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Conceptual Problems in Quantum Field Theory
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We review some conceptual problems in quantum field theory, with an emphasis on exact results and open
problems.

We review some conceptual problems in quantum fi-
eld theory, with an emphasis on exact results and open
problems. The review is organized as follows: 1. The
Stückelberg - Bogoliubov - Shirkov - Epstein - GlaserS(g)
operator. A brief review of perturbative results, including
the adiabatic limit. Open problems: the infrared problem
in QCD and its relation to gauge invariance. The problem
of convergence and asymptotic character of theS-matrix
series: the problem of large coupling. Problems with the se-
ries for (large and) small coupling: definition and triviality.

2. Nonperturbative results and problems: Triviality of the
S matrix and nonperturbative construction ofS(g) . Open
problems.

1 Stückelberg-Bogoliubov-Shirkov-
Epstein-Glaser S(g) operator.

In perturbation theoryS(g) is the generating functional for
the time-ordered products of Wick polynomials,

c

S(g) = 1 +
∞∑

n=1

1
n!

∫
d4x1 . . . d4xn Tn (x1, . . . , xn) · g (x1) · (g2) . . . g (xn) ,

whereg ∈ D(R4) is the “adiabatic switching”.

d

The n-point operator-valued distributionsTn are the basic
objects of the theory. They are constructed inductively from
T1 , through causality, unitarity and Lorentz-covariance:
a) S(g)−1 = S(g)∗ (unitary)

b) S (g1 + g2) = S (g1) S (g2) if

a. supp g1 > supp g2 (this ordering refers to the time-
coordinate)

b. supp g1 ∼ supp g2 (causality)
Where “∼” means spaceline;

c. There exists a unitary representationU(a,∧) of the
Poincaŕe group P ↑+ on Fock spaceF (the free field
representation) such that (Poincaré covariance)

U(a,∧)S(g)U(a,∧)−1 = S({a,∧}g) .

Above, supp g means the (space-time) support ofg , assu-
med to be an infinitely differentiable function of compact
support, a class denoted byD(R4) – and

({a,∧}g)(x) ≡ g
(∧−1(x− a)

)
.

What are the advantages of working withS(g)?
Less is required than the Wightman axioms; forg ∈ D,

we may work in Fock space, the infrared problem is decou-
pled and arises only in the adiabatic limitg → 1. However:
the main properties of general quantum field theory are pre-
served, in contrast to “effective” field theories.

Let now T1(x) be the interaction Lagrangian in first or-
der (e.g. T1(x) = ie : ψ(x)γuψ(x) : Aµ(x) for QED: all
fields free fields onF ). It turns out that by causality

Tn (x1, . . . , xn) = T (T1(x1) . . . Ti(xn)) (1)

awayfrom the total diagonal

∆n (x1, . . . , xn) = {(x1, . . . , xn) (x1 = x2 = . . . = xn)} .
(2)

The extension of theT (x1, . . . , xn) to the total diagonal is
not unique and is fixed by Poincaré covariance, unitarity and
(re) normalizability: the scaling degree of each local term,
obtained by normalizingTn, is ≤ 4.

This scaling degree – also called Steinmann degree –
is defined in the process ofdistribution splitting, a basic
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method used in causal perturbation theory ([1-3]), which is
auxiliary in the determination ofTn . A convenient sum-
mary may be found in [4]. This degree is related to Wein-
berg’s power counting [11]. Together with an additional re-
quirement –perturbative quantum gauge invariance– the
Tn are determined also in nonabelian gauge theories, but the
“gauge group” – with antissymetric structure constants – is
derivedfrom the above axioms [3]. It is to be emphasized
that the requirement of perturbative quantum gauge invari-
ance ispurely quantum, without any reference to classical
physics. It involves a gauge chargeQ :

A
′µ(x) = e−iλQ Aµ(x)eiλQ (3)

wich may be expanded by means of the Lie seriesAµ(x)−
iλ [Q,Aµ(x)] + 0(λ2), where Aµ(x) is a free (massive or
massless) vector field in the theory. Comparing with the

desired expansionA
′µ(x) = Aµ(x) + λ∂µ u(x) + 0(λ2) ,

which is suggested by classical field theory, except that now
u(x) is, naturally, assumed to be a free quantum field with
the same mass asAµ , we conclude that

[Q,Aµ(x)] = i∂µu(x) (4)

which determinesQ up to a c-number, due to the irreduci-
bility of the Fock representation. It turns out [3] thatu(x) is
a Fermionic ghost field, in order thatQ have the important
property of being nilpotent:

