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Numerical simulations based on Monte Carlo dynamics are used to investigate the resistivity behavior of gran-
ular superconductors containing a random distribution ofπ junctions, as in superconducting materials with
d-wave symmetry. The presence ofπ junctions leads to quenched in circulating currents (chiralities) and to
chiral glass behavior at low temperatures, even without an external magnetic field. An XY spin glass model
in the phase representation is used to determine the current-voltage characteristics and critical exponents of
the resistivity transition. In two dimensions, the linear resistivity is nonzero at finite temperatures and the dy-
namic scaling analysis of the nonlinear resistivity is consistent with a phase transition at zero temperature. In
three dimensions, we find a transition at finite temperatures below which the linear resistivity vanishes and the
corresponding critical exponents are determined from the scaling analysis. The results are in good agreement
with Langevin simulations in the phase representation. The dynamic exponentz is significantly different from
previous results obtained in the vortex representation.

Granular superconductors with d-wave symmetry, as
some of the unconventional high-Tc superconducting ma-
terials, can be viewed as a network of Josephson junctions
with frustration effects even in zero external magnetic field
[1]. Frustration arises from the presence ofπ junctions
which introduce a phase shift ofπ between superconducting
regions, and to half-flux quantum vortices on closed loops
with an odd number of these junctions [2, 3]. The mag-
netic properties of granular samples, arising from the orbital
currents of theses vortices , have been extensively studied
[1, 4, 5, 6, 7] and provide an explanation of the paramagnetic
Meissner effect [8]. Nevertheless, there are also important
consequences for the resistivity behavior of theses systems
which also deserve detailed investigations.

In a conventional granular superconductor, the phases
of neighboring superconducting regions tend to be locked
with zero phase shift, and a phase-coherence transition is
expected for decreasing temperature into a superconduct-
ing state with vanishing linear resistivity. The critical be-
havior of this resistive transition is reasonable well under-
stood both in the two dimensional limit and in three di-
mensions. On the other hand, for granular superconduc-
tors with a large concentration ofπ junctions, frustration
and disorder effects leads to a vortex glassy phase and the
resistive behavior is much less understood. The simplest
model of the system is to consider only contributions from
the Josephson coupling energy of nearest-neighbor grains,
Hij = −Jo cos(θi−θj−tij), whereθi is the phase of the lo-
cal superconducting order parameter,Jo > 0 andtij = 0 or
π correspond to the phase shifts of0 andπ junctions. This is

equivalent to the interaction of two-component pseudo-spins
~S = (cos(θ), sin(θ)), coupled by ferro or antiferromagnetic
interactions, respectively, which leads to an XY-spin (chiral)
glass model for the granular system [6]. The chiral variable
can be defined as the direction of spin rotation in a frustrated
loop and corresponds to the local circulating current (vortex)
in a closed loop with and odd number ofπ junctions. Based
on Monte Carlo (MC) simulations [6, 7] for this model in
three dimensions, it has been suggested that the equilibrium
low-temperature state for the granular superconductor is a
chiral glass but with no phase coherence and, therefore, the
resistivity should be nonzero. This implies a chiral glass
transition at a nonzero critical temperature but no resistive
transition, except perhaps at zero temperature. Thus, strictly
speaking, there is no true superconducting phase at low tem-
peratures in this scenario. However, while different works
agree on the existence of the proposed chiral glass transi-
tion, the situation regarding the resistive behavior in three
dimensions is unsettled. Results for the ground state [9] of
the XY-spin glass indicates that the lower critical dimension
for phase ordering is between2 and3 and therefore a phase-
coherence transition at finite temperatures is not possible in
two dimensions but should occur in three dimensions. The
critical temperature in three dimensions, however, can not be
estimated from these calculations. In fact, numerical simu-
lations of the resistive behavior in two dimensions shows
that the transition occurs at zero temperature [10]. In three
dimensions, dynamical simulations suggest a resistive tran-
sition at finite temperatures [11, 12]. These simulations were
based on different dynamics and different representations of
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the same XY-spin glass model. While the static exponents
agree, as expected from the universality of critical behavior,
the dynamic exponentz ∼ 4.6 obtained from the resistively-
shunted-junction (RSJ) model of the dynamics in the phase
representation [12] is significantly different from that ob-
tained from MC dynamics,z ∼ 3.1, in the vortex repre-
sentation [11], suggesting a strong dependence ofz on the
details of the dynamics. In view of the absence of precise
agreement among these studies, additional numerical results
using different dynamics are required to confirm the resistive
behavior and determine the critical properties satisfactorily.

