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Different Symmetry Realizations in Relativistic Coupled Bose Systems at
Finite Temperature and Densities

R. L. S. Farias, R. O. Ramos, and R. Vartuli
Departamento de Fı́sica Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ, Brazil

(Received on 17 April, 2008)

We revisited the calculation of the effective potential for self-interacting scalar field with U (1) charge at one
loop approximation. We show that high charge densities can induce important changes in the phase structure of
the theory. A class of very interesting phenomena appear when we introduce finite density effects, e.g. symmetry
nonrestoration, inverse symmetry breaking and anticipation of the high temperature symmetry restoration. The
extension of these calculations in the context of multi-scalar field theory is outlined, with the objectives of
studying the effects of a finite charge on the symmetry breaking phase transition, and to learn how these effects
change the number of phases allowed by the system symmetries.

Keywords: Relativistic heavy-ion collisions; Inverse symmetry breaking and symmetry nonrestoration

1. INTRODUCTION

Much work has been done exploring how field theories
behave at finite temperature and densities [1–4]. The study
of symmetry breaking (SB) and symmetry restoration (SR)
mechanisms have proved to be extremely useful in the anal-
ysis of phenomena related to phase transitions in almost all
branches of physics [5]. For a large number of physical sys-
tems we have a good idea, both qualitatively as quantitatively
of how symmetries change as the temperature is changed.
Usually, we expect that the larger is the temperature the larger
is the symmetry manifested by the system and vice-versa.
This behavior is expected in high energy systems like particle
physics models (e.g. in the electroweak phase transition) and
in lower energy systems like ones found in condensed matter
(e.g. Bose-Einstein condensation in atomic gases).

An almost general rule that arises from studies of how
the symmetry changes with temperature is that a symmetry
which is broken at zero temperature should get restored as the
temperature increases. Examples range from the traditional
ferromagnet to the more up to date chiral symmetry break-
ing/restoration in Quantum chromodynamics (QCD), with the
transition pattern being the simplest one of going from the
broken phase to the symmetric one as temperature goes from
below to above some critical value and vice-versa. One very
interesting counter example was shown by Weinberg in the
context of multiscalar field theories at finite temperatures [6].
He has shown the possibility of appearing two very interest-
ing phenomena: one that occurs when a symmetry that is not
broken at low temperatures, can get broken at high tempera-
tures, a phenomenon called inverse symmetry breaking (ISB),
and the possibility of another case, that can happen when a
symmetry that is broken at lower temperatures, may never get
restored at all as we go to higher temperatures, a phenomenon
called symmetry nonrestoration (SNR).

These phenomena of ISB and SNR can be found in the con-
text of high energy physics due to possibility of their imple-
mentation in realistic particle physics models, like in the con-
text of high temperature phase transitions in the early Uni-
verse [7, 8] and in applications covering problems which in-
volve CP violation and baryogenesis, topological defect for-
mation, inflation, etc [9]. Beside these interesting applica-

tions, there are real physical systems which do exhibit phe-
nomena similar to ISB/SNR, like liquid crystals, spin glass
materials and many other systems and materials [10]. One
of us have recently analyzed how ISB/SNR manifest them-
selves in nonrelativistic theories which may be used in con-
densed matter physics [8, 11] and possible applications of
ISB/SNR phenomena to a coupled two-species dilute Bose
gas system [12, 13].

In this paper we are looking for the phenomena of sym-
metry nonrestoration and inverse symmetry breaking in the
context of multi-scalar field theories considering the effects
of both finite temperature and density. In other words we are
interested in the different symmetries realizations and the ef-
fects of a finite charge on a multi-scalar field theory. After
reviewing the results at finite temperature for a coupled two-
scalar field model, we give the results obtained for a scalar
self-interacting theory with a fixed U(1) charge [14] at finite
temperature. The extension of these results and calculations
for a multi-scalar field theory at both finite temperature and
densities are then explained. Our aim here is try to understand
how a nonzero charge affects the phase structure of a multi-
scalar field theory, which should be of relevance in processes
that may occur in heavy-ion collisions and in the early uni-
verse.

