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Numerical simulations based on Monte Carlo dynamics are used to investigate the resistivity behavior of gran-
ular superconductors containing a random distributionr géinctions, as in superconducting materials with
d-wave symmetry. The presencemfunctions leads to quenched in circulating currents (chiralities) and to
chiral glass behavior at low temperatures, even without an external magnetic field. An XY spin glass model
in the phase representation is used to determine the current-voltage characteristics and critical exponents of
the resistivity transition. In two dimensions, the linear resistivity is nonzero at finite temperatures and the dy-
namic scaling analysis of the nonlinear resistivity is consistent with a phase transition at zero temperature. In
three dimensions, we find a transition at finite temperatures below which the linear resistivity vanishes and the
corresponding critical exponents are determined from the scaling analysis. The results are in good agreement
with Langevin simulations in the phase representation. The dynamic exporgesignificantly different from
previous results obtained in the vortex representation.

Granular superconductors with d-wave symmetry, as equivalentto the interaction of two-component pseudo-spins
some of the unconventional high- superconducting ma- S = (cos(6), sin(6)), coupled by ferro or antiferromagnetic
terials, can be viewed as a network of Josephson junctionsinteractions, respectively, which leads to an XY-spin (chiral)
with frustration effects even in zero external magnetic field glass model for the granular system [6]. The chiral variable
[1]. Frustration arises from the presence mofjunctions can be defined as the direction of spin rotation in a frustrated
which introduce a phase shift afbetween superconducting loop and corresponds to the local circulating current (vortex)
regions, and to half-flux quantum vortices on closed loops in a closed loop with and odd nhumberefunctions. Based
with an odd number of these junctions [2, 3]. The mag- on Monte Carlo (MC) simulations [6, 7] for this model in
netic properties of granular samples, arising from the orbital three dimensions, it has been suggested that the equilibrium
currents of theses vortices , have been extensively studiedow-temperature state for the granular superconductor is a
[1,4,5, 6, 7] and provide an explanation of the paramagneticchiral glass but with no phase coherence and, therefore, the
Meissner effect [8]. Nevertheless, there are also importantresistivity should be nonzero. This implies a chiral glass
consequences for the resistivity behavior of theses systemgransition at a nonzero critical temperature but no resistive
which also deserve detailed investigations. transition, except perhaps at zero temperature. Thus, strictly

In a conventional granular superconductor, the phasesspeaking, there is no true superconducting phase at low tem-

of neighboring superconducting regions tend to be locked peratures in thIS. scenario. However, while Qn‘ferent works_
with zero phase shift, and a phase-coherence transition igree on the existence of the proposed chiral glass transi-

expected for decreasing temperature into a superconductgpn’ th? situation rftglga(;dlgg thﬁ r?ssttk:ve beha(\jno[ Itn tgreef
ing state with vanishing linear resistivity. The critical be- imensions is unsettled. Results for the ground state [9] o

havior of this resistive transition is reasonable well under- ;he ):]Y—spm glags |pd|§ates that éhe Io;vehr cr|tf|cal d'mﬁ nsion
stood both in the two dimensional limit and in three di- 'Of Phase ordering is betweerand3 and therefore a phase-

mensions. On the other hand, for granular Superconduc_coherence transition at finite temperatures is not possible in
tors with a large concentration af junctions, frustration two dimensions but should occur in three dimensions. The

and disorder effects leads to a vortex glassy phase and thgritical temperature in three dimensions, however, can not be
resistive behavior is much less understood. The Simplestestimated from these calculations. In fact, numerical simu-
X lations of the resistive behavior in two dimensions shows

model of the system is to consider only contributions from that the t i t ¢ i 101, In th
the Josephson coupling energy of nearest-neighbor grains, at the transition occurs at zero temperature [10]. In three

