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We show that a proper field theoretical treatment of mixed (Dirac) neutrinos leads to non-trivial dispersion
relations for the flavor states. We analyze such a situation in the framework of the non-linear relativity schemes
recently proposed by Magueijo and Smolin. We finally examine the experimental implications of our theoretical
proposals by considering the spectrum and the end-point of beta decay in tritium.

1 Introduction

The subject of neutrino oscillations has now matured from an
insightful prediction by Bruno Pontecorvo [1] and the early
results of Homestake [2] to a structured framework backed by
a wealth of new quantitative data [3-6]. This advances have
been paralleled by much progress on the theoretical front
with the efforts divided between phenomenological pursuits
of more refined oscillation formulas and attempts to give the
theory a sound formal structure within Quantum Field The-
ory (QFT).

A major outstanding question was that of the existence
of a Hilbert space for the flavour states [7]. The Pontecorvo
treatment of the latter in Quantum Mechanics (QM) actually
turns out to be forbidden by the Bargmann super-selection
rules [8]. This naturally pointed to QFT where the prob-
lem found its resolution [9-12]. Subsequently an even more
consistent picture emerged with the discovery of an associ-
ated geometric phase [13], the extension to the case of three-
flavours [14] and bosons [15, 16] and to the case of neutral
fields [17]. The study of relativistic flavor currents [18, 19]
was recently used to solve the phenomenologically very rele-
vant problem of finding a space-oscillation formula [20].

Another important outcome of these studies is the under-
standing that the flavour eigenstates constitute the real physi-
cal entities, in contrast with the common view where the mass
eigenstates are taken to be the fundamental objects [21].

The present paper proceeds in that direction by finding
dispersion relations for the mixed neutrinos taking into ac-
count their nature as fundamental particles. We find that these
dispersion relations no longer have the standard form thus ex-
hibiting some form of breakdown of Lorentz invariance. This
development is rather timely given the strong interest gener-
ated by various schemes involving such modifications [22-
27].

We further study the experimental implications of our
analysis and compare it with the standard treatment, by

considering the various possibilities which can arise in the
end-point of the beta decay of tritium depending on which
scenario turns out to be true.

The paper is organized as follows: In section 2 we show
how flavor states can be properly defined in QFT. In section
3 we then consider the dispersion relations associated to such
states. In section 4 we study the covariance of these forms
and the description of the non-linear representation of the
Poincaré algebra necessary to support them. Finally in sec-
tion 5 we propose experimental tests, with special emphasis
on the end-point of beta decay of tritium. Section 6 is devoted
to conclusions.

2 Flavor neutrino states in Quantum
Field Theory

Let us begin our discussion by considering the following
Lagrangian density describing two free Dirac fields with a
mixed mass term (see Appendix for conventions and further
details):

L(x) = Ψ̄f (x) (i 6∂ −M)Ψf (x) , (1)

where ΨT
f = (νe, νµ) and M =

(
me meµ

meµ mµ

)
. The mix-

ing transformations

νe(x) = cos θ ν1(x) + sin θ ν2(x)

νµ(x) = − sin θ ν1(x) + cos θ ν2(x) (2)

with θ being the mixing angle, diagonalize the quadratic form
of Eq.(1) to the Lagrangian for two free Dirac fields, with
masses m1 and m2:

L(x) = Ψ̄m(x) (i 6∂ −Md)Ψm(x) , (3)
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where ΨT
m = (ν1, ν2) and Md = diag(m1,m2). One also

has me = m1 cos2 θ + m2 sin2 θ , mµ = m1 sin2 θ +
m2 cos2 θ , meµ = (m2 − m1) sin θ cos θ . Without loss of
generality we take θ ranging from 0 to π

4 (maximal mixing)
and m2 > m1.