Q2 = 0 (5)

As remarked, the method also works (with simplifications)
for massive gauge theories [6]. Quantize the free vector fi-
elds (Aµ

a)a=1,...,M by

c
(
¤ + m2

a

)
Aa

µ = 0; [Aµ
a(x), Aν

b (y)] = igµν δa,b∆m(x− y), Aµ∗
a = Aµ

a , (6)

d

where ∆m is the Pauli-Jordan distribution of massm,
which corresponds to the Feynman gauge. The represen-
tation of this *-algebra requires an indefinite inner product
space. It is thus natural to work in a Krein Fock spaceF ,
denoting the usual scalar product inF by (·, ·) andA+ the
adjoint of A with respect to(·, ·) . Let J be the Krein ope-
rator: J2 = 1; J+ = J . Then the indefinite inner product
〈·, ·〉 is defined by

〈ψ, φ〉 ≡ (ψ, Jφ) ψ, φ ∈ F (7)

and * denotes the adjoint with respect to〈·, ·〉:

0∗ = J0+J ; 〈0ψ, φ〉 = 〈ψ, 0∗Φ〉 . (8)

For the ghost fields,ua(x)∗ = ua(x) and for the an-
tighost fields ũa(x)( 6= u+

a (x)!) , ũ∗a(x) = −ũa(x) ([3],
pg. 126). Convergence of the integral forQ (which results
from (4)),

Q =
∫

d3x
∑

a

∂νAν
a(x)~∂0ua(x),

(massless case) follows by a method due to Requardt [19].
Notice that byAν∗

a = Aν
a and ua(x)∗ = ua(x), Q above

is an unbounded∗–symmetrical nilpotent operator onF :

Q = Q∗ (on a dense invariant domainD) (9)

This structure implies perturbative pseudo unitarity in
the Krein-Fock Hilbert space, defined as being the following
property

Tn (x1, . . . , xn)∗ = T̃n (x1, . . . , xn) (10)

where the T̃n (x1, . . . , xn) are then-point distributions
corresponding, however, toS(g)−1 instead of S(g)
([3], pg. 127). By means of (5) one easily finds [3] that

D = ran Q⊕
(
ker Q

⋂
ker Q+

)
⊕ ran Q+ .

In addition it is assumed that

Jker Q+
⋂

ker Q = 1 (positivity assumption). (11)

Then the〈·, ·〉 – product is positive definite on

Hphys = ker Q
⋂

ker Q+ = ker Q/Ran Q , (12)

which is interpreted as thephysical subspaceof F : it does
not contain the unphysical degrees of freedom [3]. From
this and (10) the usual unitarity a) on Hphys follows ([3],
pg. 128). This structure, with the Hermiticity condition (9)
is most clearly expounded in [6], (which we followed), in
which it is also shown that for massive theories the condition
of perturbative quantum gauge invariance may be replaced
by the physical consistency of theS matrix

[Q,S]/ker Q = 0 , (13)

whereS– the trueS matrix – is theadiabatic limitof S(g)

Sψ = lim
∈→0

S(g∈)ψ (14)

for all ψ ∈ D , whereg0 ∈ D(R4), and

g∈(x) ≡ g0(∈ x) , (15)

where g ≡ g0(0) > 0 is the (physical) coupling constant.
For massive theories the existence of the adiabatic limit was
proved by Epstein and Glaser [7].
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From theories with massless particles, a more elaborate
condition is required ([3], pg. 99), which is equivalent to
the Ward-Takahashi identity for QED ([3], pg. 100) and
which, for masslessSU(N) - Yang-Mills theories, implies
the Slavnov Taylor identities ([20], [16]).

The differences regarding the usual BRST charge are
([3], pg. 240): a) the BRST variation of thetotal Lagran-
gian iszero, but the gauge variation of the interactionT1,
only, is not zero but adivergence; b) the BRST transfor-
mation operates on the interacting fields whereas the gauge
variation transforms free fields. See, however, recent more
general formulations [5].