Hi; = —J, cos(6;—0; —t,;), whered; is the phase of the lo- dimensions, dynamical simulations suggest a resistive tran-
cz;ljsupergonduétingjoréér’parameztf-g> 0andt. — 0 or sition at finite temperatures [11, 12]. These simulations were
« correspond to the phase shifts()uind;r junctionlé This is based on different dynamics and different representations of
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the same XY-spin glass model. While the static exponentsusing the Metropolis algorithm. The external current den-
agree, as expected from the universality of critical behavior, sity J in Eg. 1 biases these changes, leading to a net phase
the dynamic exponent~ 4.6 obtained from the resistively-  slippage across the systedif, — 0;, — u,L)/dt, which is
shunted-junction (RSJ) model of the dynamics in the phaseused as a measure of the voltage in arbitrary units. Using
representation [12] is significantly different from that ob- this procedure, the voltadé (electric fieldE = V/L) was
tained from MC dynamicsy ~ 3.1, in the vortex repre-  computed as a function of the driving current densitfor
sentation [11], suggesting a strong dependence i the different temperatures.
details of the dynamics. In view of the absence of precise ) o )
agreement among these studies, additional numerical results 1 ne nonlinear resistivity?/.J as a function of current
using different dynamics are required to confirm the resistive 4€nSity/ and temperaturg” for the two-dimensional case
behavior and determine the critical properties satisfactorily, 'S Shown in Fig. la. The ratid’/.J tends to a finite

In this work, we study the resistivity behavior by a driven Valué for small.J, corresponding to the linear resistivity
Monte Carlo dynamics simulation in the phase representa-°L = lim—o £/J, which is nonzero but depends strongly
tion, both in two and three dimensions. The main advantage®" the temperature. This can be seen in Fig. 1b, where
of this method, compared with previous Langevin dynamics the linear re5|st|V|Fy shows an gxponentlal decrease with
simulations [12, 10], is that much longer time scales can ac-{€mperature. In Fig. 1a, there is also a smooth crossover
cessed, insuring that the long-time behavior is probed at the!® Nonlinear behavior that appears at smaller currents for
lowest temperatures and current densities. The results shol€Créasing temperatures. These are the main features ex
that, in two dimensions, the linear resistivity is nonzero at Pected for al’ = 0 superconducting transition [14, 15].

finite temperatures and the dynamic scaling analysis of the!l the transition only occurs &’ = 0, then the correla-
nonlinear resistivity is consistent with a phase transition at i 1ength should diverge for decreasing temperature and

zero temperature. In three dimensions, we find a resistive® (€Mperature-dependent crossover is expected. The linea
transition at finite temperatures and the corresponding criti- "€SIStvity o1 is finite at any nonzero temperature but ther-
cal exponents are determined from the scaling analysis. Thénally activatedpr, oc exp(—Ey/kT), whereEy is an en-
dynamic exponent is essentially the same as that obtained €9Y barrier. If one assumes that the correlatlo_n length di-
by Langevin dynamics. However,s significantly different ~ VErdes as a power-lag oc 7, then the behavior of the
from previous results obtained in the vortex representationonlinear resistivity normalized tp,, can be cast in to the
by MC dynamics. scaling form [14]

We consider granular superconductors witfunctions,
modelled by a three-dimensional XY-spin glass driven by an
external current, described by the Hamiltonian

E J

H = —Jo Z COS(G/L' — 9j — tij) — JZ(@ — 974_1) (1) TPL = g(T1+,,) (2)
<ij> %
The first term gives the nearest-neighbor Josephson coupling
energy, where the quenched phase shjfis equal tor or 0 in d = 2 dimensions, wherg is a scaling function with
with equal probabilities, corresponding to the standasy g(0) = 1. Acrossover from linear behavior, whefx) ~ 1,

XY spin glass model [6, 7, 9, 10, 12, 11]. The second term to nonlinear behavior, wheg(x) > 1, should occur when

in Eq. 1 represents the effects of an external driving cur- x ~ 1. This leads to a characteristic current density at

rent on the superconductor, applied in thdirection. When  which nonlinear behavior sets in that decreases with temper-

J # 0, the total energy is unbounded and the system is outature as a power law,,; oc 7'+, We now proceed to very

of equilibrium. The lower energy minima occur at increas- the scaling hypothesis and obtain a numerical estimate of the

ing phase difference® — 6, .. as a function of time, lead-  critical exponent.. Fig. 2a shows a scaling plot according

ing to a net voltage’ proportional to the phase slippage to Eq. 2 obtained by adjusting the single parametso that