The generator for the mixing relations (2) can be intro-
duced as [9]:

νσ(x) ≡ G−1
θ (t) νj(x)Gθ(t) , (4)

Gθ(t) = exp

[
θ

∫
d3x

(
ν†1(x)ν2(x)− ν†2(x)ν1(x)

)]
.(5)

with (σ, j) = (e, 1), (µ, 2) and t ≡ x0. Note that Gθ(t) does
not leave invariant the vacuum |0〉1,2:

|0(t)〉e,µ = G−1
θ (t) |0〉1,2 . (6)

We will refer to |0(t)〉e,µ as to the flavor vacuum: it is orthog-
onal to |0〉1,2 in the infinite volume limit [9]. We define the
flavor annihilators, relative to the fields νe(x) and νµ(x) as

αr
k,σ(t) ≡ G−1

θ (t)αr
k,j Gθ(t) (7)

βr†
−k,σ(t) ≡ G−1

θ (t)βr†
−k,j Gθ(t) (8)

with (σ, j) = (e, 1), (µ, 2). The flavor fields can then be ex-
panded in analogy to the free field case:

νσ(x) =
∑

r=1,2

∫
d3k

(2π)
3
2

[
ur
k,j(t)αr

k,σ(t)

+ vr
−k,j(t)βr†

−k,σ(t)
]

eik·x . (9)

with (σ, j) = (e, 1), (µ, 2).
The symmetry properties of the Lagrangian (1) have been

studied in Ref.[18]: one has a total conserved charge Q as-
sociated with the global U(1) symmetry and time-dependent
charges associated to the (broken) SU(2) symmetry. Such
charges are the relevant physical quantities for the study of
flavor oscillations [10, 14]. They are also essential in the defi-
nition of (physical) flavor neutrino states, as the one produced
in a beta decay, for example.

In the present case of two flavors, we obtain for the flavor
charges [18]:

Qσ(t) =
∫

d3x ν†σ(x) νσ(x) (10)

=
∑

r

∫
d3k

(
αr†

k,σ(t)αr
k,σ(t) − βr†

−k,σ(t)βr
−k,σ(t)

)
,

with σ = e, µ. By indicating with Qj (j = 1, 2), the (con-
served) charge operators for the free fields, we obtain the fol-
lowing relations:

Qσ(t) = G−1
θ (t)QjGθ(t) , (σ, j) = (e, 1), (µ, 2),(11)

∑
σ

Qσ(t) =
∑

j

Qj = Q ; [Q,Gθ(t)] 6= 0 (12)

Thus the single neutrino and antineutrino states of definite
flavor are defined in the following way:

Qσ(t) |νk
σ (t)〉 = |νk

σ (t)〉,
Qσ(t) |ν̄k

σ (t)〉 = −|ν̄k
σ (t)〉 (13)

and they naturally turn out to be vectors of the flavor Hilbert
space He,µ:

|νk
σ (t)〉 = αr†

k,σ(t) |0(t)〉e,µ (14)

|ν̄k
σ (t)〉 = βr†

k,σ(t) |0(t)〉e,µ (15)

One can also define the momentum operator for mixed
fields [17]:

Pσ(t) =
∫

d3x ν†σ(x)(−i∇)νσ(x) (16)

=
∑

r

∫
d3k k

(
αr†

k,σ(t)αr
k,σ(t) + βr†

k,σ(t)βr
k,σ(t)

)

with

Pσ(t) = G−1
θ (t)PjGθ(t) , (σ, j) = (e, 1), (µ, 2),(17)

∑
σ

Pσ(t) =
∑

j

Pj = P ; [P, Gθ(t)] 6= 0 (18)

where Pj (j = 1, 2) are the (conserved) momentum opera-
tors for the free fields and P is the total momentum operator
for the system (1), (3). It is immediate to verify that the flavor
states Eq.(14),(15) have definite momentum (and helicity):

Pσ(t) |νk
σ (t)〉 = k |νk

σ (t)〉 (19)

Pσ(t) |ν̄k
σ (t)〉 = k |ν̄k

σ (t)〉. (20)

