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Emergence of Complex Spatio-Temporal Order in Nonlinear Field Theories
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We investigate the emergence of time-dependent nonperturbative configurations during the evolution of non-
linear scalar field models with symmetric and asymmetric double-well potentials. Complex spatio-temporal
behavior emerges as the system seeks to establish equipartition after a fast quench. We show that fast quenches
may dramatically modify the decay rate of metastable states in first order phase transitions. We discuss possible
applications in condensed matter systems and in inflationary cosmology.
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I. INTRODUCTION

The emergence of complex patterns is one of the most dis-
tinct signatures of nonlinear interactions in natural systems.
Since Einstein’s pioneering work on Brownian motion [1], it
became clear that much can be accomplished by modeling the
interactions of a system with its environment through the ac-
tion of random and viscous forces. During most of the twen-
tieth century, studies were mainly restricted to investigating
the motion of a point particle in nonlinear potentials [2]. With
the advent of fast computers, modeling of stochastic evolution
added spatial dimensions, allowing for the quantitative study
of spatio-temporal complex behavior. Up to about ten years
ago, most of the work concentrated in hydrodynamical and
soft condensed-matter systems [3]. Recently, developments
in high energy physics and cosmology have opened the inter-
esting possibility that complex spatio-temporal behavior may
also play a role in relativistic field theories, in particular dur-
ing the early stages of cosmological evolution [4] and may
even be observed in high-energy colliders [5].

Here we will briefly review some of the work done dur-
ing the past few years which focused on understanding the
effects of fast quenches on nonlinear scalar field theories. The
quenches model both temperature quenches in the context of
fast cosmological expansion (in particular at scales close to
the GUT scale ∼ 1016 GeV) or the cooling of fireballs during
high energy collisions such as those currently being investi-
gated at RHIC and soon at LHC. The quench may also repre-
sent a pressure quench, common in condensed matter physics
or, more generally, the appearance of a low-energy effective
interaction that modifies the effective potential of the long-
wavelength modes of the field or order parameter describing
the system’s evolution. We will conclude with an application
of these ideas to inflationary cosmology [6].

II. THE MODEL

Consider a (2+1)-dimensional real scalar field (or scalar or-
der parameter) φ(x, t) evolving under the influence of a poten-
tial V (φ). The continuum Hamiltonian is conserved and the

total energy of a given field configuration φ(x, t) is,

H[φ] =
∫

d 2x
[

1
2
(∂tφ)2 +

1
2
(∇φ)2 +V (φ)

]
, (1)

where V (φ) = m2

2 φ2 − α
3 φ3 + λ

8 φ4 is the potential energy den-
sity. The parameters m, α, and λ are positive definite and
temperature independent. It is helpful to introduce the di-
mensionless variables φ′ = φ

√
λ/m, x′ = xm, t ′ = tm, and

α′ = α/(m
√

λ) (We will henceforth drop the primes). Prior
to the quench, α = 0 and the potential is an anharmonic single
well symmetric about φ = 0. The field is in thermal equi-
librium with a temperature T . At the temperatures consid-
ered, the fluctuations of the field are well approximated by a
Gaussian distribution, with 〈φ2〉 = aT (a = 0.51 and can be
computed numerically). As such, within the context of the
Hartree approximation [7], the momentum and field modes in
k-space can be obtained from a harmonic effective potential,
and satisfy 〈|π̄(k)|2〉= T and 〈|φ̄(k)|2〉= T

k2+m2
H

, respectively.

The Hartree mass m2
H = 1+ 3

2 〈φ2〉 depends on the magnitude
of the fluctuations (and thus T ). Within the Hartree approxi-
mation we can write the effective potential as

Veff
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φave,m2

H
)

=
[
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]

φave +
1
2

m2
H(t)φ2

ave −

−α
3

φ3
ave +

1
8

φ4
ave . (2)

Hereafter we will refer to a particular system by its initial
temperature. All results are ensemble averages over 100 sim-
ulations.

If α �= 0, the Z2 symmetry is explicitly broken. When α =
1.5 ≡ αc, the potential is a symmetric double-well (SDW),
with two degenerate minima. This is the first case we consider.

