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Meson Loops and the gD∗Dπ Coupling
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The D∗Dπ form factor is evaluated at low and moderate Q2 in a hadronic loop model, for off-shell D mesons.
The results contain arbitrary constants, which are fixed so as to match a previous QCD sum rule calculation
valid at higher Q2. The form factor obtained in this way is used to extract the coupling constant, which is in
very good agreement with the experimental value.
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I. INTRODUCTION

The measurement of the D∗Dπ coupling, made by the
CLEO collaboration [1], yielding the result gD∗Dπ = 17.9±
0.3± 1.9, created embarrassment in the community of QCD
sum rules (QCDSR) which, by means of various schemes, had
predicted much smaller values. Several different approaches
of QCDSR were employed: two point function combined with
soft pion techniques [2, 3], light cone sum rules (LCSR) [4, 5],
light cone sum rules including perturbative corrections [6],
sum rules in a external field [7], double momentum sum rules
[8] and double Borel sum rules [9]. The LCSR prediction
made in ref. [4] became even smaller after the radiative cor-
rections have been included [6]. The upper limit of these pre-
dictions was gD∗Dπ = 13.5 [6] and it turned out to be 30%
lower than the central value of the CLEO measurement.

Although the QCD sum rule approach certainly suffers
from large uncertainties, in several other cases good agree-
ments with experiment were obtained. Therefore, we cannot
simply be skeptical about the whole sum rule approach. The
gD∗Dπ coupling constant does not seem, a priori, to be partic-
ularly exotic and other theoretical approaches did not produce
such large discrepancies for this quantity. A careful discussion
meant to reduce the uncertainties presented by quark mod-
els, performed in the framework of Dirac equation [10], and
prior to the experimental measurement, has led to the result
gD∗Dπ � 18. It should be stressed that this result has been ob-
tained in the heavy quark limit. The recent (quenched) lattice
QCD calculation has produced gD∗Dπ = 18.8± 2.3+1.1

−2.0 [11].
It is therefore important to understand the specific difficulty
which the standard sum rule approach seems to encounter in
this case.

After the appearance of experimental data, three works [12–
14] tried to reconcile the LCSR estimates with the measured
figure. In [12], it was noted that the inclusion of an explicit
radial excitation contribution to the hadronic side of the LCSR
(often referred to as the left hand side of the sum rule) could
significantly improve the value of gD∗Dπ and, at the same time,
the stability of the sum rule with respect to the Borel parame-
ter M2.

In the standard QCDSR approach of [9], a modification in
the continuum contribution (such as the explicit inclusion of
a radial excitation) does not seem to be neither necessary nor

promising, because there the Borel suppression is much more
effective. In ref. [9] the gD∗Dπ(Q2) form factor was estimated
as a function of the off-shell pion momentum Q2. Since the
sum rule obtained from the three-point function adopted is not
valid at Q2 = 0, in order to determine the D∗Dπ coupling, it
was necessary to extrapolate the Q2 behaviour of the form fac-
tor. Of course there are large uncertainties in this procedure,
and, the value of gD∗Dπ = 5.7±0.4 obtained was much smaller
than the experimental result. In a subsequent calculation of
the DDρ vertex [15], the DDρ form factor was calculated for
both D and ρ off-shell mesons and the QCDSR results were
parameterized by analytical forms such that the respective ex-
trapolations to the D and ρ poles provided consistent values
for the gDDρ coupling constant. This method of double pa-
rameterization plus matching at the on-shell point was then
employed in [16] to recalculate the D∗Dπ coupling and led to
the value

gD∗Dπ = 14.0±1.5 . (1)

While this number is much closer to the experimental value,
there is still a discrepancy. Moreover, the procedure of fitting
the QCDSR points in the deep euclidian region and extrapo-
lating them to the time-like region still contains uncertainties,
such as, for example the analytical form chosen for the para-
meterizations, i.e., monopole, exponential or gaussian.

