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The critical scaling behavior of Ising models with long range interactions is studied. These long-range inter-
actions, when imposed in addition to interactions on a regular lattice, lead to small world graphs. Large-scale
Monte Carlo simulations, together with finite-size scaling, is used to obtain the critical behavior of a number of
different models. These include the z-model introduced by Scalettar, standard small-world bonds superimposed
on a square lattice, and physical small-world bonds superimposed on a square lattice. These scaling results
provide further evidence to support the existence of physical (quasi-) small-world nanomaterials.
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I. INTRODUCTION

The critical behavior, as well as the transport properties,
of a particular material depend on a number of factors, in
particular the effective dimensionality of the system. Thus
one-dimensional (or quasi-one-dimesional) materials [1] be-
have differently than thin films, both of which have different
properties than bulk (three dimensional) materials. In general,
constraining the geometry of a system leads to effective di-
mensions [2, 3] less than the bulk dimension. In the two-body
interaction approximation, all materials reduce to a ‘ball-and-
stick’ model, with atoms as the ‘balls’ and the bonds between
atoms as the ‘sticks’. This leads from a particular material to
a given graph [4], with atoms at the nodes and chemical bonds
(two-body interactions) along the edges.

Recently there has been a great deal of interest in graphs
which are neither regular graphs (as are the graphs of materials
with perfect crystal structures) nor random graphs. One type
of such graph is the small-world (SW) graph [5]. Such graphs
have been used, for example, to improve scalability of parallel
computer algorithms [6–10]. Furthermore, the critical behav-
ior of models of materials, such as the Ising model, Heisen-
berg model, and random-walker models have been studied on
SW graphs [11–21]. The result of these studies is that models
on SW graphs exhibit mean-field scaling, namely they have
an effective dimension at or above the upper critical dimen-
sion of the model (which for the Ising model without disorder
is d=4).

Unfortunately, the study of such materials models on SW
networks is not of interest to experimental researchers in ma-
terials. The reason is that certain constraints due to the fixed
size of atoms and atomic bonds, as well as the necessity of em-
bedding the ‘ball-and-stick’ graph in three dimensional space,
restricts the types of SW graphs that are of interest to mate-
rials researchers. SW graphs with such constraints are called
physical SW graphs [22–24], and the critical behavior of Ising
models on physical SW graphs has been studied. This study
started with a linear graph, with added SW bonds. In this ar-
ticle, a study of Ising critical behavior on graphs starting with
a square lattice and with added SW bonds, is reported.

FIG. 1: An example of a lattice studied for L=4 (with periodic
boundary conditions) showing both the regular square-lattice inter-
actions (light lines, interaction strength J1) and a realization of the
small world (random) interactions (heavy dashed lines). This corre-
sponds to the z=5 lattice since every lattice site has four J1 interac-
tions and one SW interaction of strength J2. (Color online.)

II. MODEL AND METHODS

The models studied here are Ising models with N=L2 Ising
spins with si=±1 on a L×L square lattice with periodic
boundary conditions, and with a nearest-neighbor ferromag-
netic interaction of strength J1. A fixed number of SW bonds
with interaction strength J2 are added to the square-lattice (see
Fig. 1), by randomly picking pairs of atoms and connecting
them with a bond. Note that once the pair of atoms is picked,
these atoms are not allowed to be picked again until all atoms
have been picked. In other words, every node will have a co-
ordination number z between zmax and zmax − 1. The Ising
Hamiltonian is given by

H =−J1 ∑
〈i, j〉

sis j− J2 ∑
SW

sis j− J3 ∑
SW++

sis j . (1)
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We use either ‘normal’ SW bonds of strength J2, or else given
a SW bond of length ` between the randomly chosen atoms
we string a chain of `+1 atoms with interaction strength J3
between these chosen square-lattice atoms. We always set ei-
ther J2 or J3 equal to zero.

We will first study here in detail scaling of a model with z
SW bonds per atom with J2=1 and J1=J3= 0. We will call
this model the z-model. It was first introduced by Scalettar
[25] in 1991, before the introduction of SW networks. Never-
theless, it corresponds to a particular SW lattice. In particular,
it can be mapped onto a one-dimesional lattice with z−2 SW
interactions. This model is studied to determine whether the
scaling for it is that of [25] or of another form predicted by
Brézin and Zinn-Justin [26] and utilized to study Ising sys-
tems with long-range interactions [27–30].