Note that the above defined flavor states differ from the
ones commonly used which are defined by (erroneously) as-
suming that the Hilbert spaces for the flavor and the mass
fields are the same. For further convenience we denote with
a index “P” the Pontecorvo flavor states:

|νe〉P = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉P = − sin θ |ν1〉+ cos θ |ν2〉 (21)

for which we do not specify the momentum index: as it is
well known [28], the flavor states so defined cannot have the
same momentum or energy in all inertial frames. Note also
that the states (21) are not eigenstates of the momentum and
charge operators (defined in Eqs.(13) and (16)) as they are
not the vectors of the flavor Hilbert space.

In the following, we will work in the Heisenberg picture,
so the Hilbert space is chosen at the reference time t = 0. We
thus define our flavor states like

|νk
σ 〉 ≡ αr†

k,σ(0) |0(0)〉e,µ ,

|ν̄k
σ 〉 ≡ βr†

k,σ(0) |0(0)〉e,µ , σ = e, µ . (22)
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3 Dispersion relations for mixed neu-
trinos

Let us now consider the explicit expression for the one
electron-neutrino state with definite helicity and momentum
(at t = 0):

|νk
e 〉 =

∏

k

G−1
k (θ) αr†

k,1 |0〉1,2 =
[
cos θ αr†

k,1+

+ |Uk| sin θ αr†
k,2 −ε |Vk| sin θ αr†

k,1α
r†
k,2β

r†
k,1

]
×

× G−1
k,s6=r(θ)

∏

p6=k

G−1
p (θ) |0〉1,2 . (23)

where we used Gθ(t) =
∏

k Gk(θ). Eq.(23) shows clearly
the non-trivial condensate structure of the flavor neutrino
states in terms of the mass eigenstates.

Next we consider the energy-momentum tensor. For the
massive fields νj we have:

J µν
j (x) ≡ i νj(x) γν∂µ νj(x) , j = 1, 2 (24)

from which the Hamiltonians for the free fields ν1, ν2 triv-
ially follow:

Hj = i

∫
d3x ν†j (x) ∂0νj(x)

=
∑

r

∫
d3k

(
αr†

k,j(t) ∂0 αr
k,j(t) + βr

k,j(t) ∂0 βr†
k,j(t)

)

=
∑

r

∫
d3kωk,j

(
αr†

k,j αr
k,j − βr

k,j βr†
k,j

)
, (25)

with j = 1, 2. In a similar way we define the energy-
momentum tensor for the flavor fields:

J µν
σ (x) ≡ i νσ(x) γν∂µ νσ(x) , σ = e, µ. (26)

The energy operators are now:

Hσ(t) = i

∫
d3x ν†σ(x) ∂0νσ(x) (27)

=
∑

r

∫
d3k

(
αr†

k,σ(t) ∂0 αr
k,σ(t) + βr

k,σ(t) ∂0 βr†
k,σ(t)

)

with σ = e, µ. We also easily recover the momentum opera-
tors (16). Notice that Eq.(27) cannot be further reduced as for
Eq.(25), due to the non-trivial time dependence of the flavor
ladder operators.

In conclusion we find:

Hσ(t) 6= G−1
θ (t)HjGθ(t) , (σ, j) = (e, 1), (µ, 2).(28)

∑
σ

Hσ(t) =
∑

j

Hj = H ; [H, Gθ(t)] 6= 0 (29)

The inequality sign in (28) can be understood by noting
the appearance of the time derivative in the definition (27) and
the fact that the mixing generator is time dependent. Con-
sequently, the result (29) is non-trivial and ensure the fact

that the expectation value of the total (flavor field) energy on
states in the flavor Hilbert space is time-independent.

We indeed have:

e,µ〈0|H|0〉e,µ = −
∫

d3k (ωk,1 + ωk,2)×

×(1 − 2 sin2 θ |Vk|2) (30)

This has to be compared with the mass vacuum zero point
energy:

1,2〈0|H|0〉1,2 = −
∫

d3k (ωk,1 + ωk,2) (31)

The flavor vacuum zero-point energy has been studied in
Ref.[29] in connection with the cosmological constant.