In the present work we return to this question and employ
hadronic loops, calculated by means of effective field theories
(EFT),in order to produce a better parameterization for D∗Dπ
results derived by means of QCDSR. Purely hadronic calcula-
tions are independent from QCDSR and involve the choice of
an effective Lagrangian, including the possible requirements
of chiral symmetry and/or SU(4). However, beyond tree level,
one has to deal with the problems and uncertainties associ-
ated with renormalization. As we discuss in the sequence, a
suitable combination of EFT and QCDSR results allows the
elimination of undesired indeterminacies of both approaches,
improving significantly their predictive powers. Effective in-
teractions are discussed in section II, whereas results and con-
clusions are presented in sects. IV and V. As an straightfor-
ward exercise we also make a prediction for gB∗Bπ.
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II. EFFECTIVE DYNAMICS

The full D∗Dπ vertex function is shown in Fig. 1. Leading
contributions to this vertex when the external particles are not
too off-shell come from both the tree interaction and the three
classes of diagrams depicted in Figs. 2, 3 and 4. Meson loops
are a necessary consequence of quantum field theory and do
contribute to several hadronic observables. In practice, due to
problems associated with infinities, renormalization becomes
unavoidable in the evaluation of loop corrections to observ-
ables. Nowadays, this kind of procedure is rather well estab-
lished at the hadronic level, in processes such as pion-pion
and pion-nucleon scatterings. In the case of D mesons, on the
other hand, the theory is much less developed and hence we
resort to an alternative. The basic idea is to isolate the un-
known loop parameters into some basic constants, in such a
way that they can be determined by matching the results of
loop and QCDSR results.

FIG. 1: The full D∗Dπ (B∗Bπ) form factor.

FIG. 2: Meson loop contributions to the D∗Dπ form factor: “trian-
gle” diagrams.

Before proceeding, some remarks are in order. We first note

FIG. 3: Meson loop contributions to the D∗Dπ form factor: “quartic
couplings”.

that some diagrams, such as, for instance, that in Fig. 2a, con-
tain internal vertices involving the D∗Dπ coupling. In general,
a full calculation is self consistent, since one uses the D∗Dπ
form factor in order to calculate the D∗Dπ form factor. On
the other hand, in the framework of perturbation theory, there
are differences between the internal particles and the external
ones. The former are always virtual, whereas the latter may
be either real or put on mass shell in the extraction of the cou-
pling constant.

In perturbation at leading order, internal particles are
treated as elementary, without structure. They are assumed to
be point-like and the evaluation of leading terms does not re-
quire the use of internal form factors. Consistently, one must
use bare coupling constants for these interactions.

Nevertheless, our results do not depend on the values of
these constants, since they are absorbed into the renormaliza-
tion constants.

There are heavy mesons circulating in the loops shown in
Figs. 2-4 and one might be tempted to argue that other states
should also be included. We do have, for example, fermion-
antifermion components such as N̄N or Λ̄cΛc in the loops. An
incoming positive pion can split into a p plus a n̄, and so on.
However, in a different context [17], it has been shown that
this kind of splitting is suppressed with respect to the pion
→ meson-meson splitting, by one order of magnitude. The
neglect of this kind of contribution seems therefore justified.
The same holds for the possibility of strangeness circulating
in the loop, by means of the excitation of a ss̄ pair from the
sea. As this pair is heavy, the hadronic loops would involve
correspondingly heavier virtual states such as Ds, D∗

s , K and
K∗, which would also be suppressed, due to their high masses.