2. MULTI-SCALAR FIELD THEORY: LOOKING FOR ISB
AND SNR

Let us initially briefly review the symmetry broken
(SB) / symmetry restoration (SR) for a self-interacting real
scalar field theory at finite temperature. Then, we contrast
these results with those that may originate as a consequence of
having more than one scalar field with cross-couplings show-
ing how phenomena ISB or SNR can emerge.

2.1. Symmetry breaking/restoration in O(N) scalar models

We start with the case of a relativistic case self-interacting
scalar field with a O(N) symmetry. The Lagrangian density is
given by
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L (φ) =
1
2

(∂φ)2−V (φ) , (1)

where φ is a scalar field with N components and the potential
V (φ) is given by

V (φ) =
1
2

m2φ2 +
λφ

4!
φ4 . (2)

This potential is bounded if λ > 0 and depending on the sig-
nal of the mass term we have the system either in the unbroken
phase,

(
m2 > 0

)
, or broken phase,

(
m2 < 0

)
. By considering

initially the broken phase at T = 0, we have for instance that

V (φ,T = 0) =−1
2

m2φ2 +
λφ

4!
φ4 , (3)

for which there is a nonvanishing vacuum expectation value.
At finite temperature the potential acquires thermal correc-
tions and, for example at high temperatures [2, 6], it (the ef-
fective potential) acquires the following form

V (φ,T 6= 0)' 1
2

[
−m2 +λφ

(N +2)T 2

72

]
φ2 +

λφ

4!
φ4 . (4)

From the above expression we obtain that there is a critical
temperature Tc above which the vacuum expectation value for
the effective potential vanishes and the symmetry is restored,
with Tc given by

Tc =

√
72m2

(N +2)λ
. (5)

It is very interesting to mention that, in the perturbative
regime, the dominant contribution giving Tc comes from a
one-loop correction, and it is not expected to change too much
due to higher order contributions.

2.2. O (N)×O (N) relativistic models

Having shown the simple one field case in the previous sub-
section, let us see now how it is possible to appear different
symmetry breaking/restoring patterns, like ISB and/or SNR.
These phenomena were first shown possible in finite tempera-
ture quantum field theory by Weinberg in 1974 [6]. Weinberg
proposed the following multi-scalar field model (in either the
unbroken or broken phase initially for both the φ and ψ direc-
tions, depending on the sign in front of the mass terms),

L (φ,ψ) =
1
2

(∂µφ)2−
m2

φ

2
φ2− λφ

4!
(
φ2)2

+
1
2

(∂µψ)2

− m2
ψ

2
ψ2− λψ

4!
(
ψ2)2− λ

4
φ2ψ2 . (6)

The potential that appear in this Lagrangian density is boun-
ded from below for λφ > 0, λψ > 0 and λφλψ > 9λ2. One
important aspect here is that we can change the signal of the
coupling constant λ and the potential still remain bounded.

The thermal masses M2
φ (T ) and M2

ψ (T ) obtained from
Eq. (6) can be readily obtained [7],

M2
φ (T ) = m2

φ +ΣT
φ , (7)

M2
ψ (T ) = m2

ψ +ΣT
ψ , (8)

where ΣT
φ and ΣT

ψ are the self-energies related to the fields
φ and ψ, respectively. We then obtain the thermal masses
M2

φ (T ) and M2
ψ (T ) as given, in the high temperature approxi-

mation, by

M2
φ = m2

φ +
T 2

24

(
λφ

N +2
3

+λN
)

, (9)

M2
ψ = m2

ψ +
T 2

24

(
λψ

N +2
3

+λN
)

. (10)

For N = 2 for example and using (9) and (10), we obtain
the critical temperature (i = φ,ψ)

Tc,i =

[
−12m2

i

(
λi

2
3

+λ
)−1

]1/2

. (11)

Assuming λ < 0, or in other words, |λ| > 2λφ/3, remem-
bering that the boundness condition assures that |λ|< 2λψ/3.
We note that by taking m2

i < 0 and using the equations (10)
and (11), in the ψ sector we have SR, but in the φ sector we
have SNR. In the opposite case, where m2

i > 0, in the ψ sec-
tor the system remains in the unbroken phase, while in the φ
sector we have ISB.