III. QUENCHING INTO SYMMETRIC DOUBLE WELLS:
EMERGENCE OF SPATIO-TEMPORAL ORDER

At α = αc = 1.5, the quench amounts to switching from
a single to a double well with the field initially localized at
φ = 0. In Fig. 1 we indicate this schematically.

As shown in Ref. [11], the quench sets oscillations in the
field’s zero mode, φave ≡ 1

V
∫

φdV , where V is the volume (or
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FIG. 1: Schematic picture showing change in potential V (φ) from
single-well to symmetric double-well after quench.

area in 2d). The amplitude of these oscillations is controlled
by the temperature of the initial Gaussian distribution, as ex-
plained above. In fact, temperature here is simply a conve-
nient way to set an initial Gaussian distribution in momen-
tum space. We did this using a Langevin equation with white
noise. One could state that the field is at T = 0 but initially
set with a Gaussian distribution in momentum space with a
certain width. This width is a measure of the initial “tempera-
ture” of the system.

At early times small fluctuations satisfy a Mathieu equation
in k-space

δ̈φ = −[
k2 +V ′′

eff [φave(t)]
]

δφ, (3)

and, depending on the wave number and parametric oscil-
lations of φave(t), can undergo exponential amplification (∼
eηt ). For T ≤ 0.13, no modes are ever amplified. As the tem-
perature is increased, so is the amplitude and period of oscil-
lation in φave, gradually causing the band 0 < k < 0.48 to res-
onate and grow. Furthermore, for large enough temperatures
(T > 0.13) large-amplitude fluctuations about the zero mode
probe into unstable regions where V ′′

eff < 0, which also pro-
mote their growth. Note that this is very distinct from spinodal
decomposition, where competing domains of the two phases
coarsen [8]. Instead, for the values of T and α considered,
φave continues to oscillate about the φ = 0 minimum.

As a result of the energy transfer modeled by parametric
amplification, oscillons are nucleated initially in phase. But
what are oscillons? They are the higher dimensional equiv-
alent of kink-antikink breathers, familiar of 1d nonlinear dy-
namics [9]. Extensive work has been done on oscillons and
their properties and the reader can consult the relevant litera-
ture listed in Ref. [10]. Here, it is enough to mention that os-
cillons are long-lived, time-dependent, localized field config-
urations which express local ordering of momentum modes.
What was also observed in Ref. [11] is that after the quench
oscillons emerge in synchrony, exhibiting both spatial and
time ordering. In Figure 2 we illustrate this phenomenon.

Finally, we introduce a measure of the partitioning of the
kinetic energy Π(t), which we use to describe the nonequilib-

FIG. 2: Number of oscillons nucleated between t and t + δt at
T = 0.22 and δt = 1. The global emergence is evident early in the
simulations. Inset: probability distribution of radii and periods of
oscillations of individual oscillons.

rium evolution of the system:

Π(t) = −
∫

d2k p(k, t) ln p(k, t), (4)

where p(k, t) = K(k, t)/
∫

d2kK(k, t), and K(k, t) is the ki-
netic energy of the k-th mode. Π(t) attains its maximum
(Πmax = ln(N) on a lattice with N degrees of freedom) when
equipartition is satisfied. This occurs both at the initial ther-
malization (t = 0) and final equilibrium states, since in this
case all modes carry the same fractional kinetic energy. In
Fig. 3 we show the change of Π(t) from the initial state,
Π(t = 0)−Π(t), for the closed system at T = 0.22. At late
times (t > 150), we have found that the system equilibrates
exponentially in a time-scale τ 	 500. At early times, the
localization of energy at lower k-modes, corresponding to
the global emergence of oscillons, prolongs this approach to
equipartition. The inset of Fig. 3 shows the large variations
in Π(t) (dotted line) that arise due to the synchronous oscilla-
tions in the kinetic energy of these configurations. Also shown
(solid line) is the average between successive peaks of Π(t),
with a plateau at approximately 20 < t < 70 that coincides
with the maximum oscillon presence in the system. Thus,
oscillon configurations serve as early bottlenecks to equipar-
tition, temporarily suppressing the diffusion of energy from
low (0 < |k| ≤ 0.8) to higher modes.