We utilized standard Monte Carlo (MC) simulations [31],
with the site for an attempted update chosen at random. We
utilized a Glauber flip probability and the SPRNG [32] ran-
dom number generator. In particular, if the next random num-
ber is r the spin is flipped if

r ≤ exp−Enew/kBT

exp−Eold/kBT +exp−Enew/kBT (2)

where Eold is the current energy and Enew is the energy if
the chosen spin is flipped. The temperature is T and kB is
Boltzmann’s constant (in our units kB=1). For a system with
N Ising spins, the units of time are Monte Carlo Steps per
Spin (MCSS), which corresponds to N spin flip attempts. We
measured a number of quantities, and report here on the or-
der parameter |M|= 1

NK ∑K
j=1

∣∣∑N
i=1 si

∣∣
j, as well as the integer

moments of the magnetization
〈
Mb

〉
= 1

K ∑K
j=1

( 1
N ∑N

i=1 si
)b

j .
The summation index j runs over the K different configura-
tions generated in the Monte Carlo simulation. From these
moments the susceptibility χT = N

kBT

(〈
M2

〉−|M|2) and the

Binder fourth-order cumulant U4 = 1− 〈M4〉
3〈M2〉2 were calcu-

lated. Simulations were performed using up to 128 process-
ing elements using trivial parallelization. Obtaining points for
the z-model for the largest system size N=2562 took about 52
hours per data run. Averages for all runs used between K=106

and 108 MCSS per point. The crossings for different N values
for U4 give the critical temperature Tc for each model [31].
These values are listed in Table I.

III. RESULTS AND SCALING: z-MODEL

In this section we present results for the z-model (J1=J3=0,
J2=1) where every node has z random links. There are no
square-lattice interactions, and consequently this model maps
onto a linear chain with every spin having one random (small-
world) link if z=3. This model also corresponds to the model
introduced by Scalettar [25]. We studied the model for z
values between 3 and 8, and simulated system sizes up to

J1 J2 J3 z Tc model

1 0 0 4 2.2691· · · square lattice

0 1 0 2 0.0 z-model (linear chain)
0 1 0 3 1.821 z-model
0 1 0 4 2.885 z-model
0 1 0 5 3.914 z-model
0 1 0 6 4.933 z-model
0 1 0 7 5.942 z-model
0 1 0 8 6.950 z-model

1 1 0 5 3.791 SW-model
1 1 0 6 4.872 SW-model

1 4 0 5 5.391 SW-model
1 4 0 6 8.835 SW-model

TABLE I: Table 1. Values of the critical temperature Tc for the var-
ious models described in the text. All values are accurate within
±0.005. See the text for a full description of the models.
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FIG. 2: The Binder Cumulant U4 (a) and χT/N (b) is shown for the
z-model (J1=J3=0, J2=1) for N=642, 1282, and 2562. In (a) the
horizontal line is U (mf)

4,∞ . The legend holds for both graphs. (Color
online.)

N=2562= 65536 (although the starting square-lattice struc-
ture is unimportant for the z-model, we will still report the
system size as N=L2).

Fig. 2 shows the values for U4 and χT for the z-model.
These figures also allow one to read off the value for Tc. The
order parameter for the z-model is shown in Fig. 3 for various
values of z. Also shown is the mean-field (mf) value given by
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FIG. 3: The magnetization per spin is shown for the z-model with
N=2562. The solid line is the mean-field result of Eq. 3. (Color
online.)

the solution of the equation

M(T ) = tanh
(

Tc

T
M(T )

)
. (3)

Note that as z increases the curves for |M| approach that of the
mean-field result.

The general form for scaling at a second order phase tran-
sition as a function of the reduced temperature

t = |(T −Tc)/Tc| (4)

is given by [31]

χ = L−γ/ν
eff f

(
L1/ν

eff t
)

(5)

with γ the critical exponent for χ and ν the critical exponent
for the correlation length. Here the effective length that enters
scaling, Leff, depends on the dimension of the system. For a
regular d-dimesional lattice Leff=N

1
d . However, this type of

scaling does not hold for systems at or above the upper criti-
cal dimension. These systems behave in a mean-field fashion,
such as the z-model. Scalettar showed that the average sepa-
ration of spins in the z-model is