As this simple example illustrates, we note that temperature
effects in multiscalar field models can change the symmetry
aspects in unexpected ways, e.g., in the O(N)×O(N) exam-
ple, it shows the possibilities of phenomena like inverse sym-
metry breaking (ISB) and symmetry nonrestoration (SNR).
One very interesting question that appears is: Can we trust
perturbative methods at high temperatures? Though we know
that high temperature field theories require nonperturbative
treatments for consistence [7], it has been shown extensively
in the literature that these phenomena also appear in nonper-
turbative approaches, thus they are not artifacts of perturba-
tion theory. One discussion in a fully nonperturbative context
of the phenomena of SNR and ISB was done in Ref. [15] (see
also references therein for other nonperturbative approaches).

We can say that for a relativistic O(N)× O(N) theory,
ISB/SNR phenomena is possible. Many interesting applica-
tion of these phenomena have been proposed in the litera-
ture, like in cosmology, in the context of formation of mo-
nopoles/domain walls and also in condensed matter physics,
Ref. [10], where several applications were discussed.
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3. PHASE STRUCTURE AND THE EFFECTIVE
POTENTIAL AT FIXED CHARGE

Having briefly discussed the effects of temperature in sym-
metry restoring/breaking of symmetries, let us now see how
density effects can also affect the symmetry properties of a
theory. Let us briefly see the derivation of the effective poten-
tial for a self-interacting scalar field theory at finite tempera-
ture and density (with a fixed U(1) charge). For simplicity we
restrict the calculation at the one-loop order [1, 2, 14, 16]. We
start with the grand partition function,

Z (β,Ω,Ji,µ)≡ Tr
{

exp
[−β

(
H ′−µQ

)]}
, (12)

where β is the inverse of the temperature, Ω is the volume
of the system, Ji are the external sources, µ is the chemical
potential, H is the Hamiltonian density and H ′ is given by

H ′ = H − Ji

βΩ

∫
d3xφi (x) (13)

Using standard manipulations [14] like Legendre transfor-
mations we obtain the one-loop effective potential,

Veff =− 1
βΩ

(ln(Z)+ Jiφi)+
µQ̄
Ω

, (14)

where Q̄ is a charge constraint

Q̄≡ 〈Q〉=
1
β

∂
∂µ

lnZ . (15)

Rewriting the trace of Eq.(12) as a functional integral (the in-
dex i runs from 1 and 2) we get

Z[Ji] =
∫

Dφ1Dφ2Dπ1Dπ2 exp
{∫ β

0
dτ

∫
d3x

[
i
(
πiφ̇i

)

− (H −µQ )]
}

. (16)

The functional integral above is over two real fields (φ1,φ2)
and their conjugate momenta (π1,π2). The integral over τ runs
from 0 to β since we are working at finite temperature in the
Matsubara imaginary time formalism [16]. The Hamiltonian
density for the model is given by

H =
1
2
(πiπi +∇φi ·∇φi)+V0 +

Ji

βΩ
φi , (17)

with φ2 ≡ φ2
1 + φ2

2, V0 is a quadratic potential. This Hamil-
tonian is invariant under a global SO(2) symmetry which is
generated by the integral over all space of the charge density
Q ≡ φ1π2−φ2π1. The πi integrals are easily done and we can
rewrite Z [Ji] as follows,