IV. QUENCHING INTO ASYMMETRIC DOUBLE WELLS:
RESONANT NUCLEATION

For α > αc = 1.5 the potential is asymmetric with the mini-
mum at φ = 0 becoming metastable. We proceed as before by
quenching the system from a single well, as illustrated in Fig.
4.

As before, oscillons will once again be nucleated. How-
ever, the situation now changes dramatically. Due to the asym-
metry, the system will decay into the global minimum at φ+.
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FIG. 3: The change of Π(t) from the initial state for closed systems
at T = 0.22. The exponential approach to equilibrium is clear at late
times. The inset illustrates the role of oscillons as a bottleneck to
equipartition.

FIG. 4: Schematic picture showing change in potential V (φ) from
single-well to asymmetric double-well after quench.

We have observed that this decay may occur in three possible
ways depending on the initial temperature T and the value of
α [12]: i) the transition to the global minimum happens very
fast in what can be called a “cross-over” transition; ii) the tran-
sition occurs as a single oscillon becomes unstable and grows
into a critical bubble. As is well known from the theory of
first order phase transitions [8], once a critical nucleus forms
it will grow to complete the transition; iii) two or more oscil-
lons percolate to become a critical bubble that then grows to
complete the transition.

In order to simplify the analysis, we fixed the tempera-
ture to be T ≤ 0.22. From the Hartree potential of Eq. 2,
one can see that for large temperatures the potential becomes
a single well again. For T ≤ 0.13 no oscillons are nucle-
ated after the quench. In this case, we expect that the usual
metastable decay rate based on the theory of homogeneous nu-
cleation (HN) will apply, becoming more accurate for smaller
T [8, 13]. The decay rate per unit volume obtained from

FIG. 5: The evolution of the order parameter φave(t) at T = 0.22
for several values of the asymmetry. From left to right, α =
1.746,1.56,1.542,1.53,1.524,1.521,1.518. The inset shows Veff for
the same values.

HN theory is controlled by the Arrhenius exponential sup-
pression, Γ(T,α)	 T (d+1) exp[−Eb(T,α)/T ], where Eb is the
energy of the critical bubble or nucleus and d is the number
of spatial dimensions. [We use units where c = kB = � = 1.]
The typical time-scale for the decay in a volume V is then,
τHN 	 (V Γ)−1 ∼ exp[Eb(T,α)/T ].

In Fig. 5 we show the evolution of the order parameter
φave(t) as a function of time for several values of asymme-
try, 1.518 ≤ α ≤ 1.746, for T = 0.22. Not surprisingly, as
α → αc = 1.5, the field remains longer in the metastable state,
since the nucleation energy barrier Eb → ∞ at αc. How-
ever, a quick glance at the time axis shows the fast decay
time-scale, of order 101−2. For comparison, for 1.518 ≤
α ≤ 1.56, HN would predict nucleation time-scales of order
∼ 1028 ≥ τHN ∼ exp[Eb/T ] ≥ 1012 (in dimensionless units).
[The related nucleation barriers with the effective potential are
Eb(α = 1.518) = 14.10 and Eb(α = 1.56) = 5.74.] For small
asymmetries φave(t) displays similar oscillatory behavior to
the SDW case before transitioning to the global minimum.
As α is increased the number of oscillations decreases. For
large asymmetries, α ≥ 1.746, the entire field crosses over to
the global minimum without any nucleation event, resulting
in oscillations about the global minimum. This is situation
described in case i) above.

In Fig. 6 we show the ensemble-averaged nucleation time-
scales for resonant nucleation, τRN, as a function of the nu-
cleation barrier (computed with eq. 2), Eb/T , for the tem-
peratures T = 0.18, 0.20, and 0.22. [For temperatures above
T = 0.26 we are in the vicinity of the critical point in which
no barrier exists.] The nucleation time was measured when
φave crosses the maximum of Veff. The best fit is a power law:

τRN ∝ (Eb/T )B, (5)

with B = 3.762± 0.016 for T = 0.18, B = 3.074± 0.015 for
T = 0.20, and B = 2.637± 0.018 for T = 0.22. This simple
power law holds for the same range of temperatures where
we have observed the synchronous emergence of oscillons. It
is not surprising that the exponent B increases with decreasing
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FIG. 6: Decay time-scale τRN as a function of critical nucleation
effective free-energy barrier Eb/T at T = 0.18, 0.20, and T = 0.22.
The best fits (dashed lines) are power-laws with exponents B	 3.762,
3.074, and 2.637, respectively.