Of course, both contributions Eqs.(30), (31) are divergent
and to properly define energy for flavor states, we need to nor-
mal order the Hamiltonian with respect to the relevant vac-
uum, namely the flavor vacuum:

:: H ::≡ H − e,µ〈0|H|0〉e,µ (32)

where the new symbol for the normal ordering was intro-
duced to remember that it refers to the flavor vacuum.

We finally obtain:

Ee(k) ≡ 〈νk
e | :: H :: |νk

e 〉
= ωk,1 cos2 θ + (1− 2|Vk|2)ωk,2 sin2 θ (33)

Eµ(k) ≡ 〈νk
µ | :: H :: |νk

µ〉

= ωk,2 cos2 θ + (1− 2|Vk|2)ωk,1 sin2 θ (34)

We propose to treat these as modified dispersion relations
and to find the corresponding non-linear realization of the
Lorentz algebra as outlined in [25]. Obviously the energies
in Eqs.(33),(34) are only expectation values subject to fluctu-
ations but it is nevertheless sensible to consider the modified
Lorentz transformation for these dispersion relations which
form the classical limit of the theory.

Note the presence in the above dispersion relations, of
the Bogoliubov coefficient |Vk|2: this term is due to the fla-
vor vacuum structure and is absent in the usual Pontecorvo
case. The maximum of the function |Vk|2 occurs for kmax =√

m1m2; we then have:

|Vkmax |2 =
1
2
− 1√

(1 + m1
m2

)(1 + m2
m1

)
(35)

If we put a = m1
m2

< 1, then the condition |Vk|2 ¿ 1
2 is

realized for

1 > a >
b2 − 1 + 2b(1−√2b− 1)

(b− 1)2
, b À 1 (36)

For example, for b = 100 we get a < 0.75 which is
compatible with the current experimental bounds. This ap-
proximation was used in Ref.[30] where for simplicity we
analyzed the dispersion relations obtained from the Pon-
tecorvo states (21). In the following we treat the full case
of Eqs.(33),(34).



450 Massimo Blasone, João Magueijo, and Paulo Pires Pacheco

4 Lorentz invariance for mixed neutri-
nos

In this section, we study the dispersion relations (33), (34)
and derive the corresponding non-linear realization of the
Lorentz algebra.

First, from Eqs.(33), (34), let us define the rest masses for
the mixed neutrinos:

me ≡ Ee(k = 0) = m1 cos2 θ + m2 sin2 θ (37)

mµ ≡ Eµ(k = 0) = m2 cos2 θ + m1 sin2 θ (38)

Then we investigate the high k limit of Eqs.(33),(34). To

first order in
m2

j

2k , it is ωk,j ' k + m2
j

2k and |Vk|2 ' (m2−m1)
2

4k2

and we obtain:

Ee(k) ' k +
m̃2

e

2k
; m̃2

e ≡ m2
1 cos(2θ) + m1m2 sin2 θ

Eµ(k) ' k +
m̃2

µ

2k
; m̃2

µ ≡ m2
2 cos(2θ) + m1m2 sin2 θ

where we introduced the effective masses m̃e and m̃µ. We
thus see that in the high momentum (or equivalently high E
since it is a monotonously growing function of k) limit, the
dispersion relations for the flavor neutrinos are indeed of the
usual form, although with a modified mass.