What are theadvantagesof causalperturbation theory?
First and foremost is the treatment of gravity [3]: in the tra-
ditional approach, with ultraviolet regularization, it isun-
clear, due to non-renormalizability, how to obtaincutoff-
independent finite results. In the causal theory one has only
to fix finite (normalization) constants obtained in the pro-
cess of distribution splitting. Of course, the number of finite
constants grows with each order, and it isunclear how to fix
them; but this (open) problem is of a less crucial nature. Se-
condly there is the conceptual clarity: for instance, the exis-
tence of a scalar field (“Higgs field”) is alsoderived from
the “axioms”, without assuming spontaneous breakdown of
symmetry. Since gauge symmetry is a local symmetry, it
cannot be broken (Elitzur’s theorem, see [8]), and it seems
very artificial to introduce an extra global symmetry which
is, then, broken. Finally, for some superrenormalizable the-
ories, a mechanism ofdynamicalmass generation may take
place, e.g., in (QED)3. Because

πµν

(
k2 = 0

) 6= 0 (16)

whereπµν is the vacuum polarization tensor, the photon ac-
quires a nonzero mass.

In the causal theory there is no regularization ambiguity
for the photon mass [4], in contrast to the ambiguities found
by Deser, Jackiw and Templeton in [9].

As remarked the true scattering matrix is recovered only
in the adiabatic limitg → 1 which was shown in [7] for
massive theories, and in [10] for QED (see also [11] for an
approach in terms of the algebra of observables). In QED
there exists the Bloch-Nordsieckcancellation, but the latter
is not effective innon abeliangauge theories. For theories
such as QED, if we callFn the amplitude for a given pro-
cess, with the additional production ofn (“soft”) photons
(“Brehmsstrahlung”), the overall (inclusive) physical proba-
bility

P =
∑

n

|Fn|2 (17)

is infrared finite. In QED we also have exponentiation of
infrared divergences: in anyS-matrix amplitudeF0 , the in-
frared divergences may be factored out,

F0 = eD G0 , (18)

where D is a simple explicit divergent quantity, andG0 a
new pertubative series, which is free of infrared divergences.

It seems that in QCD there is no cancellation, but exponen-
tiation holds. ThusD = −∞, F0 vanishes. Since there
is no cancellation, physical probabilities vanish as well – as
far as perturbation theory is, at least, asymptotic – and one
speaks of perturbative infrared slavery. This is an unproved
conjecture for qcd, at least for initial states which are not
colour singlets; see [12]. In refs. [13] and [14] the authors
start with the remark that individual Feynman graphs, are
not gauge invariant, but that appropriate sums (“invariance
classes”), are: for instance, for second-order Compton scat-
tering, the sum of the two diagrams where the external pho-
ton lines are interchanged.

They generate these invariance classes in QED by loo-
king at Green’s functions of a “dressed” electron fieldχ,

χ = e
∫

fµAµτψ , (19)

where τ is a translation operatorτp′ → p′ − k′ acting on
momentum space,fµ is a chosen function andψ is the
usual electron field, thus given by the nonlocal transforma-
tion (the inverse of (19)):

ψ(p′) =
∫

d4q′S (p′, q′, Aµ) χ(q′)

with

S (p′, q′, Aµ) = exp

[
−e

∫
d4kfµ(q′, k)Aµ(k).τ

]

× δ(p′ − q′) . (20)

With this manifestly gauge-invariant formulation of QED
there follows simple proof of infrared exponentiation.

In qcd, due to the self-coupling of the gluons, the gluon
field must be dressed too. This is an open problem which
affects the whole structure of qcd. Indeed, the “ellipsoi-
dal bound” on the Gribov horizon contradicts the asymptotic
behaviour at large momentum predicted by the perturbative
renormalization group [21]. The relation between the infra-
red problem and gauge invariance remains thus obscure in
these theories, and the limitg → 1 remains open.

In addition to ultraviolet and infrared divergences, there
arises an independent divergence in quantum field theory,
that of the (already renormalized)S-matrix series

S(g = α) =
∞∑

n=0

Sn αn . (21)

We review this aspect briefly following [15]. Typically,
Sn ∼ (n!)L for some L (e.g. L = 1, 2, . . .) due
to the growth of the number of graphs at each ordern .
Thus, S(α) is a divergent series, but which is believed to
be asymptotic, e.g., for the gyromagnetic ratio (replacing
S(α)):

(
g − 2

2

)
(α) =

1
2

α

π
− 0.328

(α

π

)2

+ 0(α6)
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where

α = fine structure constant=
1

137.0 . . .
. (22)

Given a functionf defined on an open intervala < x < b ,
one says that the functionfN defined on the interval, is
asymptotic tof of order N at a if ( x → a+ means the
limit from the right):

lim
x→a+

f(x)− fN (x)
(x− a)N

= 0 . (23)

This general definition applies in particular to the expression

fN (x) =
N∑

n=0

an(x− a)n . (24)