T , since the synchronous emergence of oscillons becomes less
pronounced and eventually vanishes. In these cases we should
expect a smooth transition into the exponential time-scales of
HN.

We conclude that fast quenching can dramatically affect the
nucleation time-scale of first order phase transitions. In other
words, HN fails for fast quenches.

Here we propose the mechanism by which this fast decay
occurs: for nearly degenerate potentials, αc < α ≤αI, the crit-
ical nucleus has a much larger radius than a typical oscillon; it
will appear as two or more oscillons coalesce. We call this Re-
gion I, defined for Rb ≥ 2Rosc, where Rosc is the minimum os-
cillon radius computed from Ref. [5]. Figure 7 illustrates this
mechanism. Two oscillons, labeled A and B, join to become
a critical nucleus. [The interested reader can see simulation
movies at http://www.dartmouth.edu/∼cosmos/oscillons.]

As α is increased further, the radius of the critical nucleus
decreases, approaching that of an oscillon. In this case, a sin-
gle oscillon grows unstable to become the critical nucleus pro-
moting the fast decay of the metastable state: there is no co-
alescence. We call this Region II, αI < α ≤ αII, Rb < 2Rosc.
This explains the small number of oscillations on φave(t) as
α is increased [cf. Fig. 5]. To corroborate our argument, in
Fig. 8 we contrast the critical nucleation radius with that of
oscillons as obtained in Ref. [5], for different values of effec-
tive energy barrier and related values of α at T = 0.22. The
critical nucleus radius Rb is equal to 2Rosc for α = 1.547. This
defines the boundary between Regions I and II: for α ≥ αI a
single oscillon may grow into a critical bubble. Finally, for
α ≥ αII = 1.746 the field crosses over to the global minimum
without any nucleation event.

An obvious extension of the present work is the investiga-
tion of “resonant nucleation” in 3d. Preliminary results in-
dicate that the power law behavior persists with B ∼ 1.5 for
the relevant range of temperatures for oscillon coalescence.
In general, RN will occur whenever the effective potential
changes faster than the typical relaxation rate of the longest
wavelength of the order parameter. These results could be ex-

FIG. 7: Two oscillons coalesce to form a critical bubble. First two
frames from top show oscillons A and B. Third and fourth frames
shows A and B coalescing into a critical bubble. Final frame shows
growth of bubble expanding into metastable state.

FIG. 8: Radius of critical bubble (Rb) and twice the minimum os-
cillon radius (2Rosc) as a function of its energy barrier and related
values of α at T = 0.22. For α ≥ 1.547 one cannot easily distinguish
between an oscillon and a critical bubble.
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tended to systems in the Ising universality class, in particular
to ferromagnetic transitions. They could also be applied in
cosmology, to where we turn to next.

V. RESONANT INFLATION: CAN OLD INFLATION BE
RESCUED?

The simple elegance of the original “Old” Inflation (OI)
scenario proposed by Guth in 1981 has, since then, inspired
many variations[15, 16]. More than just the elegance of its for-
mulation, based on a single scalar field decaying from an ini-
tial metastable state to a lower-energy state by bubble nucle-
ation, the original OI model had a clear connection with par-
ticle physics: the inflaton was to be the same scalar field pro-
moting the symmetry breaking of Grand Unified models, link-
ing early-Universe cosmology to high-energy particle physics.
In fact, it is this particle physics connection that motivated and
motivates the widespread use of scalar fields in early-Universe
physics.