Moreover, in the QCDSR analysis of the D∗Dπ vertex the
strange quarks appear only as α2

s corrections or in terms pro-
portional to the square of the gluon condensate and can there-
fore be safely neglected. If the hadron loop and QCD ap-
proaches to the problem are supposed to have the same physi-
cal content, it seems appropriate to neglect the strange meson



1234 Brazilian Journal of Physics, vol. 36, no. 4A, December, 2006

FIG. 4: Meson loop contributions to the D∗Dπ form factor: “self
energies”.

loops and baryon loops as well. Using only π’s, ρ’s, D’s and
D∗’s we do cover properly the low Q2 regions of the form fac-
tor. Thus it is enough to our purposes to work with a simple
effective theory, involving only π’s, ρ’s, D’s and D∗’s that, as
has been discussed elsewhere, [18], has proven to be phenom-
enologically successful. The same happens in this work.

The diagrams considered in this calculation have been di-
vided into three classes. The first one, represented in Fig. 2,
involves only triangular loops. The processes in Fig. 3, on
the other hand, contain bubble-type loops and four-leg ver-
tices associated with the gauge structure of ρ interactions. Fi-
nally, diagrams given in Fig. 4 involve bubble loops as well
as single-particle propagators. This last feature might suggest
that these interactions should be considered as mass correc-
tions. However, the nature of the effective interactions de-
scribed below is such that, in some terms, contributions of the
form [A + B(p2−m2)]/(p2−m2) arise. Whenever this hap-
pens, the factors proportional to B do correspond to proper
three-point functions and are kept in the evaluation of the form
factor. This kind of pole cancellations are indicated by crosses

FIG. 5: The D∗Dπ form factor. Dots: QCDSR from [16]; solid, dash
and dash-dotted lines are fits obtained with eq. (12), (18) and (19),
respectively.

FIG. 6: The same as Fig. 5 for the B∗Bπ form factor.

in Fig. 4.
Leading effects are described by an effective Lagrangian

constrained by SU(2) flavor and chiral symmetries, as well as
gauge invariance. The πDD∗ interaction is given by [18–21]

LπDD∗ = i ĝπDD∗
[
D̄τaD∗

µ − D̄∗
µτaD

]
∂µφa . (2)

where τa are the Pauli matrices, φa denotes the pion isospin
triplet, while D ≡ (D0,D+) and D∗ ≡ (D∗0,D∗+) represent
the pseudoscalar and vector charm meson doublets, respec-
tively. The hat on top of the coupling constant indicates its
bare nature.

The ρ couplings are assumed to be universal and are imple-
mented by covariant derivatives of the form

Dµ = ∂µ − iĝρ T ·ρµ , (3)

where ĝρ is the universal coupling constant and T is the
isospin matrix suited to the field Dµ it is acting upon. In this
work we need



F. O. Durães et al. 1235

DµD =
[
∂µ − iĝρ

τ
2
·ρµ

]
D , (4)

DµD̄ = D̄
[
∂µ + iĝρ

τ
2
·ρµ

]
, (5)

Dµφa =
[
∂µ + ĝρ εabcρµ

b

]
φc . (6)

Using this prescription in eq. (2), we obtain

LρπDD∗ = i ĝρ ĝπDD∗
[
D̄τbD∗

µ − D̄∗
µτbD

]
εbca ρµ

cφa . (7)

For the other couplings, we depart from the free La-
grangians and have

Lππ =
1
2

∂µφa ∂µφa → Lρππ = ĝρ εabc φa∂µφb ρµ
c , (8)

LD̄D = ∂µD̄ ∂µD → LρDD =
i
2

ĝρ [D̄ τc ∂µD−∂µD̄ τc D]ρµ
c , (9)

LD̄∗D∗ = −1
2

[
∂µD̄∗

ν −∂νD̄∗
µ
]
[∂µD∗ν −∂νD∗µ] →

LρD̄∗D∗ = − i
2

ĝρ [ D̄∗ντc
(
∂µD∗

ν −∂νD∗
µ
)− (

∂µD̄∗
ν −∂νD̄∗

µ
)

τcD∗ν ] ρµ
c . (10)

With these Lagrangians we can write and evaluate the con-
tributions of Figs. 2-4 to the total vertex function.