Noticing that ωk,1(1−2|Vk|2) = k2+m1m2
ωk,2

and ωk,2(1−
2|Vk|2) = k2+m1m2

ωk,1
, we rewrite Eqs.(33), (34) as

Ee(k) =
2k2 + m1(m2 + m1)−m1(m2 −m1) cos(2θ)

2
√

k2 + m2
1

(39)

Eµ(k) =
2k2 + m2(m2 + m1) + m2(m2 −m1) cos(2θ)

2
√

k2 + m2
2

(40)

By introducing a ≡ m2/m1 ≥ 1, we get

Ee(k) =
k2 + m2

1 − (1− a)m2
1 sin2 θ√

k2 + m2
1

(41)

Eµ(k) =
k2 + a2m2

1 + a(1− a)m2
1 sin2 θ√

k2 + a2m2
1

(42)

It is easy to realize that, for a > 1, the function Eµ(k) has
an absolute minimum at k = 0 with the value Eµ(0) = mµ.

The situation is different for Ee(k): the minimum is now
at kmin = 1√

2

√
a− 3 + (1− a) cos(2θ). This is different

from zero when a is above the critical value ac = cos(2θ)−3
cos(2θ)−1 .

For 1 < a < ac, the function Ee(k) has an absolute mini-
mum at k = 0 with the value Ee(0) = me.

This is represented in the two figures below for the case
θ = π/6 ⇔ ac = 5.

-4 -2 0 2 4

1

2

3

4

5

Eµ(k)

Ee(k)

k

Figure 1. Ee (solid line) and Eµ (dashed line) as functions of k for
θ = π/6, m1 = 1, a = 2, ac = 5.
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Figure 2. Ee (solid line) and Eµ (dashed line) as functions of k for
θ = π/6, m1 = 1, a = 30, ac = 5.

In the following we consider only the subcritical case
a < ac. The case a > ac will be treated elsewhere.

Following Ref.[25], we now set the dispersion relations
in the following form:

E2
e f2

e (Ee) − k2 g2
e(Ee) = m2

e (43)

E2
µ f2

µ(Eµ) − k2 g2
µ(Eµ) = m2

µ (44)

It is now possible to identify the non-linear realization
of the Lorentz group which leaves these dispersion rela-
tions invariant. They are generated by the transformation
U ◦ (E,k) = (Ef,kg) applied to the standard Lorentz gen-
erators (Lab = pa

∂
∂pb − pb

∂
∂pa ):

Ki = U−1[p0]L i
0 U [p0] . (45)

This amounts to requiring linearity for the auxiliary variables
Ẽ = Ef(E) and k̃ = kg(E). The resulting non-linear trans-
formations for E and k are a non-linear representation of the
Lorentz group ensuring that the deformed dispersion relations
found for flavor states are valid in all frames.
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We find:

f2
e (Ee) =

1
2E2

e

[
2me(m2 −m1) sin2 θ

+ Ee

(
Ee +

√
E2

e − 4m1(m2 −m1) sin2 θ

) ]

ge(Ee) = 1 (46)

and

f2
µ(Eµ) =

1
2E2

µ

[
− 2mµ(m2 −m1) sin2 θ

+ Eµ

(
Eµ +

√
E2

µ + 4m2(m2 −m1) sin2 θ

) ]

gµ(Eµ) = 1 (47)

It is easy to check that, for m1 = m2 and/or θ = 0, we have
f2

e (Ee) = f2
µ(Eµ) = 1. Also f2

µ(mµ) = 1 (for any a ≥ 1)
and f2

e (me) = 1 (only for ac ≥ a ≥ 1)

A plot of these two functions is given below:

2 4 6 8 10

1.02

1.04

1.06

1.08

1.1

Figure 3. fe as a function of Ee (solid line) and fµ as a function of
Eµ (dashed line) for θ = π/6, m1 = 1, a = 4, ac = 5.

For large values of Ee and Eµ, f2
e (Ee) and f2

µ(Eµ) can
be approximated as:

f2
e (Ee) ' 1 − 1

E2
e

(m2 −m1)2 sin4 θ (48)

f2
µ(Eµ) ' 1 − 1

E2
µ

(m2 −m1)2 sin4 θ (49)

showing that the Lorentzian regime is approached quadrati-
cally as the energy (momentum) grows.