Z [Ji] = N
∫

Dφ1Dφ2 exp(−S [φi,Ji]) , (18)

where N is a constant and S [φi,Ji] is given by

S [φi,Ji] =
∫ β

0
dτ

∫
d3x

[
1
2
[φ̇2

1 + φ̇2
2 +(∇φ1)2 +(∇φ2)2]

+ V0(φ)+
Jiφi

βΩ
+ iµ(φ2φ̇1−φ1φ̇2)− µ2φ2

2

]
. (19)

The last two terms of Eq. (19) represent the effects of the
conserved charge. We note that µ2 serves as a negative mass
squared term, or in other words, we can expect spontaneous
symmetry breaking when µ is greater than the mass of φ. Per-
forming the same calculations that were made in details in
sections II and III of Ref. [14], we obtain the one-loop effec-
tive potential

Veff =
const
βΩ

+Vtree +Vthermal +Vzeropoint , (20)

where

Vtree = V (φ)− 1
2

µ2φ2 +µ
Q̄
Ω

, (21)

Vthermal =
1
β

∫ d3k
(2π)3 ln{1− exp [−βE+ (k)]}

× {1− exp [−βE− (k)]} , (22)

and the zero point energy is given by

Vzeropoint =
∫ d3k

(2π)3
E+ (k)+E− (k)

2
, (23)

where the excitation energies are given by

E± ≡ k2 +µ2 +
1
2

(
V ′′+

V ′

φ

)

±
√

2µ2

(
2k2 +V ′′+

V ′

φ

)
+

1
4

(
V ′′− V ′

φ

)2

. (24)

The renormalization can be defined by introduction of coun-
terterms as usual. Below we will quote directly the expression
for the renormalized Veff.

The effective potential is one adequate quantity to extract
information of the phase structure (in terms of the temperature
and chemical potential) and to determine the symmetry chang-
ing phase transitions. In the high temperature limit we neglect
the contribution Vzeropoint, which can be justified as follows.
The zero point energy term has no temperature dependence
explicitly, but at high T this term will become temperature
dependent due to mass renormalization, but this temperature
dependence in this limit remains λ suppressed relative to the
contribution of the Vthermal. So we will neglect Vzeropoint in our
analysis of the effects of finite charge in the phase structure.

Up to now we have not specified the form of the potential.
For simplicity, we will use from now on the λφ4 potential,
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V (φ) =
1
2

m2φ2 +
λ
4!

φ4 (25)

Working with perturbation theory and requiring it to converge,
requires that we restrict the the values allowed for the field φ,
such that, using one naive criterium, that

λφ2

m2−µ2 ¿ 1 . (26)

The information about the phase structure is in the φ and µ
dependence of the effective potential. The effective potential
is then minimized with respect to the expectation value of the
scalar field and the chemical potential. The high temperature
effective potential for a SO(2) symmetry at one-loop order is
given by

Veff =
1
2
(m2−µ2)φ2 +

λ
4!

φ4 +µn− π2T 2

45

+
T 2

12

(
m2 +

λφ2

3

)
− µ2T 2

6
, (27)

where n = Q̄
Ω is the charge density.

The phase structure depends on the minima of the effective
potential. Minimizing the effective potential with respect the
expectation value of the scalar field we obtain

∂Veff

∂φ
=

(
m2−µ2 +

λφ
6

+
λT 2

18

)
φ . (28)

From Eq. (28), we obtain two minima: from the unbroken
symmetry, φ = 0, while for the broken symmetry,

φ2 =
[
−m2 +µ2− λT 2

18

]
. (29)

From the above equation we obtain the critical temperature Tc
at which the vacuum expectation value vanishes,

T 2
c =

18
λ

(
µ2−m2) . (30)

The relation between n and µ follows from minimizing the
effective potential with respect to µ,

n = µφ2− ∂Vthermal

∂µ
. (31)

Again, we can neglect the zero point contribution. In the high
temperature limit the sum of the two contributions in Eq. (31)
becomes

n = µφ2− µT 2

3
. (32)