`sep = ã(z)+ b̃(z) ln(N) , (6)

and suggested that scaling for the z-model should scale as
in Eq. 5 with Leff∼`sep∼ln(N). His fit parameters (compare
Fig. 5 of ref. [25]) used Tc=1.87 and fits of a=2 and b=1.887
in plots of χ/[ln(N)]a versus (T−Tc)[ln(N)]b. Our data for the
same parameters are shown in Fig. 4(a). Note that the crossing
of U4 with different system sizes actually gives a lower value
for Tc (Table I). Using the best fit parameters a and b for
data collapse scaling of our data for z=3 and the value of Tc
from the U4 crossings gives the fit shown in Fig. 4(b). In nei-
ther case in Fig. 4 does the scaling look very good. Note that
with the additional computer power available today, our sys-
tem sizes and statistics are much greater than that of ref. [25].
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FIG. 4: Scaling as in ref. [25] for the z=3 model, with the attempted
scaling form of Eq. 5 with Leff=ln(N). In (a) the parameters of
ref. [25] are used: Tc=1.870, a=2.0, b=1.8868. In (b) the best-fit
parameters for the scaling form are used, with Tc=1.821 given by
the crossing of the Binder cumulant and the fit parameters a=4.1
and b=3.58. (Color online.)

In summary, the z-model does not scale as was proposed in
1991 in ref. [25]. To ensure that these results were accu-
rate, each author developed independently a code for the z=3
model using different random number generators. Both codes
gave comparable results, leading to a belief that our Monte
Carlo data are indeed correct for this model.

At and above the upper critical dimension, Brézin and Zinn-
Justin in 1985 [26] predicted that the Ising model should scale
such that for infinite system sizes the value of the Binder
cumulant at Tc should be equal to U (mf)

4,∞ ≈ 0.2705. As ex-
pected, this value is different from the d=2 Ising result of
U (d=2)

4,∞ ≈0.615 [31]. Furthermore, Brézin and Zinn-Justin pre-
dicted that the mean-field systems should exhibit finite size
scaling for small values of the reduced temperature t with

U4(t) = fU
(

tN
1
2

)
(7)

and taking derivatives with respect to t gives

∂U4(t)
∂t

= N
1
2 f ′U

(
tN

1
2

)
. (8)
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FIG. 5: The Binder 4th-order cumulant U4 scaling for the z-model as
given by Eq. 7 and 8. (a) z = 3 for various N values. (b) N=2562

for various z values. (c) for various z values dU4
dT evaluated at the

predicted value of U (mf)
4,∞ . (Color online.)

They also predicted for small t the finite-size scaling form

χT = N
1
2 fχ

(
tN

1
2

)
. (9)

Although not stated explicitly in their paper, their scaling form
for the order parameter is

|M(t)|= N− 1
4 fM

(
tN

1
2

)
(10)

for T<Tc. The predicted scaling for U4 and its derivative with
respect to t works extremely nicely for all values of z from
z=3 to our largest studied value z=8, as shown in Fig. 5. It

should be stressed that this scaling plot has no adjustable pa-
rameters, since the value for Tc is obtained by the crossings
of U4 for various values of N. Similarly, The exact mean-field
(mf) value for U4 for the infinite lattice [26] is shown as the
horizontal lines. Fig. 6 shows the predicted scaling for var-
ious values of N and z from Eq. 9 for χT and from Eq. 10
for |M|, again with no adjustable parameters since Tc is taken
from the crossings of U4. Again the scaling is very good. The
asymptotic slopes for small t and large N with large tN

1
2 for

|M| in Fig. 6(a) is 1
2 . This value can be seen since the scaling

function gives

|M|= N− 1
4 fM

(
tN

1
2

)
→ N− 1

4

(
tN

1
2

) 1
2 = t

1
2 = tβ (11)

with the mean field value for this exponent is β= 1
2 . Similarly,

since the mean field value of the susceptibility exponent is
γ=1 the asymptotic slope in Fig. 6(b) should be −1. Most
of the spread in the scaling in Fig. 6 is a vertical shift of the
curves for various values of z. This may be due to one or
more of several reasons. One possibility would be slight errors
in the values of Tc, perhaps caused by different convergence
rates with different z to the infinite lattice values. Another
possibility would be that the prefactor for |M| and χT at Tc for
finite N is slightly different. Our data at this point is not of a
sufficient quality to decide among these possible alternatives.
Nevertheless, the scaling predicted by Brézin and Zinn-Justin
[26] is seen to hold.