5 Phenomenological consequences
We now focus on some phenomenological consequences
which arise from considering the flavor states as fundamental
and consequently the non-standard dispersion relations (33),
(34) as characterizing mixed neutrinos.

We consider the case of a beta decay process like tri-
tium decay, which allows for a direct investigation of neu-
trino mass. In the following we take into account the various
possible outcomes of this experiment in correspondence of
the different theoretical possibilities for the nature of mixed
neutrinos. We show that significative differences arise at phe-
nomenological level between the standard theory and the sce-
nario above described.

Let us then consider the decay:

A → B + e− + ν̄e

where A and B are two nuclei (e.g. 3H and 3He).
The electron spectrum is proportional to phase volume

factor EpEepe:

dN

dK
= CEp (Q−K)

√
(Q−K)2 − m2

e (50)

where E = m + K and p =
√

E2 −m2 are electron’s en-
ergy and momentum. We denote by me the electron (anti-
)neutrino mass.

The endpoint of β decay is the maximal kinetic energy
Kmax the electron can take (constrained by the available en-
ergy Q = EA − EB −m ≈ mA −mB −m). In the case of
tritium decay, Q = 18.6 KeV. Q is shared between the (un-
measured) neutrino energy and the (measured) electron ki-
netic energy K.

It is clear that if the neutrino were massless, then me = 0
and Kmax = Q.

On the other hand, if the neutrino were a mass eigenstate
(say with me = m1), then Kmax = Q−m1.

We now consider the various possibilities which can arise
in the presence of mixing:

• If, following the common wisdom, mass eigenstates are
considered fundamental, the β spectrum is

dN

dK
= CEp Ee

∑

j

|Uej |2
√

E2
e −m2

j Θ(Ee −mj) (51)

where Ee = Q−K and Uej = (cos θ, sin θ) and Θ(Ee−mj)
is the Heaviside step function.

The end point is at K = Q−m1 and the spectrum has an
inflexion at K ' Q−m2.

If flavor neutrinos are to be taken as fundamental, we have
the following two options:

• Assuming that nuclei and the electron satisfy linear
Lorentz transformations, and that Eefe(Ee) transforms lin-
early, the only covariant law of energy conservation is

EA = EB + E + Eefe(Ee) .

The endpoint of β decay is now Kmax = Q − me and
the β spectrum is proportional to the phase volume factor
EpEefe(Ee)pe:

dN

dK
= CEp (Q−K)

√
(Q−K)2 −m2

e Θ(Ee −me) (52)
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Figure 4. The tail of the tritium β spectrum for: - a massless neutrino (dotted line); - a Lorentz invariant flavor state (solid line); - preferred
frame (long-dashed line); - superposed prediction for 2 mass states (short-dashed line): notice the inflexion in the spectrum where the most
massive state switches off. We used me = 1.75 KeV, m1 = 1 KeV, m2 = 4 KeV, θ = π/6.

• If, on the contrary, we insist upon the standard law

EA = EB + E + Ee

we have introduced a preferred frame, and are in conflict with
the principle of relativity.

Then Kmax = Q −me and the spectrum is proportional
to the phase volume factor EpEepe:

dN

dK
= CEp (Q−K)

√
(Q−K)2f2

e − m2
e Θ(Ee −me)

(53)

The above possibilities are plotted in Fig.(), together with
the spectrum for a massless neutrino, for comparison.

We note that the next generation tritium beta decay exper-
iments will allow a sub-eV sensitivity for the electron neu-
trino mass [31], thus hopefully allowing to unveil the true
nature of mixed neutrinos.

6 Conclusions
In this paper, we have investigated some aspects of neutrino
mixing in Quantum Field Theory. From a careful analysis
of the Hilbert space structure for flavor (mixed) fields it has
emerged that the flavor states, defined as eigenstates of the
flavor charge, are at odds with Lorentz invariance. Indeed
they exhibit non-standard dispersion relations, which how-
ever reduce to the usual (Lorentzian) ones in the relativistic
limit.