If one is given a sequence{a0, a1, a2, . . .} and

N∑
n=0

an(x − a)n is asymptotic to f of order N at

a for all N = 0, 1, 2, . . . then one says that the series
∞∑

n=0

an(x− a)n is asymptotic tof at a and writes

f(x) ∼
∞∑

x=0

an(x− a)n . (25)

Now, if lim
x→a

[f(x)− fN (x)] [x − a]−N = 0 , it evi-

dently follows that lim
x−a

[f(x)− fN (x)] [x − a]−k = 0

for k = 0, 1, . . . , N − 1 , so when
N∑

n=0

an(x − a)n is

asymptotic tof of order N at a , then:

c

lim
x→a+

f(x) = a0 − f(a+), (26)

lim
x→a+

[f(x)− f(a+)][x− a]−1 = a1 = f ′(a+), (27)

...

lim
x→a+

[
f(x)−

N−1∑
n=0

f (n)(a+)
n!

(x− a)n

]
[x− a]−N = aN =

f (N)(a+)
N !

. (28)

d

Thus, when a functionf is asymptotic of orderN at a to

an expression
N∑

n=0

an(x − a)n , the functionf necessarily

has N derivatives from the right ata and the coefficients
an are uniquely determined as Taylor coefficients

an =
fn(a+)

n!
, n = 0, 1, . . . , N . (29)

Thus, the assertion that the gyromagnetic anomaly(
g − 2

2

)
(α) has the asymptotic series

∞∑
n=1

an (α/π)n

at zero means no more and no less than that

(
g − 2

2

)
(α)

is defined forα in some intervala < α < α0 and has
derivatives of all orders from the right at0 .

Now, for QED,α ≈ 10−2 . Suppose now thatSn '

cn! c > 0 . ConsiderSN−1(α) =
N−1∑
n=0

Snαn asymp-

totic to S(α) at α = 0 . Thus, by Taylor’s formula with
remainder

S(α)− SN−1(α) = S(α)−
N−1∑
n=0

S(n)(0+)
n!

αn =

= RN (α) ; RN (α) =

α∫

0

S(N)(t)
(N − 1)!

(α− t)N−1dt .

Now RN (α) −→
N→∞

∞ for any α 6= 0 but RN (α) '
cN !αN . For α small enough we may consider (assuming
N large enough – Stirling’s formula; treatingN as conti-
nuous parameter; justified a posteriori):

ln RN (α) ∼ N ln N + N ln α,

d

dN
ln RN (α) ∼= 1 + ln N + ln α = 0

=⇒ ln N = −1− ln α =⇒ N = e−1e−ln α

' e3 ' 25 for α ≈ 10−2,

d2

dN2
ln RN (α) =

1
N

> 0 (minimum!).
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If, however, α ' 10 (qcd) there is no minimum, so that,
even if the series is asymptotic, there is no hope of approxi-
mating the true function by a finite sum of the perturbation
series!

This is the problem oflarge coupling. It can only be
attacked by a construction of the theory in an intrinsically
nonperturbativeway. A first step in this direction is repor-
ted in section 2.1.

An alternative approach would be to to try to prove a
property of thenonperturbative solutionwhich guarantees
that a special summability method (e.g. Borel’s)applied to
the perturbation seriesnecessarily yields a unique answer –
that is, the right one, see [15] for a nice review.

A second nonperturbative issue is thetriviality of the S
matrix. It is conjectured [16] that the(: φ4 :)4 or (QED)4
theories, being not asymptotically free [16], lead to a trivial
S matrix, i.e., S = 1 . This is sometimes taken as an argu-
ment in favor of “effective theories”: since the photon has a

hadronic component with a probabilityα ∼ 1
137

∼ 1%,

QED is not an isolated field of physics but is intimately
linked to strong interactions. This is physically clear, but,
simply theoretically, whatis then the renormalized (Dyson)
S-matrix of (QED)4?

It cannot be asymptotic if it is trivial, and yet it yields
the best and most precise results of science! Weinberg
[16] argues that the rigorous lattice-field theory results of
Aizenman-Fr̈ohlich are not conclusive to show triviality of
(: φ4 :)4 , as well as that the renormalization-group argu-
ments are inconclusive to show triviality of(: φ4 :)4 and
(QED)4. Nevertheless trivialitymight be true, at least for
(: φ4 :)4 ! A partial result in this direction is in section 2.2.