In this work, we study the resistivity behavior by a driven
Monte Carlo dynamics simulation in the phase representa-
tion, both in two and three dimensions. The main advantage
of this method, compared with previous Langevin dynamics
simulations [12, 10], is that much longer time scales can ac-
cessed, insuring that the long-time behavior is probed at the
lowest temperatures and current densities. The results show
that, in two dimensions, the linear resistivity is nonzero at
finite temperatures and the dynamic scaling analysis of the
nonlinear resistivity is consistent with a phase transition at
zero temperature. In three dimensions, we find a resistive
transition at finite temperatures and the corresponding criti-
cal exponents are determined from the scaling analysis. The
dynamic exponentz is essentially the same as that obtained
by Langevin dynamics. However,z is significantly different
from previous results obtained in the vortex representation
by MC dynamics.

We consider granular superconductors withπ junctions,
modelled by a three-dimensional XY-spin glass driven by an
external current, described by the Hamiltonian

H = −Jo

∑

<ij>

cos(θi − θj − tij)− J
∑

i

(θi − θi+x) (1)

The first term gives the nearest-neighbor Josephson coupling
energy, where the quenched phase shifttij is equal toπ or 0
with equal probabilities, corresponding to the standard±Jo

XY spin glass model [6, 7, 9, 10, 12, 11]. The second term
in Eq. 1 represents the effects of an external driving cur-
rent on the superconductor, applied in thex-direction. When
J 6= 0, the total energy is unbounded and the system is out
of equilibrium. The lower energy minima occur at increas-
ing phase differencesθi − θi+x as a function of time, lead-
ing to a net voltageV proportional to the phase slippage
< d(θi − θi+x)/dt >.

To study the nonequilibrium behavior generated by the
driving current densityJ in Eq. 1, we use a driven MC dy-
namics method. The time dependence is obtained by identi-
fying the MC time as the real timet and we take the unit of
timedt = 1, corresponding to a complete MC pass through
the lattice. Periodic (fluctuating twist) boundary conditions
are used [13] in square and cubic systems of linear sizeL.
This boundary condition adds new dynamical variables,uα

(α = x, y andz), corresponding to a uniform phase twist be-
tween nearest-neighbor sites along the principal axis direc-
tionsx̂, ŷ andẑ. A MC step consists of an attempt to change
the local phaseθi and the phase twistsuα by fixed amounts,

using the Metropolis algorithm. The external current den-
sity J in Eq. 1 biases these changes, leading to a net phase
slippage across the system,d(θ1 − θL − uxL)/dt, which is
used as a measure of the voltage in arbitrary units. Using
this procedure, the voltageV (electric fieldE = V/L) was
computed as a function of the driving current densityJ for
different temperatures.

The nonlinear resistivityE/J as a function of current
densityJ and temperatureT for the two-dimensional case
is shown in Fig. 1a. The ratioE/J tends to a finite
value for smallJ , corresponding to the linear resistivity
ρL = limJ→0 E/J , which is nonzero but depends strongly
on the temperature. This can be seen in Fig. 1b, where
the linear resistivity shows an exponential decrease with
temperature. In Fig. 1a, there is also a smooth crossover
to nonlinear behavior that appears at smaller currents for
decreasing temperatures. These are the main features ex-
pected for aT = 0 superconducting transition [14, 15].
If the transition only occurs atT = 0, then the correla-
tion length should diverge for decreasing temperature and
a temperature-dependent crossover is expected. The linear
resistivityρL is finite at any nonzero temperature but ther-
mally activated,ρL ∝ exp(−Eb/kT ), whereEb is an en-
ergy barrier. If one assumes that the correlation length di-
verges as a power-lawξ ∝ T−ν , then the behavior of the
nonlinear resistivity normalized toρL can be cast in to the
scaling form [14]

E

JρL
= g(

J

T 1+ν
) (2)

in d = 2 dimensions, whereg is a scaling function with
g(0) = 1. A crossover from linear behavior, wheng(x) ∼ 1,
to nonlinear behavior, wheng(x) > 1, should occur when
x ∼ 1. This leads to a characteristic current densityJnl at
which nonlinear behavior sets in that decreases with temper-
ature as a power lawJnl ∝ T 1+ν . We now proceed to very
the scaling hypothesis and obtain a numerical estimate of the
critical exponentν. Fig. 2a shows a scaling plot according
to Eq. 2 obtained by adjusting the single parameterν so that
a best data collapse is obtained. The dada collapse supports
the scaling behavior and provides an estimate ofν = 0.95.
An alternative estimate ofν can also be obtained from the
crossover current densityJnl. Fig. 2b shows the temper-
ature dependence ofJnl defined as the value ofJ where
E/JρL starts to deviate from a fixed value, chosen to be2,
using the data in Fig. 1a. The behavior is consistent with
a power-law behaviorJnl ∝ T 1+ν and givesν = 1.07(8).
Combining the two estimates givesν = 1.01(8). These
results, including the numerical estimate ofν, are in good
agreement with previous calculations [10] using Langevin
dynamics in the phase representation and MC dynamics in
the vortex representation.
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Figure 1. (a) Nonlinear resistivityE/J for different temperatures
T in two dimensions, for a system sizeL = 34 ; (b) Arrhenius plot
for the temperature dependence of the linear resistivityρL.
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Figure 2. (a) Scaling plotE/JρL × J/T 1+ν for data in Fig. 1a
with ν = 0.95; (b) Crossover current densityJnl as a function of
temperature from Fig. 1.
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Figure 3. (a) Nonlinear resistivityE/J for different temperatures
T in three dimensions, for system sizeL = 12 ; (b) Scaling
plot of the data near the transition and for small currents, with
ξ ∝ |T/Tc − 1|−ν .