One of our motivations for this work is the application of
this formalism in cosmology, as the universe expands at con-
stant entropy. Using the effective potential we can evaluate the
entropy density s =− ∂Veff

∂T . So, as in a expanding universe the
charge per comoving volume remains constant, in our analy-
sis we also consider constant volume. Keeping n/s constant,
we must require [14]

n = ηT 3 . (33)

Now we can write n as a function of µ, n = f (µ), and then by
using Eqs. (29) and (32) we obtain that

n =
6µ
λ

(
µ2−m2) . (34)

The analysis of Eq. (34) can be simplified if we work in two
limits: at low density λn¿ m3 and at high density λnÀ m3.
The high density limit is particularly more interesting since
in this regime n and µ are large and their effects on the phase
structure of the theory is extreme.
From Eq. (34) we get

µ =
(

λn
6

)1/3

À m . (35)

Using Eq. (30) we obtain

T 2
c = 3

(
6n
λ

)1/3

À 18
|m2|

λ
. (36)

We see that symmetry breaking occurs much earlier at a much
higher temperature, than it would in absence of n. Next, we
show some numerical results for the high density limit that
follows from the analysis of the temperature and density de-
pendent effective potential.

3.1. Numerical Results

We here concentrate on the behavior of the λφ4 theory with
a charge n = ηT 3. In Fig. (1) we see that for a small charge the
spontaneously broken symmetry gets restored, as expected, at
high temperatures (here we consider η = 0.01). But when
the charge increases (increasing the value of η) the symme-
try seems never to get restored, thus given a symmetry non-
restoration phenomenon analogous as the one seen in the two-
field case at finite temperature only, shown in the previous
section.

In Fig. (2) we show the behavior of the chemical potential
and the expectation value of the scalar field φ as a function of
the temperature as the number density varies, with n = ηT 3.
We note that this case of unbroken symmetry, we can have a
broken phase developing as we increase the density. We can
then conclude that a high charge density can induce a high
temperature symmetry breaking (or ISB). The symmetry bro-
ken solution is not necessarily valid near Tc [14], but holds
only asymptotically at temperatures when µ2 À m2.
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FIG. 1: Behavior of the expectation value of the scalar field 〈φ〉 as a
function of the temperature T for different values of η.
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FIG. 2: Behavior for the expectation value of the scalar field 〈φ〉
and chemical potential µ as functions of the temperature T , in the
unbroken phase.

4. MULTI-SCALAR FIELD THEORY AT FINITE T AND µ

By extending our calculations for a coupled two complex
scalar fields φ and ψ, we can consider the Lagrangian density,

L (φ,φ∗,ψ,ψ∗) = (∂µφ)(∂µφ)∗−m2
φ (φφ∗)− λφ

3!
(φφ∗)2

+ (∂µψ)(∂µψ)∗−m2
ψ (ψψ∗)

− λψ

3!
(ψψ∗)2−λ(φφ∗)(ψψ∗) . (37)

We can write our expressions in terms of fields φi and ψi (i =
1,2) using the transformations

φ =
1√
2

(φ1 + iφ2)

ψ =
1√
2

(ψ1 + iψ2) (38)

In the Grand Canonical formalism, we introduce the chemical
potentials µφ and µψ for charge conservation used for each
field separately. The resulting action becomes

S =
∫ β

0
dτ

∫
d3x

[
1
2
[φ̇2

1 + φ̇2
2 +(∇φ1)2 +(∇φ2)2]

+
λ
4!

(
φ2

1 +φ2
2
)2

+
Jiφi

βΩ
+ iµφ(φ2φ̇1−φ1φ̇2)

−
µ2

φ

2
(
φ2

1 +φ2
2
)
+

1
2
[ψ̇2

1 + ψ̇2
2 +(∇ψ1)2 +(∇ψ2)2]

+
λ
4!