III. RESULTS

The πa(q) D(p) D∗
α(p′) vertex function Γa

α(p2) for an off-
shell D is written as

Γa
α(p2) = − τa qαG(p2) , (11)

where G(p2) is a form factor, such that the physical coupling
constant is gπDD∗ = G(m2

D). We consider two kinds of loop
corrections to this vertex, containing pion and rho intermedi-
ate states, denoted respectively by Fπ(p2) and Fρ(p2). The
perturbative evaluation of these functions gives rise to diver-

gent integrals and G(p2) can be determined only up to yet
unknown renormalization constants.

The use of standard loop integration techniques, such as di-
mensional regularization and MS subtraction of divergences,
for all diagrams, allows one to write the form factor as

G(p2) = K +Cπ Fπ(p2)+Cρ Fρ(p2) , (12)

where K, Cπ and Cρ are constants. These constants incorpo-
rate the bare couplings ĝπDD∗ and ĝρ, the usual parameters
associated with renormalization and, in this work, are deter-
mined by comparing the general structure of G(p2) with the
results from QCD sum rules.

Keeping only the terms which depend on p2, the explicit
evaluation of the diagrams given in Figs. 2-4 yields:

Fπ =
1

(4π)2

{[
(m2

D∗ −m2
D)− 1

4m2
D∗

(m2
D∗ −m2

D +µ2)2
]

Π(001)
πDD∗

− 1
4m2

D∗

[
(m2

D∗ +m2
D −µ2) Π(01)

πD∗ +6 (m2
D∗ −m2

D +µ2) Π(00)
πD∗

]}
, (13)

Fρ =
1

(4π)2

{
−

(
2m2

D∗ −2m2
D −2µ2 +m2

ρ

)[
Π(000)

ρπD +Π(010)
ρπD +Π(001)

ρπD

]

+
(
m2

D∗ −m2
D +µ2)[

2Π(000)
ρπD∗ +Π(001)

ρπD∗
]
+2

(
m2

D∗ −m2
D
)[

Π(010)
ρπD∗

]

− 1
2

(
m2

D∗ +m2
D −µ2)[

Π(000)
ρDD∗

]
− 1

8
(
m2

D∗ +3m2
D −µ2)[

Π(010)
ρDD∗

]

− 1
8

(−m2
D∗ +5m2

D −5µ2)[
Π(001)

ρDD∗
]
+

3
8

Π(00)
ρD

}
, (14)
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where µ is the pion mass. The functions Πxyz and Πxy entering these results are Feynman integrals, with lower labels indicating
the intermediate propagating states. Upper indices represent the Lorentz tensor structure, which is realized in terms of the
external variables q, p and p′, and defined by the relationships

Π(klm)
xyz = −

∫ 1

0
da a

∫ 1

0
db [−(1−a)]k [−a(1−b)]l [−ab]m [1/Dxyz] ,

Dxyz = (1−a) m2
x +a(1−b) m2

y +ab m2
z

− a(1−a)(1−b) (px−py)2 −a(1−a)b (px−pz)2 −a2b(1−b) (py−pz)2 , (15)

and

Π(kl)
xy = −

∫ 1

0
da [−(1−a)]k [−a]l ln [Dxy/D̄xy] ,

Dxy = (1−a) m2
x +a m2

y −a(1−a) (px−py)2 ,

D̄xy = (1−a) m2
x +a m2

y . (16)

Using (13) and (14) into (12), we obtain the form factor
as a function of p2, the D four-momentum squared. At this
stage, it still contains three unknown parameters, which are
determined by adjusting the function G(p2) to the QCD sum
rule points taken from ref. [16]. Those results are displayed in
Fig. 5, where P2 ≡−p2, together with our best fit (χ2 ∼ 10−3)
represented by the solid line. Computing the value of G(p2)
at p2 = m2