IV. RESULTS AND SCALING: SW-MODEL

This section presents results for scaling for the normal
small-world model (SW-model). This has J1=1, J3=0, and
a non-zero positive value for J2. Every spin has four nearest-
neighbor ferromagnetic interactions J1 due to the underlying
square-lattice structure. We will study the case where every
spin has one SW bond and hence z=5, and the case where
every spin has two SW bonds and hence z=6. From the cross-
ings of U4 for various values of N we obtain the values of the
critical temperature listed in Table I. Fig. 7 shows that the
anticipated form for the scaling of U4 from Eq. 7 and of the
derivative of U4 with respect to t from Eq. 8 provides excel-
lent data collapse scaling for various values of z and N and for
both the studied values of J2: J2=1 and J2=4. The thickness
of the region of data collapse seems to be more from the sta-
tistical properties of the data, or from small errors in Tc, than
from a lack of scaling or of corrections to scaling. Fig. 8(a)
shows the scaling predicted from Eq. 10 for the order parame-
ter |M|, and Fig. 8(b) shows the data collapse scaling for χT
from Eq. 9. In both cases the data collapse is very good for
both values of J2, for both z=5 and z=6, and for both system
sizes shown of N=1282 and N=2562. The scaling for smaller
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online.)

system sizes demonstrates corrections to scaling, and conse-
quently only our largest two system sizes are shown in these
scaling figures. Again, it must be emphasized that since the
value for Tc is taken from the crossings of U4 the curves in
Fig. 7 and Fig. 8 have no adjustable parameters.

The underlying scaling behavior of the SW model with
z=5 and z=6 is consistent with other studies of Ising mod-
els with SW interactions (usually starting from d=1) models
[11–13, 15, 16, 18, 20, 22–24]. Consequently, these mod-
els have a critical behavior with mean-field critical exponents
γ=1, β= 1

2 , α=0, and ν= 1
2 (but as in the comment to Ref. [13]

with ν̄=2−α=2).
There is also a prediction [17] that in the N→∞ limit the

order parameter should scale for T<Tc as

|M|= Ã
√

Tc−T (12)

with the mean field amplitude Ã ∝ p
βd=2−βmf

γd=2 diverging as the
strength of the SW couplings p approaches zero. In [17] it
is argued that this behavior will also be seen as the number
of SW bonds becomes small, i.e. when z=4+p→4 for our
square-lattice model. We have simulated our square-lattice
model for z=5 with weak J2=0.01, 0.05 ,0.1, 0.5 for system
sizes up to N=3842. However, we were not able to obtain the
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FIG. 7: The Binder 4th-order cumulant U4 scaling for the SW-model
(J1=1, J3=0) for z=5 and z=6 for various N values and for both
J2=1 and J2=4. (a) U4 = fU (tN

1
2 ) from Eq. 7 with N=1282 and

N=2562. The horizontal line the theoretical prediction for U (mf)
4,∞ and

(b) dU4
dT evaluated at the predicted value of U (mf)

4,∞ from Eq. 8. (Color
online.)

predicted scaling. To see this scaling requires that the width
of the mean field region, which is [17] within

|Tc−T | ∝ p
1

γd=2 ∝ |Tc− T̄c,d=2| , (13)

be sufficiently probed by the system size that finite size effects
are negligible. It would be interesting to have a prediction for
how finite N would manifest itself in this scaling. Computer
simulations for SW systems with varying strengths J2 have
also recently been reported [20].

We have also investigated the case where the number of
SW connections goes to zero as N increases. This study is
motivated by physical small-world networks [22–24] where
the number of short-cut bonds (which are SW bonds) can-
not grow as fast as N. In [22, 23] it was shown that the
properties of such systems for small N can nevertheless show
some of the mean field properties of a full small-world sys-
tem. Fig. 9 shows U4 for both the pure square-lattice Ising
model (z=4) and the SW model with z=4+ 2√

N
. For the SW

model with z=4+ 2√
N

as N→∞ the pure square lattice results
with Tc=Tc,d=2 must be recovered. As seen in Fig. 9 even for
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256 SW bonds of strength J2=4 for N=2562=65536 spins
the temperature value where U4 changes from about 2

3 to zero
is shifted by about 5%. This indicates that even a vanishing
fraction of SW bonds can have effects on the behavior of the
system. This is demonstrated in the scaling of |M| in [23].