(
ψ2

1 +ψ2
2
)2

+
Jiψi

βΩ
+ iµψ(ψ2ψ̇1−ψ1ψ̇2)

− µ2
ψ

2
(
ψ2

1 +ψ2
2
)
+

λ
4
(φ2

1 +φ2
2)(ψ

2
1 +ψ2

2)

]
. (39)

The next step consist in expanding the action to determine
a expression for the effective potential. From Eq. (39) and
following similar computation of the effective potential as for
the one-field case, the one-loop effective potential is deter-
mined by the functional partition function to one-loop order
and given by

Veff(φ,ψ) =
m2

φ

2
(
φ2

1 +φ2
2
)
+

λφ

4!
(
φ2

1 +φ2
2
)2

+
m2

ψ

2
(
ψ2

1 +ψ2
2
)
+

λψ

4!
(
ψ2

1 +ψ2
2
)2

+
λ
4

(
φ2

1 +φ2
1
)(

ψ2
1 +ψ2

2
)
+

1
2

Tr lnM̂ , (40)

where M̂ is the matrix operator for the quadratic terms in the
fluctuations,
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M̂ =




−∂µ∂µ−µ2 +Uφ
11 2iµ ∂

∂τ + λφ
3 φ1φ2 λφ1ψ1 λφ1ψ2

−2iµ ∂
∂τ + λφ

3 φ1φ2 −∂µ∂µ−µ2 +Uφ
22 λφ2ψ1 λφ2ψ2

λψ1φ1 λψ1φ2 −∂µ∂µ−µ2 +Uψ
33 2iµ ∂

∂τ + λψ
3 ψ1ψ2

λψ1φ2 λψ2φ2 −2iµ ∂
∂τ + λψ

3 ψ1ψ2 −∂µ∂µ−µ2Uψ
44




, (41)

where

Uφ
11 = m2

φ +
λφ

2
φ2

1 +
λφ

6
φ2

2 +
λ
2

ψ2 ,

Uφ
22 = m2

φ +
λφ

2
φ2

2 +
λφ

6
φ2

1 +
λ
2

ψ2 ,

Uψ
33 = m2

ψ +
λψ

2
ψ2

1 +
λψ

6
ψ2

2 +
λ
2

φ2 ,

Uψ
44 = m2

ψ +
λψ

2
ψ2

2 +
λψ

6
ψ2

1 +
λ
2

φ2 . (42)

Minimizing the effective potential in relation to φ and ψ,
the phase structure for this theory can be determined. Accord-
ing to the results of Sec. II.B, the two-field case, for a con-
venient choice of couplings, can result naturally in the phe-
nomena of ISB/SNR. From the discussion and analysis of the
effects of a finite charge (density) these symmetry change ef-
fects can appear even in the one-field case. Thus, we expect
that these density effects included in Eq. (40) will strength the
emergence of such phenomena in the two-field, or multi-field
models. An extensive analysis of the resulting phase diagram
obtained from Eq. (40) will be shown elsewhere [17].

5. CONCLUSIONS

In this work we have shown that a high charge density can
induce strong changes in the phase structure of the theory. Be-

sides high temperature symmetry restoration it can also ex-
hibit symmetry nonrestoration and inverse symmetry break-
ing. We can look for this phenomena in different branches
of physics, like condensed matter, cosmology and even in ap-
plications motivated by the up to date heavy-ion collision ex-
periments. Since phenomena like ISB/SNR can appear in a
theory with one self-interacting complex scalar field at finite
density, it is an interesting matter to explore the same phase
structure behavior in models with higher field content. We are
currently looking for this kind of phenomena in a multi-scalar
field theory at finite temperatures and densities [17].

As a future application we intend to perform the dynam-
ics of the multi-scalar field model in order to probe, dynami-
cally, the emergence of such interesting phase behaviors like
ISB/SNR. One step toward this comparison was done in the
classical level for the self-interacting scalar field theory in
Ref. [18].
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