D, we arrive at the following value for the coupling
constant:

gD∗Dπ = 17.5±1.5 , (17)

in very good agreement with experiment. The errors quoted
come from the QCDSR points, which are typically about �
10 %. In the same figure we also show the results of the fits of
the QCDRS points with two mixed monople-dipole structures
with three free parameters, namely

GFI(p2) = C

[
Λ2

1 −m2
D

Λ2
1 − p2

+
(

Λ2
2 −m2

D

Λ2
2 − p2

)2
]

, (18)

GFII(p2) = C1
Λ2 −m2

D
Λ2 − p2 +C2

(
Λ2 −m2

D
Λ2 − p2

)2

, (19)

which yield χ2
I ∼ 10−3 (dashed line) and χ2

II ∼ 10−2 (dash-
dotted line), respectively. Inspecting Fig. 5 one learns that
these alternative structures, reasonable as they are, diverge
significantly from the loop calculation in the region where the
D is not too off-shell, stressing the importance of a proper
hadronic treatment of the form factor in that region.

In this work we also consider the B∗Bπ vertex with an off-
shell B, which can be obtained by a straightforward replace-
ment of the charmed particles with those containing the quark
b in the results described above. Using the same Lagrangians

and fitting procedure with results from ref. [16], we obtain the
curve shown in Fig. 6. The resulting coupling constant is:

gB∗Bπ = 44.7±1.0 , (20)

in good agreement with lattice estimates.
As far as practical applications are concerned, our numer-

ical results for the form factors GD∗Dπ(p2) and GB∗Bπ(p2),
in the whole range m2

D(B) ≤ p2 < −5 GeV, are very well
described by the mixed monopole-dipole structure given by
eq.(18) with the parameters

GD∗Dπ(p2) →C = 8.7 ; Λ1 = 5.1GeV ; Λ2 = 2.9GeV ,

GB∗Bπ(p2) →C = 22.4 ; Λ1 = 7.8GeV ; Λ2 = 7.1GeV .(21)

Our good results allow us to believe that the use of me-
son loops can significantly reduce the uncertainty in the ex-
trapolation of form factors, computed in the space-like region
by means of QCDSR, to the time-like region, with the corre-
sponding increase in the reliability of predictions for coupling
constants. It is worth stressing that, apart from the approxima-
tions described in the introduction, our procedure has no new
source of errors.

IV. CONCLUSIONS

We have developed a new method of improving QCDSR
calculations of hadronic form factors. It consists in matching
QCDSR results, valid mainly in the deep euclidian region, to
meson loop calculations, valid when the D is not too off-shell.
The basic idea is to reduce the freedom of the function used
to interpolate between these two regions by imposing the best
possible behaviour in the region where the D is almost on-
shell. In the spirit of chiral perturbation theory, this region
is described by a tree diagram corrected by processes involv-
ing loops. The leading order (LO) corrections are given by
one-loop diagrams containing internal pions. Diagrams con-
taining the ρ, on the other hand, may be understood as a sub
class of two-loop corrections, in which the resonance simu-
lates a two-pion system. This class of contributions does not
represent a systematic next-to-leading order chiral correction,
but it allows a reasonable extension of the LO results.
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The matching between chiral and QCDSR results is well
justified from the following physical point of view: in the in-
termediate and large Q2 regions the relevant degrees of free-
dom are the quarks and gluons, with non-perturbative correc-
tions taken into account through the QCD condensates. The
opposite happens for low values of Q2, where sum rules cal-
culations become non-reliable. At this point, the meson ex-
change dynamics becomes the most reliable tool, but it de-
pends on unknown constants associated with the renormaliza-
tion of the mesonic vertices.

Although the exact frontier between meson dynamics and
QCDSR cannot be precisely known, the success of the method

in the instances considered here supports the view that the
matching may become useful in increasing the predictive
power of both procedures. In order to validate this assump-
tion, it would be useful to apply it to other processes of the
same kind. This encourages us to reconsider our previous
form factor studies.
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