We have then shown that it is possible to account for such
a modified dispersion relations, by resorting to a recent pro-
posal [25]: According to this, we could identify a non-linear

representation of the Lorentz group allowing for these disper-
sion relations and ensuring at the same time the equivalence
of inertial observers.

Finally, we have considered possible phenomenological
consequences which can arise from our analysis, by looking
at the beta decay. We have considered various possibilities,
including that of introducing a preferred frame, and shown
that observable differences arise in correspondence of the var-
ious cases.
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Appendix A: Flavor Hilbert space

The free fields ν1(x) and ν2(x) are written as

νj(x) =
∑

r=1,2

∫
d3k

(2π)
3
2
eik·x [

ur
k,j(t)α

r
k,j

+vr
−k,j(t)β

r†
−k,j

]
, j = 1, 2. (54)

Here ur
k,j(t) = e−iωk,jtur

k,j and vr
k,j(t) = eiωk,jtvr

k,j , with

ωk,j =
√
|k|2 + m2

j .
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The orthonormality and completeness relations are:

ur†
k,ju

s
k,j = vr†

k,jv
s
k,j = δrs ,

ur†
k,jv

s
−k,j = vr†

−k,ju
s
k,j = 0 ,

∑
r

(ur
k,ju

r†
k,j + vr

−k,jv
r†
−k,j) = 1I2 . (55)

where 1In is the n× n unit matrix.
The αr

k,j and the βr
k,j , j, r = 1, 2 are the annihila-

tion operators for the vacuum state |0〉1,2 ≡ |0〉1 ⊗ |0〉2:
αr

k,j |0〉12 = βr
k,j |0〉12 = 0.

The anticommutation relations are:

{να
i (x), νβ†

j (y)}t=t′ = δ3(x− y)δαβδij , α, β = 1, .., 4,

{αr
k,i, α

s†
q,j} = δ3(k− p)δrsδij ,

{βr
k,i, β

s†
q,j} = δ3(k− q)δrsδij , i, j = 1, 2 . (56)

All other anticommutators are zero.
In the reference frame where k is collinear with k̂ ≡

(0, 0, 1), the flavor annihilation operators have the simple
form:

αr
k,e(t) = cos θ αr

k,1 + sin θ
(
U∗

k(t) αr
k,2

+ εr
k Vk(t) βr†

−k,2

)
(57)

αr
k,µ(t) = cos θ αr

k,2 − sin θ
(
Uk(t) αr

k,1

− εr
k Vk(t) βr†

−k,1

)
(58)

βr
−k,e(t) = cos θ βr

−k,1 + sin θ
(
U∗

k(t) βr
−k,2

− εr
k Vk(t) αr†

k,2

)
(59)

βr
−k,µ(t) = cos θ βr

−k,2 − sin θ
(
Uk(t) βr

−k,1

+ εr
k Vk(t) αr†

k,1

)
(60)

where εr
k ≡ (−1)r+k·k̂+1 and Uk(t), Vk(t) are Bogoliubov

coefficients given by:

Uk(t) ≡ ur†
k,2(t)u

r
k,1(t) = vr†

−k,1(t)v
r
−k,2(t)

= |Uk| ei(ωk,2−ωk,1)t ,

Vk(t) ≡ εr
k ur†

k,1(t)v
r
−k,2(t) = −εr

k ur†
k,2(t)v

r
−k,1(t)

= |Vk| ei(ωk,2+ωk,1)t (61)

with

|Uk| = |k|2 + (ωk,1 + m1)(ωk,2 + m2)
2
√

ωk,1ωk,2(ωk,1 + m1)(ωk,2 + m2)
,

|Vk| = (ωk,1 + m1)− (ωk,2 + m2)
2
√

ωk,1ωk,2(ωk,1 + m1)(ωk,2 + m2)
|k| ,

|Uk|2 + |Vk|2 = 1. (62)
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