< d(0; — O;y)/dt >. a best data collapse is obtained. The dada collapse support
To study the nonequilibrium behavior generated by the the scaling behavior and provides an estimate ef 0.95.

driving current density/ in Eg. 1, we use a driven MC dy-  An alternative estimate of can also be obtained from the

namics method. The time dependence is obtained by identi-crossover current density,;. Fig. 2b shows the temper-

fying the MC time as the real timeand we take the unit of  ature dependence of,; defined as the value of where

time dt = 1, corresponding to a complete MC pass through E/Jp;, starts to deviate from a fixed value, chosen t@pe

the lattice. Periodic (fluctuating twist) boundary conditions using the data in Fig. 1a. The behavior is consistent with

are used [13] in square and cubic systems of linear Bize a power-law behavios,,; o 71" and givess = 1.07(8).

This boundary condition adds new dynamical variables, = Combining the two estimates gives = 1.01(8). These

(o = x,y andz), corresponding to a uniform phase twist be- results, including the numerical estimate:qfare in good

tween nearest-neighbor sites along the principal axis direc-agreement with previous calculations [10] using Langevin

tionsz, y andz. A MC step consists of an attempt to change dynamics in the phase representation and MC dynamics in

the local phasé; and the phase twists, by fixed amounts,  the vortex representation.
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Figure 1. (a) Nonlinear resistivity'/J for different temperatures
T in two dimensions, for a system siZe= 34 ; (b) Arrhenius plot
for the temperature dependence of the linear resistpvity
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Figure 2. (a) Scaling ploE/Jpr, x J/T*** for data in Fig. la
with v = 0.95; (b) Crossover current densitf,; as a function of
temperature from Fig. 1.
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Figure 3. (a) Nonlinear resistivit§y/ J for different temperatures
T in three dimensions, for system side = 12 ; (b) Scaling
plot of the data near the transition and for small currents, with
Ex |T/T: — 1|77,

In three dimensions, the resistivity behavior is quite
different, as shown in Fig. 3a, for a large system size
L = 12. The behavior is consisting with a resistive tran-
sition at an apparent critical temperature in the rahge-

0.3 — 0.45. At higher temperatures, the linear resistivity
pr = limy_q E/J is finite while at lower temperatures, it
extrapolates to zero. The phase transition can be confirmed
by a scaling analysis of the nonlinear resistivity which as-
sumes the existence of a continuous equilibrium transition
at a finite temperature [14]. Near the transition, measur-
able quantities scale with the diverging correlation length
& x |T — T.|~" and relaxation time o £*, wherev andz

are the correlation-length and dynamical critical exponents,
respectively. The nonlinear resistivity should then satisfy
the scaling form [14]

TEE™/J = g+ (J€/T) 3)

in d = 3 dimensions wherg(z) is a scaling function. The

+ and— signs correspond t&" > T, andT < T, respec-
tively. A scaling plot according to this equation can then
be used to verify the scaling arguments and the assumption
of an underlying equilibrium transition at = 0. The op-
timal data collapse provides an estimateZpfand critical
exponents. Such scaling plot is shown in Fig. 3b, obtained
by adjusting the unknown parameters, giving the estimates
T. = 0.41(2), z = 4.6(3) andv = 1.2(2). The values

of T,, z andv obtained by this scaling analysis using MC
dynamics agree well with the previous estimates using the
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RSJ model [12] for the dynamics, clearly showing the exis- magnetic Meissner effect. The power-law exponerfor
tence of a phase-coherence transition at finite temperatureshe nonlinear contribution found in these measurements can
and also showing that the dynamic exponerg essentially ~ be related [18] to the dynamic critical exponerdf the tran-

the same. Our estimate @} from the resistivity scaling is  sition.

in good agreement with recent estimate of the critical tem-
peratureT,.;, = 0.38 — 0.41, for the chiral-glass transition
from MC simulations [7]. The agreement is quite intriguing
since it apparently supports the suggestion [12] that chiral-
ity and phase variables may order simultaneously. Never-
theless, this phase-coherence transition is in sharp contrasR eferences

with MC simulations of the phase-overlap distribution func-

tion [6, 7]. On the other hand, a phase-coherence transition [1] M. Sigrist and T.M. Rice, Rev. Mod. Phy&7, 503 (1995).
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