Unfortunately, Guth’s original proposal didn’t work. As
he himself argued, and then Linde, and Albrecht and
Steinhardt[17], the bubble-nucleation rate could not compete
with the exponential expansion rate of the Universe: the tran-
sition would never end. Roughly, while bubble walls ex-
panded with the speed of light, their centers receded from
each other exponentially fast, making it impossible for the
walls to touch, the bubbles to coalesce, and the transition to
complete. Old Inflation gave rise to a universe with inhomo-
geneities incompatible with the observed smoothness of the
cosmic microwave background[18]. Guth and Weinberg[19],
and later Turner, Weinberg, and Widrow[20], performed a de-
tailed analysis of the constraints needed to render OI and OI-
inspired scenarios viable. They concluded that a strong (or,
equivalently, slow) first order phase transition based on a sin-
gle scalar field could not be made to work: the ratio of decay
rate to the expansion rate per unit volume [H4 	 (T 2/MPl)4],
had to be sufficiently small

ε ≡ Γ/H4 ≤ 10−4 , (6)

initially, so that early bubbles didn’t produce inhomo-
geneities during nucleosynthesis and on the CMB. (For Γ 	
T 4 exp[−E(T )/T ] and TGUT = 1015 GeV, this implies that
E(T )/T � 46.1 initially). On the other hand, it had also to
grow by the end of inflation (ε → 9π/4) to guarantee that the
transition was completed[20]. [This implies E(T )/T � 34.9.]
In other words, successful inflation forced the decay rate to
be time-dependent: small at the beginning of inflation and of
order unity at the end. As further work has shown, this could
be achieved by invoking more fields[21] and/or a nonminimal
gravitational coupling[22].

Given what we have learned in the previous section about
resonant nucleation, it is natural to wonder whether such
effects can play a role on inflation. If we write εHN 	
T 4 exp[−E(T )/T ] to represent the ratio of eq. 6 using the
homogeneous nucleation rate, and εRN 	 T 4[E(T )/T ]−B the
ratio using the RN rate, equality is attained whenever

B = β/ lnβ , (7)

FIG. 9: Comparison of homogeneous nucleation (HN) and resonant
nucleation (RN) with power B in an expanding Universe. For a fixed
B and nucleation barrier β = E(T )/T (or Sb at T = 0), the line de-
notes equality. Values above the curve imply faster HN, while those
below imply faster RN.

where β ≡ E(T )/T (or ≡ Sb at T = 0). In Fig. 9, B is shown
for representative values of the nucleation barrier β. The line
denotes εHN/εRN = 1. The squares denote the limits imposed
by the inflationary constraints of Ref. [20]. For these values
of β, unless B � 9, which is very unlikely, resonant nucleation
rates are always faster. In d = 2, where B 	 3, it is clear that
εHN/εRN < 1 for all realistic values of β, not a surprising re-
sult.

Why is this useful for inflation? For successful inflation
with HN, the constraints of Ref. [20] limit the nucleation bar-
rier β to be fairly small O(∼ 40). [See Fig. 9.] However,
calculations of bounce actions show that β usually scales with
inverse powers of coupling constants. These two requirements
compete with each other, making it hard to have small nucle-
ation barriers with small couplings. Applying the percolation
constraint to the RN rate, one obtains βB ∼ 1016. For B = 3,
this gives β ∼ 1016/3: small couplings (or, equivalently, large
barriers) are easier to accommodate with RN, the first reason
why it may be useful for inflation.

The second and most important reason is that RN makes
it much easier to complete the transition. Clearly, if some
mechanism capable of producing the same net effect as the
fast quenching responsible for RN was present in the early
Universe, an initially slow first order transition could become
fast at some point, going from an exponential to a power law
decay. In this way, even a potential with a large initial bar-
rier would not be an impediment to the successful termina-
tion of inflation. One possible way of implementing RN in
cosmology is to invoke a second field ψ that couples to the
nucleating field φ in a way somewhat reminiscent of hybrid
inflation. In that model the inflaton φ is coupled quadratically
to another scalar field ψ which has a symmetric double well
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potential[21]:

V (φ,ψ) =
1

4λ
(
M2 −λψ2)2

+
m2

2
φ2 +

g2

2
φ2ψ2 . (8)

Inflation is driven by the energy density V (φ,0) while the in-
flaton (φ) is rolling down along the ψ = 0 valley[16]. As φ
reaches a critical value, ψ becomes spinodally unstable and
quickly rolls to one of the minima (or both, but this creates do-
main walls, another problem), terminating inflation abruptly.

The key difference with the mechanism being proposed
here is that bubble nucleation still occurs at the end of in-
flation. A possible name is hence resonant inflation (RI): it
blends OI with the physics of resonant nucleation.