In three dimensions, the resistivity behavior is quite
different, as shown in Fig. 3a, for a large system size
L = 12. The behavior is consisting with a resistive tran-
sition at an apparent critical temperature in the rangeTc ∼
0.3 − 0.45. At higher temperatures, the linear resistivity
ρL = limJ→0 E/J is finite while at lower temperatures, it
extrapolates to zero. The phase transition can be confirmed
by a scaling analysis of the nonlinear resistivity which as-
sumes the existence of a continuous equilibrium transition
at a finite temperature [14]. Near the transition, measur-
able quantities scale with the diverging correlation length
ξ ∝ |T − Tc|−ν and relaxation timeτ ∝ ξz, whereν andz
are the correlation-length and dynamical critical exponents,
respectively. The nonlinear resistivity should then satisfy
the scaling form [14]

TEξz−1/J = g±(Jξ2/T ) (3)

in d = 3 dimensions whereg(x) is a scaling function. The
+ and− signs correspond toT > Tc andT < Tc, respec-
tively. A scaling plot according to this equation can then
be used to verify the scaling arguments and the assumption
of an underlying equilibrium transition atJ = 0. The op-
timal data collapse provides an estimate ofTc and critical
exponents. Such scaling plot is shown in Fig. 3b, obtained
by adjusting the unknown parameters, giving the estimates
Tc = 0.41(2), z = 4.6(3) and ν = 1.2(2). The values
of Tc, z andν obtained by this scaling analysis using MC
dynamics agree well with the previous estimates using the
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RSJ model [12] for the dynamics, clearly showing the exis-
tence of a phase-coherence transition at finite temperatures
and also showing that the dynamic exponentz is essentially
the same. Our estimate ofTc from the resistivity scaling is
in good agreement with recent estimate of the critical tem-
perature,Tch = 0.38 − 0.41, for the chiral-glass transition
from MC simulations [7]. The agreement is quite intriguing
since it apparently supports the suggestion [12] that chiral-
ity and phase variables may order simultaneously. Never-
theless, this phase-coherence transition is in sharp contrast
with MC simulations of the phase-overlap distribution func-
tion [6, 7]. On the other hand, a phase-coherence transition
atT > 0, is consistent with calculations of the spin stiffness
exponent in the ground state showing that the lower-critical
dimension for spin order in the XY-spin glass model [9] is
below3 which implies that a phase-coherence transition at
finite temperatures is possible in three dimensions. More
recent, improved calculations in the vortex representation,
also clearly shows a large and positive stiffness exponent
[16]. In addition, calculations of the linear resistivityρL

(zero current bias) from MC dynamics simulations in the
vortex representation [11], shows an equilibrium resistive
transition. The estimate of the static exponentν agrees with
the present estimate from the nonlinear resistivity but the
dynamic exponent [11]z = 3.1 is significantly lower. Sur-
prisingly enough, our calculations ofz show the same result
for the MC and RSJ dynamics. Additional calculations us-
ing Langevin dynamics with onsite dissipation of the grains
in the phase representation give the same result [17]. In spite
of that, it is possible that the differentz is a result of the par-
ticular dynamics in the vortex representation. In fact, vortex
variables are collective excitations in the phase representa-
tion and thus lead to long-range correlations for the phases,
suggesting that these representations may belong to different
dynamic universality classes.

In conclusion, our driven MC dynamics simulations of
the resistivity scaling inπ junction granular superconduc-
tors, shows that, in two dimensions, the linear resistivity
is nonzero at finite temperatures and the behavior is con-
sistent with a phase transition at zero temperature in good
agreement with previous calculations [10]. In three dimen-
sions, we find a resistive transition at finite temperatures
in the chiral glass phase and determine the corresponding
critical exponents. This transition should be observable in
nonlinear resistivity measurements in bulk samples. In fact,
it is consistent with resistivity measurements in ceramic
Y Ba2Cu4O8 bulk samples [19] near the onset of the para-

magnetic Meissner effect. The power-law exponentα for
the nonlinear contribution found in these measurements can
be related [18] to the dynamic critical exponentz of the tran-
sition.
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