V. RESULTS AND SCALING: PHYSICAL SW-MODEL

There are two ways to obtain physical SW networks [22–
24] to study the effect of SW bonds that can be built from
physical building blocks. These physical SW networks must
satisfy certain constraints so that they can be built from phys-
ical building blocks. These building blocks may be atoms,
beads necklaces [23], or ball-and-stick models of atoms. One
way to obtain physical SW networks is to have a vanishing
number of SW bonds (short-cuts) as N increases. This was
discussed in the previous section. The second way to obtain a
physical SW network is to build the SW bonds from the un-
derlying building blocks. This was done in [22] starting from
a d=1 chain. Each SW bond is then composed of a string of
spins with ferromagnetic coupling constant J3, with the num-
ber of spins along the chain equal to the Euclidean distance
between the randomly chosen sites. In [23] it was shown that
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FIG. 9: The Binder 4th-order cumulant U4 for the SW-model (J1=1,
J3=0). This is both with no small-world interactions (pure square-
lattice Ising model) (J2=0), and with L small-world interactions with
J2=4 (z=4+ 2L

N ). The horizontal line is U (d=2)
4,∞ for the d = 2 Ising

model (dashed). (a) shows U4 versus T and (b) shows the predicted
scaling with the d=2 value of ν=1. Both legends list symbols for
data in both graphs. (Color online.)

the total number of spins in the d=1 case starting with N0
spins goes as Ntot∝N2

0 . For a d=2 model on a L2 lattice the
total number of spins needed for every initial spin to also have
a SW bond is expected to be Ntot∝L3. This severely limits the
system size that can be simulated. We studied only system
sizes up to L2=962=9216 in this section, which corresponds
to Ntot=185635 total Ising spins.

Here we present results for the physical SW model with
J2=0 and J1=J3= 1. Fig. 10 shows U4 and the scaling of U4.
The SW bonds are built from linear chains of Ising spins. The
linear Ising model does not have a finite temperature critical
point. Consequently, one expects from renormalization group
arguments that the critical exponents should be those of the
d=2 Ising model. Furthermore, one expects that the critical
temperature should be the same as for the square lattice Ising
model, Tc= 2J1

ln(1+
√

2)≈2.269 J1. Fig. 10(a) shows that indeed

the SW bonds built from linear chains of spins do not signif-
icantly affect the behavior of the system. This is also evident
in the scaling of U4 shown in Fig. 10(b). The scaling uses the
d=2 Ising exponent ν=1.
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FIG. 10: The Binder 4th-order cumulant U4 for the physical-SW-
model (J1=1, J2=0, J3=1) with N

2 physical-small-world interac-
tions. (a) Values of U4 versus T . The horizontal lines are the
predicted values for U (mf)

4,∞ for the mean-field model (solid) and of

U (d=2)
4,∞ for the d=2 Ising model (dashed). (b) The predicted scaling

of U4 with the square-lattice Ising exponent ν=1 and the square lat-
tice Ising value (z=4) of Tc. Both legends list symbols for data in
both graphs. (Color online.)

VI. DISCUSSION AND CONCLUSIONS

The Ising ferromagnet on models starting from the square
lattice Ising model has been studied. The first conclusion,
which has also been reached by other researchers, is that the
Ising model with ‘normal’ small world (SW) bonds exhibits
mean field scaling [Fig. 7 and Fig. 8].

We have investigated in detail the z-model of ref. [25], and
found that the scaling form for χT is given by Eq. 9 from

[26] [Fig. 6(b)] rather than Eq. 5 with Leff=ln(N) postulated
in [25] [Fig. 4]. The scaling of ref. [26] [Eq. 7 through Eq. 10]
also works without any adjustable parameters for the z-model
for other quantities such as the Binder cumulant U4 [Fig. 5]
and the order parameter |M| [Fig. 6(a)]. Scaling as predicted
for N→∞ predicted in ref. [17] for a low density or for weak
SW bonds could not be seen in our data. This most likely
is because the finite size effects for the N values we studied
obscured the predicted scaling.

We have also investigated the Ising model on physical SW
networks starting from an underlying N=L2 square lattice.
The physical SW networks either have a number of SW bonds
that vanish as N→∞ (here z=4+ 2√

N
), or are constructed from

a linear chain of spins with the number of spins along the
chain equal to the Euclidean distance between the randomly
chosen spins on the square lattice. The study here can be
compared to physical SW studies in [22–24], as well as the
study with power-law SW bond strengths [18]. The summary
is twofold. First, physical SW bonds do not change the criti-
cal properties of the model as N→∞. Second, the physical SW
bonds have some effect on the scaling properties. They lead
to much slower approaches to the N→∞ results. They also
show a regime near the effective Tc,N , given by the tempera-
ture where for finite N the value of U4 quickly changes be-
tween 2

3 and zero, which shows some properties of mean field
behavior. This is illustrated in [Fig. 9 and Fig. 10] and seen
in [22, 23]. These type of SW connections have been used
as models of liquid and amorphous selenium [33]. Conse-
quently, the current study provides further evidence that phys-
ical (quasi-) SW nanomaterials may exhibit mean field prop-
erties in both their critical behavior and in their transport prop-
erties.
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