Modify the potential for the field φ that gives rise to RN by
coupling another field (ψ) quadratically to it as follows,

V (φ,ψ) =
1
2

(
m2 +g2ψ2)φ2 − α

3
φ3 +

λ
8

φ4 +

+
1
2

m2
ψψ2 + |V (φ+,0)| , (9)

where φ+ is the value of φ at the global minimum of V (φ,0)
so that V (0,ψ) provides the net vacuum energy responsible
for inflation. [Note that here the inflaton is ψ.] Inflation lasts
while ψ is rolling down the φ = 0 valley. Notice that the mass
term for φ, M2

φ = m2 + g2ψ2, decreases as ψ rolls down its
potential. While M2

φ > α2/2λ, the only minimum in the φ
direction is at φ = 0. However, as ψ decreases, M2

φ will even-
tually drop below α2/2λ and a new minimum will appear at
φ+ = α

λ

[
1+(1−2M2

φλ/α2)1/2
]
. At M2

φ = 4α2

9λ , the two min-
ima are degenerate. At this point, as ψ continues to approach
zero, the minimum at φ = 0 becomes metastable. Oscillations
in φ, induced by the decrease in its mass, will induce RN. This
will be true as long as the decrease in Mφ, Ṁφ 	 g2

m ψψ̇, is fast
enough. [It was assumed for simplicity that g2ψ2/m2 � 1
which is not true for very small ψ.]

For RI to work, Ṁφ/Mφ < H during inflation and Ṁφ/Mφ >
H after it. During inflation, with a slow-roll approximation,

ψψ̇ 	−m2
ψ

3H ψ2. We then obtain,

Ṁφ 	−g2 m2
ψ

3Hm
ψ2 . (10)

Also, if N is the number of e-folds, ψ2
e = ψ2

i − M2
Pl

2π N, where
ψi(e) is the value of the field ψ at the beginning (end) of the

inflationary period. [For simplicity, it was assumed that dur-
ing inflation 1

2 m2
ψψ2 > |V (φ+,0)|, that is, inflation is domi-

nated initially by the vacuum energy of the inflaton field ψ.]
Slow-roll ends when ψ2

e � M2
Pl/12π. Using this result and eq.

10, the slow variation of Mφ implies, g2(12π)1/2 < (m/MPl)2.
[For m ∼ 1016GeV, g < 4×10−4.] This condition is also con-
sistent with the approximation g2ψ2/m2 � 1 for ψi > ψ > ψe,
that is, during inflation.

If slow-roll ends when the minimum in φ+ appears, we
obtain (this is similar to the critical condition in hybrid
inflation[21]),

α2
0

2λ
= 1+

g2M2
Pl

12πm2 , (11)

where we defined for convenience α ≡ mα0. The condition
for slow variation of Mφ during inflation forces the second
term on the rhs of eq. 11 to be very small. Thus, if we want
to impose that the φ+ minimum appears close to the end of
inflation, we must have α2

0/2λ ∼ 1, not a difficult condition to
satisfy.

As inflation ends, ψ will start rolling down fast towards the
ψ = 0 minimum and oscillate around it. Since in this regime,
Ṁφ/Mφ ∼ (g2/m2)ψ̇ψ, the rapid motion of ψ will induce the
time-dependence in Mφ needed to trigger resonant bubble nu-
cleation. In order for the transition to end successfully, the
percolation constraint εRN > 9/4π, must be satisfied. This
implies,

(Sb)
B <

4π
9

(
MPl

m

)4

. (12)

If m ∼ 1016GeV and B ∼ 2 (as indicated by preliminary re-
sults in d = 3), RI terminates efficiently if Sb � 106. Since
the inflationary phase is due to the slow-roll dynamics of the
ψ field and not by the metastable field φ, the percolation con-
straint can be satisfied by a wide range of couplings. Also,
since φ = 0 only becomes metastable after the end of slow
roll, there is no need to impose the big bubble constraint: once
ψ starts rolling fast at the end of inflation, RN will ensue and
rapid bubble nucleation and coalescence will quickly reheat
the Universe. Although several details remain to be worked
out, this preliminary analysis indicates that resonant nucle-
ation can be successfully applied to inflationary cosmology.

The author would like to thank the organizers for their kind
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