2 Nonperturbative Results and Pro-
blems

2.1 Nonperturbative construction of S(g)
(with L.A. Manzoni and O. Bolina)

Let H0 =
∫

ω(k)a∗(k)a(k)dk , with ω(k) =
(
k2 + m2

)1/2
, be the free field Hamiltonian corresponding

to a zero-time scalar fieldφ(x, 0) of massm > 0 , and,

formally for g ∈ D(R2),

Vg(t) ≡
∫

dx g(x, t) : φ4(x, 0) : , (30)

Hg(t) ≡ H0 + Vg(t) , (31)

H̃(t) ≡ Hg(t) + M1 . (32)

(M a constant introduced to makẽH(t) a positive ope-
rator). Then (W.W., L.A. Manzoni, O. Bolina, preprint,
Univ. São Paulo, to appear in J. Math. Phys.):

THEOREM There exists a unique solution of the evolu-
tion equation

i
∂u(t, s)

∂t
ψ = H̃(t)U(t, s)ψ , (33)

where ψ ∈ D(H̃(s)) is dense inF . Further, defining the
“Dirac picture propagator” by

UD(t, s) ≡ ei(H0+M)tU(t, s)e−i(H0+M)s , (34)

then (s− lim means the strong limit, i.e., on every vectorφ
of F ),

S(g) ≡ s− lim
t→+∞
s→−∞

UD(t, s) , (35)

exists and satisfies the unitary a) and first causality condi-
tion b) (for supp g1 > supp g2 ).

The second causality condition and Lorentz covariance
are still open, as well as the adiabatic limit along the lines of
[7] or [11].

2.2 Triviality of the S Matrix

There are virtually no results on the issue of triviality of the
S matrix. K Hepp [17] studied some models which have
no vacuum polarization (a persistent vacuum), but nontrivial
renormalization of the mass and the coupling constant. He
called theseLee models, and this class of (partially soluble)
models the “Royaume Interḿediaire”.

Let H0 denote the free Hamiltonian of scalar Bosons of
massm > 0,

Bε = [−π/ε, π/ε]s, with ε > 0 ; (36)

ε−1 plays the role of a (momentum) cutoff, which later tends
to infinity in an appropriate manner ([17], [18]). The Hamil-
tonian is:

c

Hε = H0 + V (37)

where

Vε = λ

∫

Bε

4∏

i=1

∫
d~pi√
µi

δ (~p1 + ~p2 − ~p3 − ~p4) a∗(~p1)a∗(~p2)a(~p3)a(~p4), (38)
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and

µi = µ(~pi) =
√

~p 2
i + m2, m > 0 .

d

The number operator commutes withH and Fock space
decomposes into (labelled byN ) dynamically independent
sectors, with no vacuum polarization (but: renormalization
of mass and coupling constant are necessary!)

There are the following results [18];s is given by (36)!
THEOREM [18]
a) If s = 3, either the theory istrivial or E0(N) ≤

−BN2 , with B > 0 independent ofN , and E0(N) the
ground state energy in the sector ofN particles (thus, in this
case the theory is physically inacceptable, because it leads
to infinite energy density);

b) If s = 2 , the theory isnontrivial.
To the extent that (37), (38) is an approximation of

(: φ4 :)s+1 (discussed in [18]), the previous theorem shows
the marked difference betweens = 2 (s + 1 = 3) and
s = 3 (s + 1 = 4) , which seems to support the triviality
conjecture. Much remains to be done concerning this im-
portant issue!

Acknowledgement

The author is grateful to Prof. P. van Nieuwenhuizen
for raising several questions on the causal theory, as well as
instructive comments.

REFERENCES

[1] H. Epstein and V. Glaser, Ann. Inst. Henri Poincaré
A19, 211 (1973).

[2] G. Scharf,Finite Quantum Electrodynamics: the Cau-
sal ApproachSecond edition - Springer, 1995.

[3] G. Scharf,Quantum Gauge Theories, A True Ghost
Story - Wiley 2001.

[4] G. Scharf, W.F. Wreszinski, B.M. Pimentel, and J.L.
Tomazelli, Ann. Phys.231, 185 (1994).

[5] N. Nakanishi and I. Ojima,Covariant Operator Forma-
lism of Gauge Theories and Quantum Gravity, World
Scientific Lect. Notes in Phys. vol. 27.
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[11] M. Dütsch and K. Fredenhagen, Comm. Math. Phys.

203, 71 (1999).
[12] R. Doria, J. Frenkel, and J.C. Taylor, Nucl. Phys.

B168, 73 (1980).
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