations
into a hierarchical network structure, where the integer re-
lations seem interconnected, interdependent and inseparable
elements. Each integer relation is a statement, whose truth is
completely determined by arithmetic. Thus, the irreducibil-
ity of the formation processes is based on the fact that the

integer relations, for example such as 32 + 42 − 52 = 0 and
2 + 4 − 5 6= 0, are ultimate truths and cannot be further ex-
plained.

The formation processes are suggested as a conceptual
tool in order to interpret the relationships between the integer
relations. Yet in this form the integer relations behave in such
a way that it becomes more convenient to think about them
as ”particles”. The term “particle” helps to see the integers
and the integer relations not as objects of calculation, but as
objects of formation with specific properties:

- The integer relations are formed from the integers. The
integer relations of the first level are formed as prime integer
relations. From the reverse perspective, an integer relation
can be broken down into integer relations of the lower level,
where the integer relations in their turn can be further broken
down unless they are integers.

- Integer relations combine and form integer relations ac-
cording to a single organizing principle. An integer relation is
more than the simple sum of the integer relations it is formed
of.

- An integer relation may participate in various formation
processes and as a result be involved in different integer rela-
tions of higher levels.

- The integer relations do not stand alone by themselves,
but due to the formation processes they are interconnected,
interdependent and inseparable in one hierarchical network
structure. It seems that not a minor change can be made to
any element of the structure.

- The formation processes start with different integers and
as a result are capable to progress to different levels. This
produces a complexity order in the formation processes and a
sense that a formation process may have the aim to reach the
level as higher as possible.

7 Geometrization of the Integer Rela-
tions

In section 6 we discussed that in the formation processes the
integer relations may be conveniently thought as some sort
of ”particles” transforming into each other. This intuitively
pictures the formation processes more as a new resource sim-
ilar to physical ones, rather than respects that they are for-
mal constructs defined by the system of linear equations (6)
and the inequality (7). However, integers and integer rela-
tions are known as abstract entities in the first place. They
are not familiar as geometric objects suitable for observation
and measurement.

Remarkably, it is possible to geometrize the integer re-
lations as two-dimensional patterns and describe the forma-
tion processes of integer relations in terms of their geomet-
ric transformations [4]. This makes the theory of forma-
tion processes geometrical and quantitative. Furthermore, the
geometrization visualizes the integer relations and their for-
mations [4].

In particular, the areas of the geometric patterns can be
used to describe quantitatively the formation process of inte-
ger relations and the strengths of the correlations in particu-
lar. As a result the integer relations produce a wide variety of
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numbers and suggest to consider whether their pattern may
arise in experimental data.

We distinguish the PTM sequence, because it produces
formation processes of integer relations progressing well
through the levels of the hierarchy [4]. The area of a geo-
metric pattern corresponding to an integer relation generated
by the PTM sequence at level N of the hierarchy is given by
2
N(N−1)

2 εN δ, while the length - by 2N ε. This allows us to
control the area’s growth by renormalization of length scales
through levels. For instance, a level, where the area of the
geometric pattern would equal its length, so that a renormal-
ization of unit conditions δ = 1 and ε = 1 may be possible,
can be found from 2

N(N−1)
2 = 2N . This gives N = 3.

8 Conclusions
In general, an irreducible theory that describes physical sys-
tems in terms of formation processes of integer relations is
presented. It is suggested that properties of the formation
processes may be used as irreducible guides in the search for
a unified theory. Moreover, through the irreducibility of the
formation processes it seems that a unified theory may look
like:

- A unified theory may be based on a discrete hierarchi-
cal structure in the first place and not on a master equation
formulated in space-time.

- The fundamental building blocks of a unified theory
may exist. The other elements of the structure may be built
from them by an organizing principle. This sets the relation-
ships between the elements and makes them interconnected,
interdependent and inseparable within one whole.

- The elements of an unified theory may be represented
both arithmetically and geometrically.

- A unified theory may be formulated in geometrical
terms as two-dimensional.

- The elements of a unified theory may provide nonlocal,
instantaneous and inseparable correlations in space-time.

- A unified theory may have a complexity order and its
properties may be interpreted with the purpose to progress in
the direction of this order.

- The elements of a unified theory may be quantified and
generate a pattern of numbers interrelated with each other.
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